Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (656)

Search Parameters:
Keywords = carbon aerosol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6039 KB  
Article
Chemical Characteristics and Source Identification of PM2.5 in Industrial Complexes, Korea
by Hyeok Jang, Shin-Young Park, Ji-Eun Moon, Young-Hyun Kim, Joong-Bo Kwon, Jae-Won Choi and Cheol-Min Lee
Toxics 2026, 14(2), 111; https://doi.org/10.3390/toxics14020111 - 23 Jan 2026
Viewed by 263
Abstract
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, [...] Read more.
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, two carbon species, and 19 trace elements) were measured and analyzed at five monitoring sites adjacent to the Yeosu and Gwangyang industrial complexes from August 2020 to December 2024. Chemical characterization and source identification were conducted. The average PM2.5 concentration was 18.63 ± 9.71 μg/m3, with notably higher levels observed during winter and spring. A low correlation (R = 0.56) between elemental carbon (EC) and organic carbon (OC) suggests a dominance of secondary aerosols. The charge balance analysis of [NH4+] with [SO42−], [NO3], and [Cl] showed slopes below the 1:1 line, indicating that NH4+ is capable of neutralizing these anions. Positive matrix factorization (PMF) identified eight contributing sources—biomass burning (10.4%), sea salt (11.8%), suspended particles (7.1%), industrial sources (4.6%), Asian dust (5.2%), steel industry (21.8%), secondary nitrate (16.4%), and secondary sulfate (22.7%). These findings provide valuable insights for the development of targeted mitigation strategies and the establishment of effective emission control policies in industrial regions. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

30 pages, 6038 KB  
Article
Deposition of Occupational Aerosol Particles in a Three-Dimensional Adult Nasal Cavity Model: An Experimental Study
by Anna Rapiejko, Tomasz R. Sosnowski, Krzysztof Sosnowski and Dariusz Jurkiewicz
Bioengineering 2026, 13(2), 132; https://doi.org/10.3390/bioengineering13020132 - 23 Jan 2026
Viewed by 177
Abstract
Background: Occupational exposure to aerosol particles can pose a substantial health risk. The study aimed to characterise the deposition of occupationally relevant aerosols in a 3D anatomical adult nasal cavity model under steady and unsteady flows. Materials: The deposition of aerosolised [...] Read more.
Background: Occupational exposure to aerosol particles can pose a substantial health risk. The study aimed to characterise the deposition of occupationally relevant aerosols in a 3D anatomical adult nasal cavity model under steady and unsteady flows. Materials: The deposition of aerosolised wheat flour, pine wood sanding dust, carbon black, and Arizona Test Dust A3 was quantified under steady flows (5, 7.5, and 20 L/min per nostril) and an unsteady breathing pattern generated by the commercial breathing simulator. Image analysis with custom software quantified the area covered by deposited particles. The Downstream Penetration Index (DPI) was determined from the outlet mass. Results: The highest segmental deposition occurred in the anterior segment of the lateral wall (WA) and septum (SA), with moderate values in the middle lateral wall (WM) and the lowest in the posterior lateral wall (WP, nasopharynx) and septum (SP). Arizona Test Dust A3 and carbon black demonstrated higher middle-posterior deposition and DPI, consistent with finer particle size distributions (PSD) and greater sub-10 µm fractions. In contrast, wheat flour and pine wood dust, with larger median particle sizes and lower sub-10 µm fractions, showed stronger anterior filtration and lower DPI. Increased flow enhanced anterior filtration of coarse particles and shifted deposition forward, aligning with increased inertial impaction, but elevated DPI for fine particles. Under unsteady flow, deposition was intermediate between 7.5 and 20 L/min. Conclusions: This study shows that PSD, morphology, and flow conditions influence nasal deposition. Coarse aerosols were filtered in the anterior nose, while fine-rich aerosols showed relatively greater middle-posterior deposition and higher DPI. These findings are essential for assessing occupational exposure and developing interventions and prevention strategies. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

