Genomic and Functional Analysis of Auxiliary Activity Enzymes in the Maize Anthracnose Pathogen Colletotrichum graminicola
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification and Phylogenetic Analysis of CgAA-Family Genes
2.2. Multiple Sequence Alignment and Phylogenetic Analysis
2.3. Gene Structure and Protein Motif Analysis
2.4. CARE and Gene Ontology (GO) Analysis
2.5. Analysis of Expression Patterns of CgAA-Family Genes
2.6. RT-qPCR
3. Results
3.1. Identification and Physicochemical Property Analysis of CgAA Genes
3.2. Phylogenetic Analysis
3.3. Sequence and Structural Analysis
3.4. Cis-Acting Regulatory Element (CARE) Analysis
3.5. Gene Ontology (GO) Enrichment Analysis
3.6. Response of CgAA-Family Genes During C. graminicola Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kubicek, C.P.; Starr, T.L.; Glass, N.L. Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 2014, 52, 427–451. [Google Scholar] [CrossRef]
- Lombard, V.; Ramulu, H.G.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013, 42, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Zingen-Sell, I.; Buchenauer, H. Infection of wheat spikes by Fusarium avenaceum and alterations of cell wall components in the infected tissue. Eur. J. Plant Pathol. 2005, 111, 19–28. [Google Scholar] [CrossRef]
- Van Vu, B.; Itoh, K.; Nguyen, Q.B.; Tosa, Y.; Nakayashiki, H. Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of Magnaporthe oryzae. Mol. Plant Microbe Interact. 2012, 25, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.X.; Li, B.H.; Zhou, S.Y. A novel glycoside hydrolase 74 xyloglucanase cvgh74a is a virulence factor in Coniella vitis. J. Integr. Agric. 2020, 19, 2725–2735. [Google Scholar] [CrossRef]
- Tan, X.; Hu, Y.; Jia, Y.; Hou, X.; Xu, Q.; Han, C.; Wang, Q. A conserved glycoside hydrolase family 7 cellobiohydrolase PsGH7a of Phytophthora sojae is required for full virulence on soybean. Front. Microbiol. 2020, 11, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Bissaro, B.; Streit, B.; Isaksen, I.; Eijsink, V.G.H.; Beckham, G.T.; DuBois, J.L.; Røhr, A.K. Molecular mechanism of the chitinolytic peroxygenase reaction. Proc. Natl. Acad. Sci. USA 2020, 117, 1504–1513. [Google Scholar] [CrossRef]
- Chen, J.; Guo, X.; Zhu, M.; Chen, C.; Li, D. Polysaccharide monooxygenase-catalyzed oxidation of cellulose to glucuronic acid-containing cello-oligosaccharides. Biotechnol. Biofuels 2019, 12, 42–58. [Google Scholar] [CrossRef]
- Polonio, Á.; Fernández-Ortuño, D.; de Vicente, A.; Pérez-García, A. A haustorial-expressed lytic polysaccharide monooxygenase from the cucurbit powdery mildew pathogen Podosphaera xanthii contributes to the suppression of chitin-triggered immunity. Mol. Plant Pathol. 2021, 22, 580–601. [Google Scholar] [CrossRef]
