Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,027)

Search Parameters:
Keywords = carbohydrates utilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 708 KB  
Communication
Strain-Dependent Lactic Acid Fermentation of Capsosiphon fulvescens Hydrolysate by Lactobacillus spp.
by Hyeongjin Hwang
Microorganisms 2025, 13(10), 2295; https://doi.org/10.3390/microorganisms13102295 - 2 Oct 2025
Abstract
Seaweeds are promising third-generation biomass for biobased chemicals, yet their use for lactic acid (LA) production remains underexplored. We evaluated LA production from the dilute-acid hydrolysate of the aquacultured green alga Capsosiphon fulvescens (C.Agardh) Setchell & N.L. Gardner. The dried biomass contained 53.4% [...] Read more.
Seaweeds are promising third-generation biomass for biobased chemicals, yet their use for lactic acid (LA) production remains underexplored. We evaluated LA production from the dilute-acid hydrolysate of the aquacultured green alga Capsosiphon fulvescens (C.Agardh) Setchell & N.L. Gardner. The dried biomass contained 53.4% carbohydrate (dry-weight basis). HPLC showed a monosaccharide profile enriched in L-rhamnose and D-xylose, with lower levels of D-mannose, D-glucose, D-glucuronolactone, and D-glucuronic acid. Batch fermentations with three Lactobacillus strains revealed clear strain-dependent kinetics and carbon partitioning. Maximum LA titers/yields (time at maximum) were 2.0 g L−1/0.49 g g−1 at 9 h for L. rhamnosus, 2.3 g L−1/0.30 g g−1 at 36 h for L. casei, and 2.8 g L−1/0.23 g g−1 at 48 h for L. brevis; L. rhamnosus achieved the highest yield on sugars consumed, whereas L. brevis reached the highest titer by utilizing a broader sugar spectrum, notably xylose; L. casei showed intermediate performance with limited xylose use. Co-products included acetic and succinic acids (major) and trace 1,2-propanediol and acetaldehyde, consistent with flux through Embden–Meyerhof–Parnas versus phosphoketolase pathways. These results demonstrate that C. fulvescens hydrolysate is a viable marine feedstock for LA production and highlight practical levers—expanding pentose/uronic-acid catabolism in high-yield strains and tuning pretreatment severity—to further improve both yield and titer. Full article
(This article belongs to the Topic Applications of Biotechnology in Food and Agriculture)
19 pages, 842 KB  
Review
A Review of Nutrition, Bioactivities, and Health Benefits of Custard Apple (Annona squamosa): From Phytochemicals to Potential Application
by Ningli Qi, Xiao Gong, Yang Luo, Chenghan Zhang, Jingjing Chen and Tinghui Chen
Foods 2025, 14(19), 3413; https://doi.org/10.3390/foods14193413 - 2 Oct 2025
Abstract
The custard apple (CA) is a noble fruit in tropical regions worldwide. It has attracted a growing interest due to its organoleptic properties and nutritional value. With the expansion of international trade, both its cultivation and consumption have grown significantly in recent years. [...] Read more.
The custard apple (CA) is a noble fruit in tropical regions worldwide. It has attracted a growing interest due to its organoleptic properties and nutritional value. With the expansion of international trade, both its cultivation and consumption have grown significantly in recent years. Previous researchers have sporadically investigated its nutritional composition and health benefits; however, existing information on its processing and utilization is highly fragmented and lacks a comprehensive overview of its constituents, biological activities, and potential applications. This review is a detailed summary of the nutritional and bioactive properties, safety evaluations, and potential applications of CA. Following PRISMA guidelines, peer-reviewed studies published between 2000 and 2025 were systematically searched in PubMed, Scopus, ResearchGate, and Web of Science. Inclusion criteria comprised studies reporting on nutritional composition, phytochemicals, bioactivities, health promotion, and applications of CA. In addition to primary nutrients like carbohydrates, protein, fatty acids, vitamins, and minerals, CA also contains a multitude of bioactive compounds, mainly including phenols, flavonoids, terpenoids, acetogenins, and alkaloids, which are attributed to a range of health benefits, such as antioxidant, anti-microbial, anti-tumor, blood sugar regulation, and cognitive function improvement. However, more clinical and toxicological profiles remain underexplored, and future research should focus on standardized extraction, safety evaluation, and translational applications. Additionally, the challenges and future perspectives in industrial applications are discussed, which are expected to offer comprehensive information for the utilization of CA. Full article
19 pages, 6495 KB  
Article
Integrated Multi-Omics Reveal the Genetic and Metabolic Blueprint for Corn Straw Degradation in the White-Rot Fungus Irpex lacteus J2
by Jian Pang, Shizhen Zhao, Tao Hua, Jiahui Fan, Zhe Yan, Mingyuan Chen, Fan Zhao, Jingshi Yu and Qiaoxia Shang
Biology 2025, 14(10), 1339; https://doi.org/10.3390/biology14101339 - 1 Oct 2025
Abstract
Lignocellulosic agricultural residues represent a rich source of potential feedstock for biorefinery applications, but their valorization remains challenging. The white-rot fungus Irpex lacteus J2 exhibited a promising degradation effect, but its molecular mechanisms of lignocellulose degradation remained largely uncharacterized. Here, we performed high-quality [...] Read more.
Lignocellulosic agricultural residues represent a rich source of potential feedstock for biorefinery applications, but their valorization remains challenging. The white-rot fungus Irpex lacteus J2 exhibited a promising degradation effect, but its molecular mechanisms of lignocellulose degradation remained largely uncharacterized. Here, we performed high-quality whole-genome sequencing and untargeted metabolomic profiling of I. lacteus J2 during the degradation of corn straw as the sole carbon source. The assembled I. lacteus J2 genome contained 14,647 protein-coding genes, revealing a rich genetic repertoire for biomass degradation and secondary metabolite synthesis. Comparative genomics showed high synteny (mean amino acid sequence identity 92.28%) with I. lacteus Irplac1. Untargeted metabolomic analysis unveiled a dynamic metabolic landscape during corn straw fermentation. Dominant metabolite classes included organic acids and derivatives (27.32%) and lipids and lipid-like molecules (25.40%), as well as heterocyclic compounds (20.41%). KEGG pathway-enrichment analysis highlighted significant activation of core metabolic pathways, with prominent enrichment in global metabolism (160 metabolites), amino acid metabolism (99 metabolites), carbohydrate metabolism (24 metabolites), and lipid metabolism (19 metabolites). Fermentation profiles at 3 and 15 days demonstrated substantial metabolic reprogramming, with up to 210 upregulated and 166 downregulated metabolites. Correlation analyses further revealed complex metabolic interdependencies and potential regulatory roles of key compounds. These integrated multi-omics insights significantly expand our understanding of the genetic basis and metabolic versatility, enabling I. lacteus J2 to efficiently utilize lignocellulose. Our findings position I. lacteus J2 as a robust model strain and provide a valuable foundation for developing advanced fungus-based strategies for sustainable bioprocessing and valorization of agricultural residues. Full article
Show Figures