32 pages, 7360 KB  
Article
Analysis of Air Pollution in the Orontes River Basin in the Context of the Armed Conflict in Syria (2019–2024) Using Remote Sensing Data and Geoinformation Technologies
by Aleksandra Nikiforova, Vladimir Tabunshchik, Elena Vyshkvarkova, Roman Gorbunov, Tatiana Gorbunova, Anna Drygval, Cam Nhung Pham and Andrey Kelip
Atmosphere 2026, 17(1), 115; https://doi.org/10.3390/atmos17010115 - 22 Jan 2026
Viewed by 87
Abstract
Rapid urbanization and anthropogenic activities have led to a significant deterioration of air quality, adversely affecting human health and ecosystems. The study of transboundary river basins, where air pollution is exacerbated by political and socio-economic factors, is of particular relevance. This paper presents [...] Read more.
Rapid urbanization and anthropogenic activities have led to a significant deterioration of air quality, adversely affecting human health and ecosystems. The study of transboundary river basins, where air pollution is exacerbated by political and socio-economic factors, is of particular relevance. This paper presents the results of an analysis of the spatiotemporal distribution of pollutants (Aerosol Index (AI), Methane (CH4), Carbon Monoxide (CO), Formaldehyde (HCHO), Nitrogen Dioxide (NO2), Ozone (O3), Sulfur Dioxide (SO2)) in the ambient air within the Orontes River basin across Lebanon, Syria, and Turkey for the period 2019–2024. The research is based on satellite monitoring data (Copernicus Sentinel-5P), processed using the Google Earth Engine (GEE) cloud-based platform and GIS technologies (ArcGIS 10.8). The dynamics of population density (LandScan) and the impact of military operations in Syria on air quality were additionally analyzed using media content analysis. The results showed that the highest concentrations of pollutants were recorded in Syria, which is associated with the destruction of infrastructure, military operations, and unregulated emissions. The main sources of pollution were: explosions, fires, and destruction during the conflict (aerosols, CO, NO2, SO2); methane (CH4) leaks from damaged oil and gas facilities; the use of low-quality fuels and waste burning. Atmospheric circulation contributed to the eastward transport of pollutants, minimizing their spread into Lebanon. Population density dynamics are related to changes in concentrations of pollutants (e.g., nitrogen dioxide). The results of the study highlight the need for international cooperation to monitor and reduce air pollution in transboundary regions, especially in the context of armed conflicts. The obtained data can be used to develop measures to improve the environmental situation and protect public health. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

18 pages, 5382 KB  
Article
Insight into the Formation of Winter Black Carbon and Brown Carbon over Xi’an in Northwestern China
by Dan Li, Qian Zhang, Ziqi Meng, Hongmei Xu, Peng Wei, Yu Wang and Zhenxing Shen
Toxics 2026, 14(1), 93; https://doi.org/10.3390/toxics14010093 - 20 Jan 2026
Viewed by 305
Abstract
This study evaluates the effectiveness of air pollution control measures in Xi’an, China, by investigating long-term changes in the concentrations, optical properties, and sources of black carbon (BC) and brown carbon (BrC). Wintertime observations of PM2.5 carbonaceous aerosols were conducted over multiple [...] Read more.
This study evaluates the effectiveness of air pollution control measures in Xi’an, China, by investigating long-term changes in the concentrations, optical properties, and sources of black carbon (BC) and brown carbon (BrC). Wintertime observations of PM2.5 carbonaceous aerosols were conducted over multiple years using a continuous Aethalometer. The data were analyzed using advanced aethalometer models, potential source contribution function (PSCF) analysis, and generalized additive models (GAMs) to deconstruct emission sources and formation pathways. Our results revealed a significant decrease in the mass concentration and light absorption coefficient of BC (babs-BC) between the earlier and later study periods, indicating successful emission reductions. In contrast, the light absorption from BrC (babs-BrC) remained relatively stable, suggesting persistent and distinct emission sources. Source apportionment analysis demonstrated a temporal shift in dominant regional influences, from biomass burning in the initial years to coal combustion in later years. In addition, GAMs showed that the primary driver for liquid fuel-derived BC transitioned from gasoline to diesel vehicle emissions. For solid fuels, residential coal combustion consistently contributed over 50% of BC, highlighting that improvements in coal combustion technology were effective in reducing BC emissions. Furthermore, a substantial fraction of BrC was increased, with nocturnal peaks associated with high relative humidity, emphasizing the aqueous-phase formation influences. Collectively, these findings demonstrated that although certain control strategies successfully mitigated BC, the persistent challenge of BrC pollution necessitates targeted measures addressing secondary formation and primary fossil fuel sources. Full article
Show Figures