- Sabbadin, F.; Urresti, S.; Henrissat, B.; Avrova, A.O.; Welsh, L.R.J.; Lindley, P.J.; Csukai, M.; Squires, J.N.; Walton, P.H.; Davies, G.J.; et al. Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science 2021, 373, 774–779. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Liu, M.; Wang, Y.; Zou, Y.; You, Y.; Yang, L.; Hu, J.; Zhang, H.; Zheng, X.; et al. Magnaporthe oryzae auxiliary activity protein MoAa91 functions as chitin–binding protein to induce appressorium formation on artificial inductive surfaces and suppress plant immunity. mBio 2020, 11, e03304-19. [Google Scholar] [CrossRef] [PubMed]
- Zarattini, M.; Corso, M.; Kadowaki, M.A.; Monclaro, A.; Magri, S.; Milanese, I.; Jolivet, S.; de Godoy, M.O.; Hermans, C.; Fagard, M.; et al. LPMO-oxidized cellulose oligosaccharides evoke immunity in Arabidopsis conferring resistance towards necrotrophic fungus B. cinerea. Commun. Biol. 2021, 4, 727–739. [Google Scholar] [CrossRef]
- Vandhana, T.M.; Reyre, J.L.; Sushmaa, D.; Berrin, J.G.; Bissaro, B.; Madhuprakash, J. On the expansion of biological functions of lytic polysaccharide monooxygenases. New Phytol. 2022, 233, 2380–2396. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Jiang, J.; Taylor, A.J.; Leite, A.L.; Dodds, E.D.; Du, L. Outer membrane vesicle-mediated codelivery of the antifungal HSAF metabolites and lytic polysaccharide monooxygenase in the predatory lysobacter enzymogenes. ACS Chem. Biol. 2021, 16, 1079–1089. [Google Scholar] [CrossRef]
- Zhang, F.; Anasontzis, G.E.; Labourel, A.; Champion, C.; Haon, M.; Kemppainen, M.; Commun, C.; Deveau, A.; Pardo, A.; Veneault-Fourrey, C.; et al. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. New Phytol. 2018, 220, 1309–1321. [Google Scholar] [CrossRef]
- Green, K.A.; Becker, Y.; Tanaka, A.; Takemoto, D.; Fitzsimons, H.L.; Seiler, S.; Lalucque, H.; Silar, P.; Scott, B. SymB and SymC, two membrane associated proteins, are required for Epichloë festucae hyphal cell-cell fusion and maintenance of a mutualistic interaction with Lolium perenne. Mol. Microbiol. 2017, 103, 657–677. [Google Scholar] [CrossRef]
- Balmer, D.; de Papajewski, D.V.; Planchamp, C.; Glauser, G.; Mauch-Mani, B. Induced resistance in maize is based on organ-specific defence responses. Plant J. 2013, 74, 213–225. [Google Scholar] [CrossRef]
- Miranda, V.J.; Porto, W.F.; Fernandes, G.D.R.; Pogue, R.; Nolasco, D.O.; Araujo, A.C.G.; Cota, L.V.; Freitas, C.G.; Dias, S.C.; Franco, O.L.; et al. Comparative transcriptomic analysis indicates genes associated with local and systemic resistance to Colletotrichum graminicola in maize. Sci. Rep. 2017, 7, 2483–2496. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.X.; Guo, C.; Yang, Z.H.; Sun, S.L.; Zhu, Z.D.; Wang, X.M. First report of Anthracnose leaf blight of maize caused by Colletotrichum graminicola in China. Plant Dis. 2019, 103, 1770. [Google Scholar] [CrossRef]
- O’Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 2012, 44, 1060–1065. [Google Scholar] [CrossRef]
- Jiao, C.; Chen, L.; Sun, C.; Jiang, Y.; Zhai, L.; Liu, H.; Shen, Z. Evaluating national ecological risk of agricultural pesticides from 2004 to 2017 in China. Environ. Pollut. 2020, 259, 113778–113786. [Google Scholar] [CrossRef]