Figure 1

18 pages, 5654 KB  
Article
Phage Display Reveals VLRB-Mediated Recognition of Minimal Tumor Glycan Antigen Sialyl-Tn
by Mark Rickard N. Angelia, Abigail Joy D. Rodelas-Angelia, Youngrim Kim, Cheolung Yang, Hyeok Jang, Seungpyo Jeong, Jihyun Mun, Kim D. Thompson and Taesung Jung
Curr. Issues Mol. Biol. 2025, 47(10), 802; https://doi.org/10.3390/cimb47100802 - 26 Sep 2025
Abstract
Sialyl-Tn (sTn) is a tumor-associated carbohydrate antigen (TACA) abundantly expressed by various types of carcinomas. While conventional antibody-based platforms have traditionally been used for the detection and targeting of sTn, alternative binding scaffolds may offer distinct advantages. Variable lymphocyte receptor B (VLRB), the [...] Read more.
Sialyl-Tn (sTn) is a tumor-associated carbohydrate antigen (TACA) abundantly expressed by various types of carcinomas. While conventional antibody-based platforms have traditionally been used for the detection and targeting of sTn, alternative binding scaffolds may offer distinct advantages. Variable lymphocyte receptor B (VLRB), the immunoglobulin-like molecule of jawless vertebrates, offers a promising alternative for glycan recognition. In this study, a phage-displayed VLRB library was utilized to identify sTn-specific binders. Two candidates, designated as ccombodies A8 and B11, were isolated after four rounds of biopanning. Both were expressed and purified using Ni-affinity and FPLC, yielding proteins with apparent molecular weights of ~27 kDa in SDS-PAGE. Sequence analysis revealed a preference for glycan-binding residues in randomized hypervariable regions, with A8 exhibiting an increased aliphatic content. ELISA confirmed selective binding to sTn and other O-glycans containing the core α-GalNAc, with EC50 values of 18.2 and 14.2 nM for A8 and B11, respectively. Vicia villosa lectin inhibited ccombody binding to sTn, indicating shared epitope recognition. Additionally, both ccombodies bound to sTn-positive glycoproteins and carcinoma cell lines HeLa and LS174T. These findings demonstrate that phage display of VLRBs enables the identification of high-affinity, glycan-specific binders, offering a compelling alternative to immunoglobulin-based platforms for future diagnostic and therapeutic applications targeting tumor-associated glycans. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