Graphical abstract

16 pages, 4458 KB  
Article
Variation in Atmospheric 137Cs and the Carriers in Aerosol Samples Obtained from a Heavily Contaminated Area of Fukushima Prefecture
by Huihui Li, Peng Tang and Kazuyuki Kita
Toxics 2026, 14(1), 88; https://doi.org/10.3390/toxics14010088 - 19 Jan 2026
Viewed by 136
Abstract
Even a decade after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on 11 March 2011, fluctuations in atmospheric 137Cs were still observed, and explanations for the fluctuations and their carriers remained elusive. In this study, small fluctuations within 0.0002 Bq∙m−3 [...] Read more.
Even a decade after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on 11 March 2011, fluctuations in atmospheric 137Cs were still observed, and explanations for the fluctuations and their carriers remained elusive. In this study, small fluctuations within 0.0002 Bq∙m−3 were still detected in aerosol samples obtained from January to April, and slightly higher levels of atmospheric 137Cs were observed from May to September in a heavily contaminated area of Fukushima prefecture. Specifically, it is demonstrated that the 137Cs carriers in the aerosol samples were a combination of carbon-containing particles and aluminum-containing particles (Al particles dominated, with the percentage being 68%) in early May, whereas the main 137Cs carriers were carbonaceous particles, with the average percentage being 88% in September and at the end of May, using fluorescent upright microscope and scanning electron microscope equipped with an energy-dispersive X-ray spectrometer quantitatively. Additionally, small particles (less than 2 μm) and medium particles (2–8 μm) of carbonaceous particles had a higher level in the aerosol samples of May and September. Specifically, bacteria (1–1.8 μm) and spores (1.8–10 μm) had a linear relationship with the distribution of atmospheric 137Cs in the aerosol samples of September. In addition, temperature and precipitation were the main impact factors affecting the distribution of 137Cs and their carriers. This observation further suggests that there is still a need for long-term monitoring of atmospheric 137Cs. Full article
Show Figures

Graphical abstract

22 pages, 4986 KB  
Article
Towards Sustainable Energy Generation Using Hybrid Methane Iron Powder Combustion: Gas Emissions and Nanoparticle Formation Analysis
by Zakaria Mansouri and Amine Koched
Sustainability 2026, 18(2), 704; https://doi.org/10.3390/su18020704 - 9 Jan 2026
Viewed by 228
Abstract
Iron powder represents a promising carbon-free, sustainable fuel, yet its practical utilisation in combustion has not yet been realised. Achieving stable, efficient iron-only flames is challenging, and the environmental impact of hybrid iron-hydrocarbon combustion, including particle emissions, is not fully understood. This study [...] Read more.
Iron powder represents a promising carbon-free, sustainable fuel, yet its practical utilisation in combustion has not yet been realised. Achieving stable, efficient iron-only flames is challenging, and the environmental impact of hybrid iron-hydrocarbon combustion, including particle emissions, is not fully understood. This study investigates hybrid methane–iron powder flames to assess iron’s role in modifying gas and particle phase emissions and its potential as a sustainable energy carrier. The combustion of iron was investigated at both the single particle and powder flow scales. Experimental diagnostics combined high-speed and microscopic imaging, ex situ particle sizing, in situ gas analysis, and aerosol measurements using an Aerodynamic Particle Sizer (APS™) and a Scanning Mobility Particle Sizer (SMPS™). For single particle combustion, high-speed imaging revealed rapid particle heating, oxide shell growth, cavity formation, micro-explosions, and nanoparticle release. For powder combustion, at 0.5 g/min and 1.26 g/min, the experiment yielded oxidation fractions of 15.15% and 23.43%, respectively, and increased CO2 emissions by 0.22–0.35 vol% relative to methane–air flames, while NOx changes were negligible. Aerosol analysis showed a supermicron mode at ~2 µm and submicron ultrafine particles of 89% <100 nm with a modal diameter of ~56 nm. The observed ultrafine particle emissions highlight the need to evaluate health, material-loss, and fuel-recycling implications. Burner optimisation or premixed strategies could reduce CO2 emissions while enhancing iron oxidation efficiency. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