- Gong, A.; Jing, Z.; Zhang, K.; Tan, Q.; Wang, G.; Liu, W. Bioinformatic analysis and functional characterization of the CFEM proteins in maize anthracnose fungus Colletotrichum graminicola. J. Integr. Agric. 2020, 19, 541–550. [Google Scholar] [CrossRef]
- Mei, J.; Li, Z.; Zhou, S.; Chen, X.; Wilson, R.; Liu, W. Effector secretion and stability in the maize anthracnose pathogen Colletotrichum graminicola requires N-linked protein glycosylation and the ER chaperone pathway. New Phytol. 2023, 240, 1449–1466. [Google Scholar] [CrossRef] [PubMed]
- Eisermann, I.; Weihmann, F.; Krijger, J.J.; Kröling, C.; Hause, G.; Menzel, M.; Pienkny, S.; Kiesow, A.; Deising, H.B.; Wirsel, S.G.R. Two genes in a pathogenicity gene cluster encoding secreted proteins are required for appressorial penetration and infection of the maize anthracnose fungus Colletotrichum graminicola. Environ. Microbiol. 2019, 21, 4773–4791. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xia, X.; Mei, J.; Gong, Z.; Zhang, J.; Xiao, Y.; Duan, C.; Liu, W. Genome sequence resource of a Colletotrichum graminicola field strain from China. Mol. Plant Microbe Interact. 2023, 36, 447–451. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Mu, H.; Chen, J.; Huang, W.; Huang, G.; Deng, M.; Hong, S.; Ai, P.; Gao, C.; Zhou, H. OmicShare tools: A zero-code interactive online platform for biological data analysis and visualization. Imeta 2024, 3, e228. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, J.; Dong, D.; Lou, C.; Zhang, Y.; Wang, Y.; Yu, B.; Wang, F.; Kang, G. Comparative analysis of TaPHT1;9 function using CRISPR-edited mutants, ectopic transgenic plants and their wild types under soil conditions. Plant Soil 2025, 509, 249–260. [Google Scholar] [CrossRef]
- Higo, K.; Ugawa, Y.; Iwamoto, M.; Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999, 27, 297–300. [Google Scholar] [CrossRef]
- Chirania, P.; Holwerda, E.K.; Giannone, R.J.; Liang, X.; Poudel, S.; Ellis, J.C.; Bomble, Y.J.; Hettich, R.L.; Lynd, L.R. Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids. Nat. Commun. 2022, 13, 3870–3882. [Google Scholar] [CrossRef]
- Wei, W.; Xu, L.; Peng, H.; Zhu, W.; Tanaka, K.; Cheng, J.; Sanguinet, K.A.; Vandemark, G.; Chen, W. A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat. Commun. 2022, 13, 2213–2227. [Google Scholar] [CrossRef]
- Roy, S.W.; Penny, D. Patterns of intron loss and gain in plants: Intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol. Biol. Evol. 2007, 24, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.W.; Gilbert, W. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nat. Rev. Genet. 2006, 7, 211–221. [Google Scholar] [CrossRef]
- Xu, G.; Guo, C.; Shan, H.; Kong, H. Divergence of duplicate genes in exon–Intron structure. Proc. Natl. Acad. Sci. USA 2012, 109, 1187–1192. [Google Scholar] [CrossRef]
- Hernandez-Garcia, C.M.; Finer, J.J. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014, 217–218, 109–119. [Google Scholar] [CrossRef]