15 pages, 1328 KB  
Article
Development of Three Different Anchovy-Based Fast-Food Products (Toast, Burger, and Pizza): Comparative Analysis of Sensory and Proximate Properties
by Fatma Delihasan Sonay, Barış Karslı, Emre Çağlak, Ayşe Kara, Özen Yusuf Öğretmen and Orhan Kobya
Foods 2025, 14(19), 3329; https://doi.org/10.3390/foods14193329 - 25 Sep 2025
Abstract
This study aims to develop nutritionally improved alternative fast-food products by incorporating anchovy (Engraulis encrasicolus), a fish with high nutritional value, into three popular fast-food items (toast, burger, and pizza) frequently consumed by fast-food consumers. Anchovies, due to their rich content [...] Read more.
This study aims to develop nutritionally improved alternative fast-food products by incorporating anchovy (Engraulis encrasicolus), a fish with high nutritional value, into three popular fast-food items (toast, burger, and pizza) frequently consumed by fast-food consumers. Anchovies, due to their rich content of omega-3 fatty acids, high-quality protein, vitamins A and D, and minerals, are a valuable food source for public health. Within the scope of this study, the nutritional compositions (crude protein, crude fat, crude ash, moisture, carbohydrate, energy) and sensory properties of the developed products were determined. According to the results of the analysis, the highest crude protein (18.64%) and crude ash (4.38%) content were found in anchovy-enriched toast, while the highest crude fat content (10.82%) was observed in anchovy burger (p < 0.05). Sensory analyses indicated that the panelists generally accepted all products. Specifically, the anchovy-enriched burger received the highest scores for appearance (90%) and aroma (40%). These findings demonstrate that anchovy-enriched fast-food products are both nutritionally rich and consumer-accepted, nutritionally improved food alternatives. Furthermore, this study identifies significant potential for utilizing aquatic products within the nutritionally enriched, seafood-based product sector. Full article
Show Figures

Figure 1

23 pages, 2800 KB  
Article
Genome-Driven Insights into Lactococcus sp. KTH0-1S Highlights Its Biotechnological Potential as a Cell Factory
by Nisit Watthanasakphuban, Hind Abibi, Nuttakan Nitayapat, Phitsanu Pinmanee, Chollachai Klaysubun, Nattarika Chaichana, Komwit Surachat and Suttipun Keawsompong
Biology 2025, 14(10), 1323; https://doi.org/10.3390/biology14101323 - 25 Sep 2025
Abstract
The safety, genetic distinctiveness, and functional capabilities of Lactococcus sp. KTH0-1S, a strain isolated from Thai fermented shrimp (Kung-Som), were investigated to assess its potential as a next-generation probiotic and microbial cell factory. Whole-genome sequencing and multilocus sequence typing (MLST) analysis revealed that [...] Read more.
The safety, genetic distinctiveness, and functional capabilities of Lactococcus sp. KTH0-1S, a strain isolated from Thai fermented shrimp (Kung-Som), were investigated to assess its potential as a next-generation probiotic and microbial cell factory. Whole-genome sequencing and multilocus sequence typing (MLST) analysis revealed that Lactococcus sp. KTH0-1S is a novel, phylogenetically distinct strain within the Lactococcus genus. Comprehensive in silico safety evaluation confirmed the absence of antimicrobial resistance genes and major virulence factors, supporting its suitability for food-grade applications. The genome encodes multiple probiotic-relevant traits, including stress tolerance (e.g., dnaK, clpP), adhesion and biofilm formation (e.g., gapA, luxS, glf2), and nutrient acquisition genes, enabling adaptation to gastrointestinal and fermentation environments. Notably, Lactococcus sp. KTH0-1S harbors a chromosomally encoded nisin Z biosynthesis gene cluster with auto-induction capability, providing a self-regulated and stable alternative to conventional plasmid-based NICE systems in Lactococcus lactis. The strain also exhibits nisin immunity, allowing tolerance to high nisin concentrations, thus supporting robust protein production. Genomic evidence and phenotypic assays confirmed a functional respiration metabolism activated by heme supplementation, enhancing biomass yield and culture stability. Furthermore, the presence of diverse CAZyme families (GHs, GTs, CEs) enables utilization of various carbohydrate substrates, including lignocellulosic and starchy agro-industrial residues. These properties collectively underscore Lactococcus sp. KTH0-1S as a safe, stable, and metabolically versatile candidate for probiotic applications and as a cost-effective, food-grade expression host for biotechnological production. Full article
Show Figures