16 pages, 1219 KB  
Article
Flexible Inkjet-Printed pH Sensors for Application in Organ-on-a-Chip Biomedical Testing
by Željka Boček, Donna Danijela Dragun, Laeticia Offner, Sara Krivačić, Ernest Meštrović and Petar Kassal
Biosensors 2026, 16(1), 38; https://doi.org/10.3390/bios16010038 - 3 Jan 2026
Viewed by 493
Abstract
Reliable models of the lung environment are important for research on inhalation products, drug delivery, and how aerosols interact with tissue. pH fluctuations frequently accompany real physiological processes in pulmonary environments, so monitoring pH changes in lung-on-a-chip devices is of considerable relevance. Presented [...] Read more.
Reliable models of the lung environment are important for research on inhalation products, drug delivery, and how aerosols interact with tissue. pH fluctuations frequently accompany real physiological processes in pulmonary environments, so monitoring pH changes in lung-on-a-chip devices is of considerable relevance. Presented here are flexible, miniaturized, inkjet-printed pH sensors that have been developed with the aim of integration into lung-on-a-chip systems. Different types of functional pH-sensitive materials were tested: hydrogen-selective plasticized PVC membranes and polyaniline (both electrodeposited and dropcast). Their deposition and performance were evaluated on different flexible conducting substrates, including screen-printed carbon electrodes (SPE) and inkjet-printed graphene electrodes (IJP-Gr). Finally, a biocompatible dropcast polyaniline-modified IJP was selected and paired with an inkjet-printed Ag/AgCl quasireference electrode. The printed potentiometric device showed Nernstian sensitivity (58.8 mV/pH) with good reproducibility, reversibility, and potential stability. The optimized system was integrated with a developed lung-on-a-chip model with an electrospun polycaprolactone membrane and alginate, simulating the alveolar barrier and the natural mucosal environment, respectively. The permeability of the system was studied by monitoring the pH changes upon the introduction of a 10 wt.% acetic acid aerosol. Overall, the presented approach shows that electrospun-hydrogel materials together with integrated microsensors can help create improved models for studying aerosol transport, diffusion, and chemically changing environments that are relevant for inhalation therapy and respiratory research. These results show that our system can combine mechanical behavior with chemical sensing in one platform, which may be useful for future development of lung-on-a-chip technologies. Full article
Show Figures

Graphical abstract

19 pages, 6978 KB  
Article
Los Angeles Wildfires 2025: Satellite-Based Emissions Monitoring and Air-Quality Impacts
by Konstantinos Michailidis, Andreas Pseftogkas, Maria-Elissavet Koukouli, Christodoulos Biskas and Dimitris Balis
Atmosphere 2026, 17(1), 50; https://doi.org/10.3390/atmos17010050 - 31 Dec 2025
Viewed by 544
Abstract
In January 2025, multiple wildfires erupted across the Los Angeles region, fueled by prolonged dry conditions and intense Santa Ana winds. Southern California has faced increasingly frequent and severe wildfires in recent years, driven by prolonged drought, high temperatures, and the expanding wildland–urban [...] Read more.
In January 2025, multiple wildfires erupted across the Los Angeles region, fueled by prolonged dry conditions and intense Santa Ana winds. Southern California has faced increasingly frequent and severe wildfires in recent years, driven by prolonged drought, high temperatures, and the expanding wildland–urban interface. These fires have caused major loss of life, extensive property damage, mass evacuations, and severe air-quality decline in this densely populated, high-risk region. This study integrates passive and active satellite observations to characterize the spatiotemporal and vertical distribution of wildfire emissions and assesses their impact on air quality. TROPOMI (Sentinel-5P) and the recently launched TEMPO geostationary instrument provide hourly high temporal-resolution mapping of trace gases, including nitrogen dioxide (NO2), carbon monoxide (CO), formaldehyde (HCHO), and aerosols. Vertical column densities of NO2 and HCHO reached 40 and 25 Pmolec/cm2, respectively, representing more than a 250% increase compared to background climatological levels in fire-affected zones. TEMPO’s unique high-frequency observations captured strong diurnal variability and secondary photochemical production, offering unprecedented insights into plume evolution on sub-daily scales. ATLID (EarthCARE) lidar profiling identified smoke layers concentrated between 1 and 3 km altitude, with optical properties characteristic of fresh biomass burning and depolarization ratios indicating mixed particle morphology. Vertical profiling capability was critical for distinguishing transported smoke from boundary-layer pollution and assessing radiative impacts. These findings highlight the value of combined passive–active satellite measurements in capturing wildfire plumes and the need for integrated monitoring as wildfire risk grows under climate change. Full article
Show Figures