- Xuan, C.; Feng, M.; Li, X.; Hou, Y.; Wei, C.; Zhang, X. Genome-wide identification and expression analysis of chitinase genes in watermelon under abiotic stimuli and Fusarium oxysporum infection. Int. J. Mol. Sci. 2024, 25, 638–658. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Chen, X.; Li, H.; Chang, J.; Zhang, Y.; Wang, Y.; Shi, Y. Genome-wide Identification and analysis of carbohydrate-binding modules in Colletotrichum graminicola. Int. J. Mol. Sci. 2025, 26, 919–933. [Google Scholar] [CrossRef]
- Li, L.; Tang, J.; Wu, A.; Fan, C.; Li, H. Genome-wide identification and functional analysis of the GUX gene family in Eucalyptus grandis. Int. J. Mol. Sci. 2024, 25, 8199–8214. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, H.; Yu, D. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under Short-Day conditions. Mol. Plant 2016, 9, 1492–1503. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, Z.; Wang, L.; Kim, S.G.; Seo, P.J.; Qiao, M.; Wang, N.; Li, S.; Cao, X.; Park, C.M.; et al. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. Plant J. 2016, 85, 96–106. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Xu, Y.; Lu, Y.; Yu, H.X.; Gu, M.H.; Liu, Q.Q. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta 2011, 234, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, J.; Fan, J.; Jia, W.; Lv, Y.; Pan, H.; Zhang, X. Infection-specific transcriptional patterns of the maize pathogen Cochliobolus heterostrophus unravel genes involved in asexual development and virulence. Mol. Plant Pathol. 2024, 25, e13413. [Google Scholar] [CrossRef]
- Sanz-Martín, J.M.; Pacheco-Arjona, J.R.; Bello-Rico, V.; Vargas, W.A.; Monod, M.; Díaz-Mínguez, J.M.; Thon, M.R.; Sukno, S.A. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Mol. Plant Pathol. 2016, 17, 1048–1062. [Google Scholar] [CrossRef]
Proposed Gene Name | Gene ID | Superfamily | CDS Length (bp) | Protein Length (aa) | Mw (KDa) | PI | GRAVY | Predicted Subcellular Localization |
---|---|---|---|---|---|---|---|---|
CgAA1 | EVM0000057 | AA1 | 1782 | 593 | 64.93 | 5.68 | −0.345 | extracellular, including cell wall |
CgAA2 | EVM0000126 | AA3 | 1743 | 580 | 60.9 | 5.38 | −0.083 | extracellular, including cell wall |
CgAA3 | EVM0000144 | AA7 | 1986 | 661 | 71.92 | 4.81 | −0.029 | extracellular, including cell wall |
CgAA4 | EVM0000166 | AA7 | 1656 | 551 | 58.32 | 5.54 | −0.053 | extracellular, including cell wall |
CgAA5 | EVM0000238 | AA9 | 741 | 246 | 25.91 | 8.12 | −0.008 | extracellular, including cell wall |
CgAA6 | EVM0000361 | AA3 | 2040 | 679 | 72.90 | 5.81 | −0.177 | extracellular, including cell wall |
CgAA7 | EVM0000376 | AA9 | 1353 | 450 | 45.87 | 4.13 | −0.437 | extracellular, including cell wall |
CgAA8 | EVM0000455 | AA9 | 687 | 228 | 24.59 | 7.68 | −0.241 | extracellular, including cell wall |
CgAA9 | EVM0000611 | AA9 | 951 | 316 | 32.77 | 8.81 | −0.211 | extracellular, including cell wall |
CgAA10 | EVM0000699 | AA7 | 2058 | 685 | 74.88 | 6.55 | −0.232 | cytosol |
CgAA11 | EVM0000709 | AA7 | 1725 | 574 | 62.16 | 8.75 | −0.143 | mitochondrion |
CgAA12 | EVM0000712 | AA2 | 1086 | 361 | 40.36 | 8.77 | −0.547 | mitochondrion |