Figure 1

15 pages, 808 KB  
Review
Point-of-Care Testing and Biomarkers in Biliary Diseases: Current Evidence and Future Directions
by Jang Han Jung, Kyong Joo Lee, Se Woo Park, Dong Hee Koh and Jin Lee
J. Clin. Med. 2025, 14(19), 6724; https://doi.org/10.3390/jcm14196724 - 24 Sep 2025
Viewed by 95
Abstract
Biliary tract diseases, including both benign and malignant conditions such as cholangitis, cholelithiasis, primary sclerosing cholangitis, cholangiocarcinoma, and gallbladder cancer, present significant challenges for timely diagnosis and effective clinical management. Conventional diagnostic approaches, which primarily rely on imaging and standard laboratory tests, often [...] Read more.
Biliary tract diseases, including both benign and malignant conditions such as cholangitis, cholelithiasis, primary sclerosing cholangitis, cholangiocarcinoma, and gallbladder cancer, present significant challenges for timely diagnosis and effective clinical management. Conventional diagnostic approaches, which primarily rely on imaging and standard laboratory tests, often lack the sensitivity and specificity needed for early detection, accurate risk stratification, and personalized treatment planning. In recent years, advancements in point-of-care (POC) diagnostic technologies, along with the identification and validation of novel biomarkers, have begun to reshape the diagnostic landscape. This review provides a comprehensive overview of the clinical utility and limitations of current POC tests and biomarkers, ranging from well-established markers such as carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) to emerging molecular indicators such as circulating microRNAs and circulating tumor DNA. We examine their applications across acute management, chronic disease monitoring, and cancer detection; identify existing gaps in diagnostic practice; and discuss strategies for incorporating these tools into standard clinical workflows to enhance patient outcomes. Full article
(This article belongs to the Special Issue New Clinical Advances in Pancreatobiliary Diseases)
Show Figures

Figure 1

12 pages, 1508 KB  
Article
Improving the Quality of Ensiling High-Moisture Alfalfa with Peanut Vine in Different Additives: Fermentation, Nutritional Quality, and Microbial Communities
by Haikuo Jia, Chunhui Wu, Zhenling Liu, Yu Sun, Ying He, Huan Chen, Xiaowei Zu, Lixin Wang, Yanxia Gao, Mingya Wang and Qiufeng Li
Microorganisms 2025, 13(10), 2228; https://doi.org/10.3390/microorganisms13102228 - 23 Sep 2025
Viewed by 157
Abstract
Ensiling high-moisture alfalfa with peanut vine not only avoids alfalfa nutrient loss during the wilting stage but also maximizes the use of agricultural waste peanut vine. The appropriate mixed ratio of high-moisture alfalfa and peanut vine has been studied in our previous study. [...] Read more.
Ensiling high-moisture alfalfa with peanut vine not only avoids alfalfa nutrient loss during the wilting stage but also maximizes the use of agricultural waste peanut vine. The appropriate mixed ratio of high-moisture alfalfa and peanut vine has been studied in our previous study. However, the effect of additives on improving the nutrition and fermentation quality of the mixed silage of alfalfa and peanut vine has not been investigated. This study aimed to assess the adaptation and association of Lactiplantibacillus plantarum, cellulase and tannin in the mixed silage of alfalfa and peanut vine alone or in combination on fermentation quality, chemical composition, and microbial communities. The harvested fresh alfalfa and dry peanut vine were cut into 2 cm lengths by a crop chopper and they were thoroughly mixed at a ratio of 7:3. The mixtures were treated with no addition (CK), L. plantarum (Lp, 1 × 106 CFU/g fresh weight), cellulase (Ce, 5 g/kg fresh weight), tannin (Ta, 40 g/kg dry matter), and their combinations (LpCe, LpTa, CeTa, LpCeTa). After 45 days of fermentation, silage treated with Lp, Ce, and Ta had lower pH and ammonia-N (NH3-N) content and higher concentrations of lactic acid compared with the CK group. LpCeTa-treated silage inhibited protein degradation by reducing pH value and ammonia-N concentrations during ensiling processes. The LpCeTa group increased (p < 0.05) water-soluble carbohydrate (WSC) content and reduced (p < 0.05) acid detergent fiber and neutral detergent fiber contents in mixed silage. Furthermore, the LpCeTa group increased the relative abundance of Lactobacillus and decreased the relative abundance of Enterococcus and Weissella as compared with the CK group. Results of the current study indicated that the combined use of L. plantarum, cellulase, and tannin could serve as a promising strategy for the preservation of ensiling fresh alfalfa mixed with peanut vine and provide a reference for the re-utilization of by-product. Full article
(This article belongs to the Special Issue Microorganisms in Silage)
Show Figures