Figure 1

22 pages, 8151 KB  
Article
Source Identification of PM2.5 and Organic Carbon During Various Haze Episodes in a Typical Industrial City by Integrating with High-Temporal-Resolution Online Measurements of Organic Molecular Tracers
by Nan Chen, Yufei Du, Yangjun Wang, Yanan Yi, Chaiwat Wilasang, Jialiang Feng, Kun Zhang, Kasemsan Manomaiphiboon, Ling Huang, Xudong Yang and Li Li
Sustainability 2025, 17(23), 10587; https://doi.org/10.3390/su172310587 - 26 Nov 2025
Viewed by 557
Abstract
Achieving sustainable air quality improvements in rapidly industrializing regions requires a clear understanding of the emission sources that drive the formation of PM2.5 pollution. This study identified the sources of PM2.5 and its organic carbon (OC) in Zibo, a typical industrial [...] Read more.
Achieving sustainable air quality improvements in rapidly industrializing regions requires a clear understanding of the emission sources that drive the formation of PM2.5 pollution. This study identified the sources of PM2.5 and its organic carbon (OC) in Zibo, a typical industrial city in Northern China Plain, using the Positive Matrix Factorization (PMF) model during five pollution episodes (P1–P5) from 26 November 2022 to 9 February 2023. A high-temporal-resolution online observation of 61 organic molecular tracers was conducted using an Aerodyne TAG stand-alone system combined with a gas chromatograph–mass spectrometer (TAG-GC/MS) system. The results indicate that during pollution episodes, PM2.5 was contributed by 32.4% from coal combustion and 27.1% from inorganic secondary sources. Moreover, fireworks contributed 13.1% of PM2.5, primarily due to the extensive fireworks during the Gregorian and Lunar New Year celebrations. Similarly, coal combustion was the largest contributor to OC, followed by mobile sources and secondary organic aerosol (SOA) sources, accounting for 16.2% and 15.3%, respectively. Although fireworks contributed significantly to PM2.5 concentrations (31.6% in P4 of 20–24 January 2023), their impact on OC was negligible. Overall, a combination of local and regional industrial combustion emissions, mobile sources, extensive residential heating during cold weather, and unfavorable meteorological conditions led to elevated secondary aerosol concentrations and the occurrence of this haze episode. The high-temporal-resolution measurements obtained using the TAG-GC/MS system, which provided more information on source-indicating organic molecules (tracers), significantly enhanced the source apportionment capability of PM2.5 and OC. The findings provide science-based evidence for designing more sustainable emission control strategies, highlighting that the coordinated management of coal combustion, mobile emissions, and wintertime heating is essential for long-term air quality and public health benefits. Full article
Show Figures

Figure 1

29 pages, 1134 KB  
Review
Particle Size as a Key Driver of Black Carbon Wet Removal: Advances and Insights
by Yumeng Qiao, Jiajia Wang, Li Wang and Baiqing Xu
Atmosphere 2025, 16(11), 1309; https://doi.org/10.3390/atmos16111309 - 20 Nov 2025
Viewed by 1104
Abstract
Black carbon (BC), as a potent light-absorbing aerosol, is mainly removed from the atmosphere through wet deposition. The efficiency of this process depends on the capacity of BC particles to serve as cloud condensation nuclei (CCN) or ice nuclei (IN). Newly emitted BC [...] Read more.
Black carbon (BC), as a potent light-absorbing aerosol, is mainly removed from the atmosphere through wet deposition. The efficiency of this process depends on the capacity of BC particles to serve as cloud condensation nuclei (CCN) or ice nuclei (IN). Newly emitted BC particles are typically small in size and highly hydrophobic, which limits their activation potential. However, atmospheric aging processes involving interactions with sulfates, nitrates, or organic matter enhance their hydrophilicity and nucleation capacity. Particle size serves as the critical link between aging and removal processes. Larger or coated BC particles are more readily activated and removed, while smaller particles require higher supersaturation levels. Both observations and models indicate that uncertainties in BC particle size distribution and aging processes lead to significant discrepancies in lifetime and transport estimates. This paper reviews recent research on the size dependence of wet removal of BC, evaluates current observational and modeling results, and proposes key research priorities to more accurately constrain its role in the climate system. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