CgAA13 | EVM0000957 | AA7 | 1719 | 572 | 61.55 | 6.16 | −0.062 | extracellular, including cell wall |
CgAA14 | EVM0001083 | AA7 | 1476 | 491 | 55.45 | 6.23 | −0.33 | mitochondrion |
CgAA15 | EVM0001273 | AA7 | 1452 | 483 | 52.84 | 5.34 | −0.176 | extracellular, including cell wall |
CgAA16 | EVM0001281 | AA9 | 1515 | 504 | 51.71 | 5.21 | −0.167 | extracellular, including cell wall |
CgAA17 | EVM0001353 | AA13 | 1149 | 382 | 40.65 | 5.65 | −0.17 | extracellular, including cell wall |
CgAA18 | EVM0001466 | AA9 | 807 | 268 | 28.44 | 5.58 | −0.111 | extracellular, including cell wall |
CgAA19 | EVM0001491 | AA3 | 1845 | 614 | 65.27 | 6.87 | −0.058 | extracellular, including cell wall |
CgAA20 | EVM0001559 | AA9 | 990 | 329 | 34.12 | 9.35 | −0.43 | extracellular, including cell wall |
CgAA21 | EVM0001679 | AA7 | 1644 | 547 | 61.99 | 5.96 | −0.325 | cytosol |
CgAA22 | EVM0001699 | AA3 | 1965 | 654 | 70.80 | 7.21 | −0.24 | extracellular, including cell wall |
CgAA23 | EVM0001906 | AA1 | 2175 | 724 | 80.10 | 5.64 | −0.408 | plasma membrane |
CgAA24 | EVM0002162 | AA4 | 1782 | 593 | 63.89 | 6.08 | −0.154 | mitochondrion |
CgAA25 | EVM0002332 | AA9 | 990 | 329 | 34.92 | 8.83 | −0.368 | extracellular, including cell wall |
CgAA26 | EVM0002385 | AA11 | 1221 | 406 | 40.30 | 6.15 | −0.31 | extracellular, including cell wall |
CgAA27 | EVM0002467 | AA9 | 1056 | 351 | 35.52 | 6.35 | −0.026 | extracellular, including cell wall |
CgAA28 | EVM0002775 | AA9 | 855 | 284 | 29.82 | 6.07 | −0.382 | extracellular, including cell wall |
CgAA29 | EVM0002895 | AA7 | 1728 | 575 | 60.88 | 4.69 | −0.039 | extracellular, including cell wall |
CgAA30 | EVM0002896 | AA7 | 1767 | 588 | 63.74 | 5.17 | −0.146 | extracellular, including cell wall |
CgAA31 | EVM0002934 | AA3 | 1839 | 612 | 66.89 | 5.86 | −0.427 | cytosol |
CgAA32 | EVM0003252 | AA7 | 1422 | 473 | 50.24 | 9.23 | 0.065 | extracellular, including cell wall |
CgAA33 | EVM0003261 | AA9 | 921 | 306 | 31.93 | 5.16 | −0.219 | extracellular, including cell wall |
CgAA34 | EVM0003287 | AA7 | 1455 | 484 | 52.64 | 6.56 | −0.109 | extracellular, including cell wall |
CgAA35 | EVM0003431 | AA2 | 2331 | 776 | 84.45 | 5.22 | −0.373 | extracellular, including cell wall |
CgAA36 | EVM0003471 | AA4 | 843 | 280 | 31.33 | 7.76 | −0.444 | mitochondrion |
CgAA37 | EVM0003514 | AA3 | 1383 | 460 | 50.09 | 4.82 | −0.088 | cytosol |
CgAA38 | EVM0003570 | AA8 | 2331 | 776 | 82.04 | 9.37 | −0.094 | extracellular, including cell wall |
CgAA39 | EVM0003756 | AA12 | 1392 | 463 | 49.79 | 4.67 | −0.128 | extracellular, including cell wall |
CgAA40 | EVM0003880 | AA2 | 2277 | 758 | 83.32 | 5.87 | −0.545 | cytosol |
CgAA41 | EVM0004090 | AA9 | 696 | 231 | 23.99 | 8.23 | 0.046 | extracellular, including cell wall |
CgAA42 | EVM0004098 | AA7 | 1581 | 526 | 58.30 | 7.3 | −0.306 | cytosol |
CgAA43 | EVM0004123 | AA2 | 1236 | 411 | 44.54 | 8.38 | −0.367 | extracellular, including cell wall |
CgAA44 | EVM0004131 | AA9 | 1008 | 335 | 33.27 | 6.18 | −0.049 | extracellular, including cell wall |