Figure 1

23 pages, 1444 KB  
Review
Streptococcus thermophilus: Metabolic Properties, Functional Features, and Useful Applications
by Alyaa Zaidan Ghailan and Alaa Kareem Niamah
Appl. Microbiol. 2025, 5(4), 101; https://doi.org/10.3390/applmicrobiol5040101 - 23 Sep 2025
Viewed by 167
Abstract
Streptococcus thermophilus is a Gram-positive, homofermentative lactic acid bacterium classified within the Firmicutes phylum, recognized for its probiotic properties and significant role in promoting human health. This review consolidates existing understanding of its metabolic pathways, functional metabolites, and diverse applications, highlighting evidence-based insights [...] Read more.
Streptococcus thermophilus is a Gram-positive, homofermentative lactic acid bacterium classified within the Firmicutes phylum, recognized for its probiotic properties and significant role in promoting human health. This review consolidates existing understanding of its metabolic pathways, functional metabolites, and diverse applications, highlighting evidence-based insights to enhance scientific integrity. S. thermophilus predominantly ferments lactose through the Embden-Meyerhof-Parnas pathway, resulting in L(+)-lactic acid as the primary end-product, along with secondary metabolites including acetic acid, formic acid, and pyruvate derivatives. Exopolysaccharides (EPS) are composed of repeating units of glucose, galactose, rhamnose, and N-acetylgalactosamine. They display strain-specific molecular weights ranging from 10 to 2000 kDa and contribute to the viscosity of fermented products, while also providing antioxidant and immunomodulatory benefits. Aromatic compounds such as acetaldehyde and phenylacetic acid are products of amino acid catabolism and carbohydrate metabolism, playing a significant role in the sensory characteristics observed in dairy fermentations. Bacteriocins, such as thermophilins (e.g., Thermophilin 13, 110), exhibit extensive antimicrobial efficacy against pathogens including Listeria monocytogenes and Bacillus cereus. Their activity is modulated by quorum-sensing mechanisms that involve the blp gene cluster, and they possess significant stability under heat and pH variations, making them suitable for biopreservation applications. In food applications, S. thermophilus functions as a Generally Recognized as Safe (GRAS) starter culture in the production of yogurt and cheese, working in conjunction with Lactobacillus delbrueckii subsp. bulgaricus to enhance acidification and improve texture. Specific strains have been identified to mitigate lactose intolerance, antibiotic-related diarrhea, and inflammatory bowel diseases through the modulation of gut microbiota, the production of short-chain fatty acids, and the inhibition of Helicobacter pylori. The genome, characterized by a G + C content of approximately 37 mol%, facilitates advancements in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas technology and heterologous protein expression, with applications extending to non-dairy fermentations and the development of postbiotics. This review emphasizes the adaptability of S. thermophilus, showcasing the variability among strains and the necessity for thorough preclinical and clinical validation to fully utilize its potential in health, sustainable agriculture, and innovation. It also addresses challenges such as susceptibility to bacteriophages and limitations in proteolytic activity. Full article
Show Figures