34 pages, 99537 KB  
Article
Microchemical Analysis of Rammed Earth Residential Walls Surface in Xiaochikan Village, Guangdong
by Liang Zheng, Qingnian Deng, Jingwei Liang, Zekai Guo, Yufei Zhu, Wei Liu and Yile Chen
Coatings 2025, 15(11), 1351; https://doi.org/10.3390/coatings15111351 - 19 Nov 2025
Cited by 2 | Viewed by 583
Abstract
Xiaochikan Village, located in Guangdong Province in South China, is one of the few remaining traditional rammed earth dwellings of the Cantonese ethnic group in the Lingnan region. However, the influence of Zhuhai’s subtropical maritime monsoon climate has led to continuous physical and [...] Read more.
Xiaochikan Village, located in Guangdong Province in South China, is one of the few remaining traditional rammed earth dwellings of the Cantonese ethnic group in the Lingnan region. However, the influence of Zhuhai’s subtropical maritime monsoon climate has led to continuous physical and chemical erosion of the rammed earth walls. For example, cracking occurs due to high temperatures and heavy rain, accelerated weathering occurs due to salt spray deposition, and biological erosion occurs due to high humidity and high temperatures. Therefore, two experimental analysis techniques, X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), were used to explore the structural anti-erosion mechanism of the ancient, rammed earth buildings in Xiaochikan Village. The results show that (1) the morphological characteristics of the east and west walls of the rammed earth dwellings in Xiaochikan Village are more similar. The particles on the east wall are regular spherical or polygonal, small, and evenly distributed, while the particles on the west wall are mainly spherical and elliptical, with consistent size and less agglomeration. The surfaces of the particles on both walls are relatively smooth and flat. (2) The core element bases of the four wall samples are consistent, with C, Si, Al, Ca, and Fe as the core, accounting for more than 93%, reflecting the base characteristics of the local alluvial soil “silicate skeleton–carbonate cementation–organic matter residue” and reflecting the “local material” attribute of rammed earth. Except for the south wall sample, the Cl content of the remaining samples exceeds 1%. In the thermal map, Cl shows “pore/interstitial enrichment”, which confirms that the salinization process of marine aerosols with rainwater infiltration and evaporation residue is a common influence of marine climate. (3) The rammed earth walls in Xiaochikan Village consist of three main minerals: Quartz (SiO2, including alpha-type SiO2), Calcite (CaCO3, including synthetic calcite), and Gibbsite (Al(OH)3). Full article
Show Figures