CgAA45 | EVM0004175 | AA3 | 1833 | 610 | 66.16 | 4.88 | −0.134 | extracellular, including cell wall |
CgAA46 | EVM0004221 | AA12 | 1287 | 428 | 45.35 | 5.39 | −0.168 | extracellular, including cell wall |
CgAA47 | EVM0004263 | AA9 | 795 | 264 | 28.41 | 6.64 | −0.306 | extracellular, including cell wall |
CgAA48 | EVM0004305 | AA7 | 1569 | 522 | 58.95 | 7.82 | −0.408 | cytosol |
CgAA49 | EVM0004472 | AA7 | 1527 | 508 | 53.73 | 4.69 | 0.025 | extracellular, including cell wall |
CgAA50 | EVM0004531 | AA2 | 1221 | 406 | 43.73 | 4.99 | −0.261 | extracellular, including cell wall |
CgAA51 | EVM0004535 | AA3 | 1767 | 588 | 63.70 | 5.54 | −0.289 | cytosol |
CgAA52 | EVM0004566 | AA4 | 1653 | 550 | 59.84 | 6 | −0.163 | mitochondrion |
CgAA53 | EVM0004677 | AA8 | 2352 | 783 | 81.83 | 6.81 | −0.146 | extracellular, including cell wall |
CgAA54 | EVM0004740 | AA2 | 939 | 312 | 32.10 | 4.66 | −0.065 | extracellular, including cell wall |
CgAA55 | EVM0004872 | AA7 | 1746 | 581 | 62.47 | 4.79 | −0.106 | extracellular, including cell wall |
CgAA56 | EVM0005086 | AA9 | 870 | 289 | 31.12 | 8.01 | −0.345 | extracellular, including cell wall |
CgAA57 | EVM0005263 | AA7 | 2007 | 668 | 72.31 | 5.58 | −0.263 | cytosol |
CgAA58 | EVM0005385 | AA9 | 705 | 234 | 24.74 | 6.94 | −0.17 | extracellular, including cell wall |
CgAA59 | EVM0005502 | AA7 | 1710 | 569 | 64.66 | 6.48 | −0.492 | cytosol |
CgAA60 | EVM0005674 | AA11 | 1260 | 419 | 42.17 | 7.98 | −0.125 | extracellular, including cell wall |
CgAA61 | EVM0005728 | AA1 | 1797 | 598 | 66.65 | 5.65 | −0.6 | extracellular, including cell wall |
CgAA62 | EVM0005808 | AA7 | 1701 | 566 | 60.30 | 5.18 | −0.018 | extracellular, including cell wall |
CgAA63 | EVM0005820 | AA7 | 1734 | 577 | 61.37 | 5.32 | 0.201 | extracellular, including cell wall |
CgAA64 | EVM0005896 | AA11 | 1242 | 413 | 43.45 | 6.19 | −0.144 | plasma membrane |
CgAA65 | EVM0006060 | AA5 | 2136 | 711 | 76.77 | 4.78 | −0.221 | extracellular, including cell wall |
CgAA66 | EVM0006129 | AA7 | 1665 | 554 | 59.83 | 4.72 | −0.003 | extracellular, including cell wall |
CgAA67 | EVM0006152 | AA7 | 1506 | 501 | 53.79 | 5.66 | −0.17 | extracellular, including cell wall |
CgAA68 | EVM0006409 | AA2 | 3189 | 1062 | 111.38 | 4.85 | −0.186 | extracellular, including cell wall |
CgAA69 | EVM0006430 | AA9 | 1239 | 412 | 43.08 | 8.99 | −0.168 | mitochondrion |
CgAA70 | EVM0006631 | AA3 | 1731 | 576 | 62.81 | 5.66 | −0.318 | extracellular, including cell wall |
CgAA71 | EVM0006804 | AA8 | 1665 | 554 | 58.88 | 5.27 | −0.122 | mitochondrion |
CgAA72 | EVM0006864 | AA3 | 1653 | 550 | 60.93 | 6.41 | −0.287 | cytosol |
CgAA73 | EVM0006882 | AA2 | 792 | 263 | 27.92 | 5.42 | −0.06 | extracellular, including cell wall |
CgAA74 | EVM0006927 | AA9 | 768 | 255 | 26.73 | 8.77 | −0.233 | extracellular, including cell wall |
CgAA75 | EVM0007308 | AA3 | 1776 | 591 | 62.84 | 4.91 | −0.034 | extracellular, including cell wall |
CgAA76 | EVM0007366 | AA6 | 615 | 204 | 21.85 | 5.84 | −0.092 | mitochondrion |