Figure 1

26 pages, 5846 KB  
Review
Nutritional and Phytochemical Characterization of Radish Leaves: A Comprehensive Overview
by Xiong Geng, Ziyi Gong, Weina Tian, Miaomiao Zhuang, Huayan Shang, Yujie Chen, Jianrong Li, Yanfang Lv and Kaihua Bai
Foods 2025, 14(18), 3270; https://doi.org/10.3390/foods14183270 - 20 Sep 2025
Viewed by 449
Abstract
Radish is a root vegetable that is widely consumed globally. Radish leaves are typically not consumed and regarded as by-products in agricultural, industrial, and domestic settings. Accumulating evidence suggests that radish leaves possess higher nutritional value compared to their roots, primarily due to [...] Read more.
Radish is a root vegetable that is widely consumed globally. Radish leaves are typically not consumed and regarded as by-products in agricultural, industrial, and domestic settings. Accumulating evidence suggests that radish leaves possess higher nutritional value compared to their roots, primarily due to their elevated levels of protein, ash, dietary fiber, and ascorbic acid. In light of the growing emphasis on waste reduction and value-added utilization, the application of radish by-products has garnered increasing attention. This study comprehensively reviews the phytochemical composition and pharmacological effects of radish leaves, a common agricultural by-product, detailing the structures of isolated compounds and discussing their chemical properties and bioactivities. When classified by their structural characteristics, these compounds encompass carbohydrates, enzymes, flavonoids, glucosinolates, organic acids, phenolic compounds, sulfur compounds, polysaccharides, and other constituents. Key bioactive components exhibit antioxidant properties, acetylcholinesterase inhibitory activity, antitussive effects, along with anticancer, antihypertensive, anti-inflammatory, antimicrobial, anti-obesity, antiulcerative, and intestinal motility stimulation activities. Radish leaf extracts demonstrate significant therapeutic potential across multiple disease areas, particularly in anticancer and antioxidant applications. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

35 pages, 3238 KB  
Review
The Ketogenic Diet Through a Metabolomic Lens: Biochemical Pathways, Therapeutic Applications, and Analytical Challenges
by Katarzyna Idzikowska, Paulina Gątarek, Anna Gajda, Piotr Safiński, Lukasz Przyslo and Joanna Kałużna-Czaplińska
Nutrients 2025, 17(18), 2969; https://doi.org/10.3390/nu17182969 - 16 Sep 2025
Viewed by 370
Abstract
Background: The ketogenic diet (KD), a high-fat and low-carbohydrate dietary approach, has been used therapeutically in drug-resistant epilepsy and other neurological and metabolic disorders. Recent interest has shifted toward understanding its broader metabolic effects through metabolomics. This review aims to summarize current knowledge [...] Read more.
Background: The ketogenic diet (KD), a high-fat and low-carbohydrate dietary approach, has been used therapeutically in drug-resistant epilepsy and other neurological and metabolic disorders. Recent interest has shifted toward understanding its broader metabolic effects through metabolomics. This review aims to summarize current knowledge on the biochemical mechanisms and therapeutic implications of the KD, with a particular focus on metabolomic profiling and neurological health. Methods: This narrative review synthesizes findings from the last five years of metabolomic studies investigating the biochemical consequences of the KD and its variants, including the classical KD, modified Atkins diet (MAD), medium-chain triglyceride diet (MCT), and low glycemic index treatment (LGIT). The review integrates data on analytical techniques, such as liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS), and evaluates alterations in key metabolic pathways. Results: The KD significantly modulates energy metabolism, shifting adenosine triphosphate (ATP) production from glycolysis to fatty acid oxidation and ketone body utilization. It affects mitochondrial function, one-carbon metabolism, redox balance, neurotransmitter regulation, and gut–brain axis signaling. Metabolomic profiling has identified β-hydroxybutyrate (βHB) as a key regulatory metabolite influencing mitochondrial respiration. Long-term KD use may impact renal and hepatic function, necessitating clinical caution and individualized nutritional monitoring. Conclusions: Metabolomic analysis provides critical insights into the multifaceted effects of the KD, supporting its role as a targeted metabolic therapy in neurological diseases. However, potential risks linked to prolonged ketosis warrant further investigation. Future studies should focus on personalized applications and long-term safety profiles of KD variants across patient populations. Full article
(This article belongs to the Special Issue Neurological Disorders: Diets and Nutrition)
Show Figures