Graphical abstract

18 pages, 4061 KB  
Article
Aerosol Spraying of Carbon Nanofiber-Based Films for NO2 Detection: The Role of the Spraying Technique
by Artyom Shishin, Valeriy Golovakhin, Eugene Maksimovskiy, Ekaterina Vostretsova, Vladimir Timofeev and Alexander Bannov
Appl. Sci. 2025, 15(22), 12110; https://doi.org/10.3390/app152212110 - 14 Nov 2025
Viewed by 378
Abstract
This study is devoted to the determination of the role of aerosol spraying in the formation of NO2 sensor properties of carbon nanofiber (CNF)-based films. This is the first paper to systematically apply the aerosol spraying technique to CNF-based films and link [...] Read more.
This study is devoted to the determination of the role of aerosol spraying in the formation of NO2 sensor properties of carbon nanofiber (CNF)-based films. This is the first paper to systematically apply the aerosol spraying technique to CNF-based films and link the spraying parameters directly to sensor performance metrics (response, signal-to-noise ratio, response times, etc.). Chemiresistive gas sensors were created based on CNFs and tested at room temperature (25 ± 1 °C). It has been shown that the increase in the concentration of the CNF/ethanol mixture used for spraying from 3 to 30 mg/mL led to a growth in sensor response from 1.2% to 12.0% at 2 ppm NO2. The increase in the thickness of the CNF film of the sensor induced a growth in ΔR/R0 to NO2 that is attributed to the formation of a porous film. With increased film thickness, the response improves (from 7.0% to 10.6% at 2 ppm NO2) as does the signal-to-noise ratio (from 735:1 to 1892:1). The creation of hybrid all-carbon composites based on CNFs and multi-walled carbon nanotubes (MWCNTs) resulted in a decrease in both sensor response and signal-to-noise ratio; however, the response time and recovery degree improved. Two types of hybrid materials based on CNFs and MWCNTs were created using aerosol spraying to enhance the sensor behavior of CNFs. The obtained data confirm the dominant role of the thickness of CNF-based films and their density (in terms of distance between nearest carbon inclusions within the film) in sensor characteristics. The machine learning data used to describe the sensing behavior of two gases with opposite resistance changes when in contact with CNFs, namely NO2 and NH3, showed final accuracies of 92.13% on training data and 91.98% on validation data. Full article
Show Figures

Figure 1

20 pages, 2139 KB  
Article
Inhalation of Ultrafine Carbon Black-Induced Mitochondrial Dysfunction in Mouse Heart Through Changes in Acetylation
by Rahatul Islam, Jackson E. Stewart, William E. Mullen, Dena Lin, Salik Hussain and Dharendra Thapa
Cells 2025, 14(21), 1728; https://doi.org/10.3390/cells14211728 - 4 Nov 2025
Viewed by 764
Abstract
Air pollution, particularly from fine and ultrafine particulate matter (PM), has been increasingly associated with cardiovascular diseases. Ultrafine carbon, a component of ultrafine PM widely used in industrial settings, is both an environmental and occupational hazard. But the cardiac toxicity of repeated inhalation [...] Read more.
Air pollution, particularly from fine and ultrafine particulate matter (PM), has been increasingly associated with cardiovascular diseases. Ultrafine carbon, a component of ultrafine PM widely used in industrial settings, is both an environmental and occupational hazard. But the cardiac toxicity of repeated inhalation exposure to ultrafine carbon black (CB) remains unclear. In this study, we investigated how repeated inhalation of CB affects cardiac mitochondrial function, focusing on metabolic pathways and regulatory mechanisms involved in energy production. Male C57BL/6J mice were exposed to either filtered air or CB aerosols (10 mg/m3) for four consecutive days. Cardiac tissues were collected and analyzed to assess changes in metabolic enzyme activity, protein expression, and mitochondrial function using Western blotting, enzymatic assays, and immunoprecipitation. Despite there being few changes in overall protein expression levels, we observed significant impairments in fatty acid oxidation, increased glucose oxidation, and disrupted electron transport chain (ETC) supercomplex assembly, particularly in Complexes III and IV. These changes were accompanied by increased hyperacetylation of mitochondrial proteins and elevated levels of GCN5L1, a mitochondrial acetyltransferase. We also found increased lipid peroxidation and hyperacetylation of antioxidant enzyme SOD2 at the K-122 site, which reflects reduced enzymatic activity contributing to oxidative stress. Our findings suggest that repeated CB inhalation leads to mitochondrial dysfunction in the heart by dysregulating substrate utilization, impairing ETC activities, and weakening antioxidant defenses primarily through lysine acetylation. These findings reveal a potential role of key post-translational mechanisms in environmental particulate exposure to mitochondrial impairment and provide a potential therapeutic target for CB-induced cardiotoxicity. Full article
(This article belongs to the Special Issue Cellular Mechanisms in Mitochondrial Function and Calcium Signaling)
Show Figures