CgAA77 | EVM0007380 | AA3 | 1896 | 631 | 68.74 | 5.02 | −0.124 | cytosol |
CgAA78 | EVM0007418 | AA7 | 3255 | 1084 | 117.19 | 7.26 | 0.189 | plasma membrane |
CgAA79 | EVM0007480 | AA4 | 1752 | 583 | 65.66 | 5.65 | −0.382 | cytosol |
CgAA80 | EVM0007520 | AA9 | 756 | 251 | 28.26 | 6.43 | −0.625 | extracellular, including cell wall |
CgAA81 | EVM0007574 | AA7 | 1674 | 557 | 60.47 | 5.68 | −0.283 | cytosol |
CgAA82 | EVM0007697 | AA9 | 918 | 305 | 31.00 | 7.59 | −0.057 | extracellular, including cell wall |
CgAA83 | EVM0007725 | AA3 | 1875 | 624 | 67.63 | 5.15 | −0.106 | mitochondrion |
CgAA84 | EVM0007732 | AA9 | 942 | 313 | 32.86 | 5.96 | −0.354 | extracellular, including cell wall |
CgAA85 | EVM0007737 | AA8 | 2730 | 909 | 96.72 | 8.16 | −0.183 | extracellular, including cell wall |
CgAA86 | EVM0007831 | AA9 | 741 | 246 | 25.65 | 7.69 | −0.048 | extracellular, including cell wall |
CgAA87 | EVM0007924 | AA2 | 1266 | 421 | 45.04 | 6.16 | −0.208 | extracellular, including cell wall |
CgAA88 | EVM0008057 | AA3 | 1848 | 615 | 65.53 | 5.22 | −0.026 | extracellular, including cell wall |
CgAA89 | EVM0008124 | AA7 | 1509 | 502 | 54.46 | 5.01 | −0.09 | extracellular, including cell wall |
CgAA90 | EVM0008153 | AA3 | 1989 | 662 | 70.41 | 5.83 | −0.128 | extracellular, including cell wall |
CgAA91 | EVM0008169 | AA7 | 3486 | 1161 | 126.67 | 7.9 | −0.069 | cytosol |
CgAA92 | EVM0008372 | AA5 | 2742 | 913 | 98.20 | 8.1 | −0.216 | extracellular, including cell wall |
CgAA93 | EVM0008382 | AA7 | 1755 | 584 | 61.78 | 5.17 | 0.042 | extracellular, including cell wall |
CgAA94 | EVM0008478 | AA2 | 1110 | 369 | 38.97 | 5.05 | −0.111 | extracellular, including cell wall |
CgAA95 | EVM0008490 | AA7 | 1605 | 534 | 58.43 | 6.16 | −0.181 | mitochondrion |
CgAA96 | EVM0008492 | AA3 | 1827 | 608 | 65 | 5.09 | −0.065 | extracellular, including cell wall |
CgAA97 | EVM0008509 | AA9 | 699 | 232 | 24.41 | 7.67 | −0.013 | extracellular, including cell wall |
CgAA98 | EVM0008580 | AA7 | 1728 | 575 | 61.29 | 4.98 | −0.037 | extracellular, including cell wall |
CgAA99 | EVM0008837 | AA7 | 1800 | 599 | 64.11 | 6.08 | −0.212 | cytosol |
CgAA100 | EVM0009070 | AA3 | 1893 | 630 | 68.64 | 5.21 | −0.31 | cytosol |
CgAA101 | EVM0009233 | AA3 | 2304 | 767 | 83 | 5.75 | −0.171 | cytosol |
CgAA102 | EVM0009452 | AA3 | 1884 | 627 | 67.62 | 6.42 | −0.16 | extracellular, including cell wall |
CgAA103 | EVM0009498 | AA7 | 1740 | 579 | 65.67 | 6.22 | −0.493 | nucleus |
CgAA104 | EVM0009621 | AA9 | 1347 | 448 | 47.15 | 6.43 | −0.234 | extracellular, including cell wall |
CgAA105 | EVM0009640 | AA7 | 1518 | 505 | 54.52 | 4.98 | 0.014 | extracellular, including cell wall |
CgAA106 | EVM0009686 | AA3 | 4119 | 1372 | 151.92 | 6.58 | −0.351 | cytosol |
CgAA107 | EVM0009760 | AA5 | 1521 | 506 | 53.98 | 8.29 | −0.18 | extracellular, including cell wall |
CgAA108 | EVM0009827 | AA3 | 1827 | 608 | 66.51 | 5.35 | −0.183 | extracellular, including cell wall |
CgAA109 | EVM0009849 | AA3 | 2010 | 669 | 74.5 | 6.5 | −0.45 | cytosol |