Figure 1

19 pages, 335 KB  
Article
Interactive Effects of Dietary Starch Levels and Exogenous α-Amylase on Growth, Digestibility, and Metabolic Responses in Channa striata Juveniles
by Kaliyaperumal Sriranjani, Amit Ranjan, Albin Jemila Thangarani, Ambika Binesh, Mohamood Kavimugaraja, Subbiah Balasundari and Nathan Felix
Biology 2025, 14(9), 1237; https://doi.org/10.3390/biology14091237 - 10 Sep 2025
Viewed by 444
Abstract
A 70-day feeding trial was carried out to examine the effects of exogenous alpha amylase supplementation and different levels of starch on the growth performance, whole-body proximate composition, apparent nutrient digestibility, and digestive and metabolic enzyme activities of Channa striata juveniles. Nine semi-purified [...] Read more.
A 70-day feeding trial was carried out to examine the effects of exogenous alpha amylase supplementation and different levels of starch on the growth performance, whole-body proximate composition, apparent nutrient digestibility, and digestive and metabolic enzyme activities of Channa striata juveniles. Nine semi-purified iso-nitrogenous (42%) and iso-lipidic (7%) diets containing three different levels of starch (viz. 10%, 20% and 30%) and amylase (0%, 0.05%, 0.1%) were formulated as C10A0, C10A0.05, C10A0.1, C20A0, C20A0.05, C20A0.1, C30A0, C30A0.05, and C30A0.1 (C-starch, A-amylase). A total of 405 C. striata juveniles of average weight (14.31 ± 0.1 g) were randomly assigned to 27 150 L capacity FRP tanks with 15 fish per tank following a 3 × 3 factorial design in triplicate with proper aeration. Final weight, weight gain (WG%), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER) were significantly influenced (p < 0.05) by dietary starch and amylase supplementation as well as their interaction. The nutrient digestibility results revealed that the apparent digestibility coefficient of dry matter, crude protein, crude lipids, and carbohydrates improved significantly (p < 0.05) with higher amylase levels. There was no significant variation (p > 0.05) in the whole-body proximate composition of fish fed with different levels of starch and exogenous amylase supplementation. Amylase activity increased with higher dietary amylase levels; however, there were no significant differences in protease and lipase enzyme activity. Fish in the A0.1 treatment group had significantly higher (p < 0.05) hexokinase activity, which was significantly affected by exogenous amylase levels. AST and ALT activities in the serum were decreased (p < 0.05) at 0.1% amylase inclusion in the diet. From the present study, it is concluded that supplementation with exogenous alpha amylase has the potential to enhance starch utilization in C. striata. In particular, 0.1% amylase with 20% starch can significantly improve growth and nutrient utilization in C. striata juveniles without adverse effects. Full article
28 pages, 2547 KB  
Article
Characterization and Biological Activity of Magnesium Nanoparticles Synthesized from Escherichia coli Metabolites Against Multidrug-Resistant Bacteria
by Malak Mezher, Salma Khazaal, Mahmoud I. Khalil, Dalia El Badan and Taymour A. Hamdalla
Bacteria 2025, 4(3), 48; https://doi.org/10.3390/bacteria4030048 - 10 Sep 2025
Viewed by 470
Abstract
(1) Background: This study evaluated the efficacy of magnesium nanoparticles (MgNPs) synthesized through a green method utilizing bacterial metabolites (BMs) produced by Escherichia coli. (2) Methods: BMs were tested for total phenolic content by high-performance liquid chromatography. MgNPs were characterized by X-ray [...] Read more.
(1) Background: This study evaluated the efficacy of magnesium nanoparticles (MgNPs) synthesized through a green method utilizing bacterial metabolites (BMs) produced by Escherichia coli. (2) Methods: BMs were tested for total phenolic content by high-performance liquid chromatography. MgNPs were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, photoluminescence, and ultraviolet–visible spectroscopy. MgNPs and BMs were tested for antibacterial and antibiofilm potentials against multidrug-resistant clinical isolates by agar well diffusion, minimum inhibitory and bactericidal concentration assays, time–kill test, and inhibition of biofilm formation and destruction of pre-formed biofilm assays. Furthermore, they were tested for antioxidant potential by 2,2-diphenyl-1-picryhydrazyl radical scavenging assay. (3) Results: BMs included carbohydrates, reducing sugars, and phenols (gallic acid and catechin) with a total phenolic content of 0.024 mg GAE/g. MgNPs showed a pure crystalline structure with a spherical shape, 17.8 nm in size, and a 4.19 eV energy gap. Bacteria included Streptococcus pneumonia, Enterococcus faecium, Klebsiella pneumonia, and Salmonella Typhimurium. The antibacterial results showed inhibition zones ranging between 7.2 and 10.4 mm, a bactericidal effect of MgNPs, a bacteriostatic effect of BMs, and growth inhibition after 3 h. The antibiofilm results demonstrated significant inhibition of biofilm formation (inhibition percentages of 64.931% for MgNPs and 71.407% for BMs). However, the assays revealed modest biofilm destruction (eradication percentages of 48.667% for MgNPs and 37.730% for BMs). Antioxidant capacity revealed notable scavenging activity of MgNPs (scavenging activity of 41.482%) and weak activity of BMs (scavenging activity of 16.460%). (4) Conclusions: These findings support the application of MgNPs in biomedical fields. Full article
Show Figures