Graphical abstract

19 pages, 1932 KB  
Article
Carbonaceous Aerosols and Ice Nucleation Activity in Iceland Environmental Samples
by Isatis M. Cintrón-Rodríguez, Hinrich Grothe and Philipp Baloh
Environments 2025, 12(11), 416; https://doi.org/10.3390/environments12110416 - 3 Nov 2025
Viewed by 841
Abstract
Heterogeneous ice nucleation is a key process for ice cloud formation, snowfall, and freezing of water bodies. Ice nucleating particle (INP) cloud feedbacks are one of the largest sources of uncertainties in Earth’s Energy Budget. Although INPs are essential in the development of [...] Read more.
Heterogeneous ice nucleation is a key process for ice cloud formation, snowfall, and freezing of water bodies. Ice nucleating particle (INP) cloud feedbacks are one of the largest sources of uncertainties in Earth’s Energy Budget. Although INPs are essential in the development of mixed-phased and glaciated clouds, their composition, sources, and cloud feedbacks remain poorly constrained. Previous studies have shown mixed results on the potential of light-absorbing particles (LAP), such as black carbon (BC) and high latitude dust (HLD), serving as INPs. However, many of these studies use laboratory or model-generated particles that may not represent the complex morphology and behaviors of ambient light-absorbing particles sufficiently. Here, we use in situ surface snow samples, collected during Spring 2018 in Svínafellsjökull, Iceland. The samples were analyzed by an immersion freezing mechanism for their ice nucleation activity (INA). Portions of the filtered samples were concentrated by lyophilization to observe the potential enhancement of INA. We investigated environmental samples of deposited aerosols to better understand the role activity of HLD and BC in ice nucleating activity in mixed-phase clouds in Iceland. We found concentrations of 16 ± 27 ng g−1 and 33 ± 66 × 106 ng g−1 for BC and HLD, respectively. However, we found that isolated methanol-soluble organic aerosols have a more prominent role than BC and HLD in Iceland. We conclude that BC and HLD are insignificant INP but that they can inhibit INA from other INP. Full article
Show Figures

Figure 1

29 pages, 16291 KB  
Article
Analysis of the Current Situation of CO2 Satellite Observation
by Yuanbo Li, Kun Wu, Yuk Ling Yung, Xiaomeng Wang and Jixun Han
Remote Sens. 2025, 17(21), 3635; https://doi.org/10.3390/rs17213635 - 3 Nov 2025
Viewed by 1262
Abstract
Accurate quantification of carbon dioxide (CO2) sources and sinks is becoming a key aspect in recent carbon flux research; yet our understanding of satellite performance on regional scales remains insufficient. In this work, the column-averaged dry-air mole fraction of CO2 [...] Read more.
Accurate quantification of carbon dioxide (CO2) sources and sinks is becoming a key aspect in recent carbon flux research; yet our understanding of satellite performance on regional scales remains insufficient. In this work, the column-averaged dry-air mole fraction of CO2 retrieved from OCO-2 v11.1r and GOSAT v03.05 was evaluated against CarbonTracker (CT) using data from March 2022 to August 2023. Also, the satellite data were validated against those from the Total Carbon Column Observing Network (TCCON) for March 2022 to February 2024. Comparison with CT revealed that both satellites had a general negative bias over land and the best performance in spring. In Southern Hemisphere land regions, the satellites captured monthly variability reliably, with OCO-2 obtaining the most accurate monthly concentrations. In Northern Hemisphere land regions, CT demonstrated the best performance, although both satellites accurately quantified monthly variations in some regions. In tropical land regions, none of the satellites showed superior performance. OCO-2 data showed bias features in sub-regional areas such as East and South Asia. For ocean regions, the bias was the largest in spring. Phase offset, slight underestimation of concentrations, and seasonal biases were found over several ocean regions in OCO-2 time series, whereas GOSAT was unable to provide reasonable results. When comparing TCCON with OCO-2 and GOSAT data, we found systematic errors of −0.12 and −0.56 ppm and root mean square errors of 1.08 and 1.70 ppm, respectively, mainly contributed by topographic variation and aerosol load. The errors were the smallest in spring and larger in summer and winter. Both CT- and TCCON-based analyses indicated that current satellite products may have better performance in desert surfaces. Clouds, aerosols, and surface pressure still challenged OCO-2 retrieval, while the bias-correction process can be emphasized for GOSAT. Full article
Show Figures

Figure 1

Back to TopTop