CgAA110 | EVM0009864 | AA3 | 1782 | 593 | 64.55 | 7.03 | −0.141 | plasma membrane |
CgAA111 | EVM0009923 | AA3 | 1851 | 616 | 66.96 | 5.58 | −0.117 | extracellular, including cell wall |
CgAA112 | EVM0010000 | AA9 | 717 | 238 | 24.85 | 7.66 | −0.045 | extracellular, including cell wall |
CgAA113 | EVM0010002 | AA3 | 1983 | 660 | 71.52 | 5.88 | −0.32 | extracellular, including cell wall |
CgAA114 | EVM0010164 | AA12 | 2037 | 678 | 72.08 | 5.36 | −0.136 | extracellular, including cell wall |
CgAA115 | EVM0010284 | AA9 | 936 | 311 | 32.71 | 5.31 | −0.261 | extracellular, including cell wall |
CgAA116 | EVM0010436 | AA9 | 750 | 249 | 27.26 | 5.39 | −0.164 | extracellular, including cell wall |
CgAA117 | EVM0010440 | AA3 | 1893 | 630 | 67.35 | 4.84 | −0.05 | extracellular, including cell wall |
CgAA118 | EVM0010562 | AA3 | 3888 | 1295 | 142.46 | 6.39 | −0.394 | cytosol |
CgAA119 | EVM0010731 | AA9 | 948 | 315 | 32.92 | 6.38 | −0.254 | extracellular, including cell wall |
CgAA120 | EVM0010854 | AA3 | 2088 | 695 | 75.34 | 5.6 | −0.013 | extracellular, including cell wall |
CgAA121 | EVM0010919 | AA1 | 1860 | 619 | 66.36 | 5.34 | −0.055 | extracellular, including cell wall |
CgAA122 | EVM0011070 | AA3 | 1692 | 563 | 61.34 | 5.71 | −0.272 | cytosol |
CgAA123 | EVM0011076 | AA2 | 768 | 255 | 27.78 | 4.83 | −0.379 | extracellular, including cell wall |
CgAA124 | EVM0011162 | AA7 | 1761 | 586 | 64.6 | 4.86 | −0.23 | extracellular, including cell wall |
CgAA125 | EVM0011582 | AA7 | 813 | 270 | 30.7 | 5.85 | −0.486 | cytosol |
CgAA126 | EVM0011705 | AA3 | 1875 | 624 | 67.44 | 5.89 | −0.199 | extracellular, including cell wall |
CgAA127 | EVM0011804 | AA5 | 3393 | 1130 | 118.11 | 4.82 | −0.071 | extracellular, including cell wall |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chang, J.; Zhang, D.; Li, J.; Luo, H.; Liu, M.; Zhang, Y.; Cui, Y.; Geng, Y. Genomic and Functional Analysis of Auxiliary Activity Enzymes in the Maize Anthracnose Pathogen Colletotrichum graminicola. Microorganisms 2025, 13, 2080. https://doi.org/10.3390/microorganisms13092080
Wang Y, Chang J, Zhang D, Li J, Luo H, Liu M, Zhang Y, Cui Y, Geng Y. Genomic and Functional Analysis of Auxiliary Activity Enzymes in the Maize Anthracnose Pathogen Colletotrichum graminicola. Microorganisms. 2025; 13(9):2080. https://doi.org/10.3390/microorganisms13092080
Chicago/Turabian StyleWang, Yafei, Jiaxin Chang, Di Zhang, Jinyao Li, Huawei Luo, Mengjin Liu, Yahui Zhang, Yingjun Cui, and Yuehua Geng. 2025. "Genomic and Functional Analysis of Auxiliary Activity Enzymes in the Maize Anthracnose Pathogen Colletotrichum graminicola" Microorganisms 13, no. 9: 2080. https://doi.org/10.3390/microorganisms13092080
APA StyleWang, Y., Chang, J., Zhang, D., Li, J., Luo, H., Liu, M., Zhang, Y., Cui, Y., & Geng, Y. (2025). Genomic and Functional Analysis of Auxiliary Activity Enzymes in the Maize Anthracnose Pathogen Colletotrichum graminicola. Microorganisms, 13(9), 2080. https://doi.org/10.3390/microorganisms13092080