Figure 1

21 pages, 3464 KB  
Article
A Hypoglycemic Peptide from Pinus pumila Nut Oil Meal Improves Glycolipid Metabolism via Multi-Dimensional Regulation in Type 2 Diabetic Mice
by Zhe-Xuan Mu, Zhen-Zhou Li, Bing-Xiao Liu, Zhen-Yu Wang, Xiao-Hong Lv, Lin Yang and Hua Zhang
Nutrients 2025, 17(17), 2903; https://doi.org/10.3390/nu17172903 - 8 Sep 2025
Viewed by 672
Abstract
Background and Methods: To address the need for dietary interventions in sub-healthy populations and promote sustainable utilization of agricultural by-products, we isolated Pinus pumila hypoglycemic peptide (PHP) from nut oil meal through enzymatic extraction, ion exchange and gel chromatography purification, and simulated gastric [...] Read more.
Background and Methods: To address the need for dietary interventions in sub-healthy populations and promote sustainable utilization of agricultural by-products, we isolated Pinus pumila hypoglycemic peptide (PHP) from nut oil meal through enzymatic extraction, ion exchange and gel chromatography purification, and simulated gastric digestion. Results: PHP exhibited significant inhibitory activity against α-amylase and α-glucosidase. In type 2 diabetic mice, PHP significantly ameliorated the “three-more-one-less” syndrome, reduced glycosylated hemoglobin and insulin levels, mitigated liver and kidney tissue lesions, and improved glucose and lipid metabolic disorders—effects partly supported by its enhancement of intestinal barrier function via restoring gut microbiota diversity. Gut microbiota analysis revealed that PHP exerts hypoglycemic effects by regulating gut microbial composition: increasing SCFA-producing taxa, reducing pro-inflammatory/metabolic disorder-associated taxa, and normalizing the Firmicutes/Bacteroidetes ratio. KEGG pathway analysis demonstrated that PHP mediates synergistic hypoglycemic effects by regulating carbohydrate metabolism, amino acid metabolism, and cofactor/vitamin metabolism. Conclusions: This work provides a theoretical foundation for developing natural functional foods from agricultural by-products, supporting PHP’s potential as a dietary supplement for metabolic regulation. Full article
Show Figures

Figure 1

16 pages, 8190 KB  
Article
Genomic and Functional Analysis of Auxiliary Activity Enzymes in the Maize Anthracnose Pathogen Colletotrichum graminicola
by Yafei Wang, Jiaxin Chang, Di Zhang, Jinyao Li, Huawei Luo, Mengjin Liu, Yahui Zhang, Yingjun Cui and Yuehua Geng
Microorganisms 2025, 13(9), 2080; https://doi.org/10.3390/microorganisms13092080 - 6 Sep 2025
Viewed by 388
Abstract
Colletotrichum graminicola, the causative agent of maize anthracnose leaf blight and stalk rot, severely jeopardizes the healthy development of the maize industry. Auxiliary activity enzymes (AAs), a vital subclass of carbohydrate-active enzymes, act as beneficial accessory proteins for fungi in degrading lignocellulose. [...] Read more.
Colletotrichum graminicola, the causative agent of maize anthracnose leaf blight and stalk rot, severely jeopardizes the healthy development of the maize industry. Auxiliary activity enzymes (AAs), a vital subclass of carbohydrate-active enzymes, act as beneficial accessory proteins for fungi in degrading lignocellulose. This study identified 127 AA genes from the genome of C. graminicola strain TZ-3 and further analyzed the subcellular localization, conserved motifs, and domains of the proteins encoded by these genes. The CgAA genes exhibited significant variations in gene structure, and the structural motifs within their encoded proteins also differed. Subcellular localization analysis revealed that most CgAA proteins were localized in the extracellular space. Moreover, the CgAA gene family contained abundant conserved domains, suggesting diverse functionalities and potential roles in various fungal biological processes. Multiple cis-acting regulatory elements related to stress responses and plant hormones were detected in the promoter regions of these genes. This study analyzed the expression patterns of CgAA genes during pathogen–host interactions and found that most CgAA genes were differentially expressed in the interaction between C. graminicola and maize. Coupled with GO functional analysis, it was discovered that CgAAs are deeply involved in the interaction between C. graminicola and maize, closely associated with the pathogenic mechanisms of the pathogen, and may play crucial roles in the initiation and expansion of fungal infections. These results provide valuable resources for elucidating the functions of AA genes and lay the groundwork for sustainable agricultural development through the utilization of AA genes in disease control and the breeding of stress-resistant, high-yield crop varieties. Full article
Show Figures

Figure 1

Back to TopTop