Interactive Effects of Dietary Starch Levels and Exogenous α-Amylase on Growth, Digestibility, and Metabolic Responses in Channa striata Juveniles
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Diet Preparation
2.3. Proximate Composition
2.4. Growth Parameters
2.5. Sample Collection
2.6. Digestive Enzyme Assay
2.6.1. Protease
2.6.2. Lipase
2.6.3. Amylase
2.7. Metabolic Enzyme
2.8. Collection of Fecal Matter
Estimation of Digestibility
2.9. Statistical Analysis
3. Results
3.1. Growth Performance and Nutrient Utilization
3.2. Whole-Body Proximate Composition
3.3. Apparent Digestibility Coefficient
3.4. Digestive Enzyme Activity
3.5. Metabolic Enzyme Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Fisheries and Aquaculture Production Reaches a New Record High; Newsroom; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- De Silva, S.S.; Phuong, N.T. Striped catfish farming in the Mekong Delta, Vietnam: A tumultuous path to a global success. Rev. Aquac. 2011, 3, 45–73. [Google Scholar] [CrossRef]
- Aliyu-Paiko, M.; Hashim, R.; Shu-Chien, A.C. Influence of dietary lipid/protein ratio on survival, growth, body indices and digestive lipase activity in Snakehead (Channa striatus, Bloch 1793) fry reared in re-circulating water system. Aquac. Nutr. 2010, 16, 466–474. [Google Scholar] [CrossRef]
- Mustafa, A.; Widodo, M.A.; Kristianto, Y. Albumin and zinc content of snakehead fish (Channa striata) extract and its role in health. IEESE Int. J. Sci. Technol. 2012, 1, 1. [Google Scholar]
- Sinh, L.X.; Navy, H.; Pomeroy, R.S. Value chain of snakehead fish in the Lower Mekong Basin of Cambodia and Vietnam. Aquac. Econ. Manag. 2014, 18, 76–96. [Google Scholar] [CrossRef]
- Webster, C.D.; Lim, C. (Eds.) Nutrient Requirements and Feeding of Finfish for Aquaculture; CABI Publishing: Oxfordshire, UK, 2002. [Google Scholar]
- Sahid, N.A.; Hayati, F.; Rao, C.V.; Ramely, R.; Sani, I.; Dzulkarnaen, A.; Zakaria, Z.; Hassan, S.; Zahari, A.; Ali, A.A. Snakehead consumption enhances wound healing? From tradition to modern clinical practice: A prospective randomized controlled trial. Evid. Based Complement. Altern. Med. 2018, 2018, 3032790. [Google Scholar] [CrossRef] [PubMed]
- Hemre, G.I.; Lie, Ø.; Lied, E.; Lambertsen, G. Starch as an energy source in feed for cod (Gadus morhua): Digestibility and retention. Aquaculture 1989, 80, 261–270. [Google Scholar] [CrossRef]
- Hussain, S.M.; Khurram, F.; Naeem, A.; Shah, S.Z.H.; Sarker, P.K.; Naeem, E.; Arsalan, M.Z.U.H.; Riaz, D.; Yousaf, Z.; Faisal, M.; et al. A review on the prospects and potentials of fishmeal replacement with different animal protein sources. Int. Aquat. Res. 2024, 16, 7. [Google Scholar]
- Anand, G.; Bhat, I.A.; Varghese, T.; Dar, S.A.; Sahu, N.P.; Aklakur, M.D.; Kumar, S.; Sahoo, S. Alterations in non-specific immune responses, antioxidant capacities and expression levels of immunity genes in Labeo rohita fed with graded level of carbohydrates. Aquaculture 2018, 483, 76–83. [Google Scholar] [CrossRef]
- Honorato, C.A.; Almeida, L.C.; Da Silva Nunes, C.; Carneiro, D.J.; Moraes, G. Effects of processing on physical characteristics of diets with distinct levels of carbohydrates and lipids: The outcomes on the growth of pacu (Piaractus mesopotamicus). Aquac. Nutr. 2010, 16, 91–99. [Google Scholar] [CrossRef]
- Rosas, C.; Cuzon, G.; Gaxiola, G.; Arena, L.; Lemaire, P.; Soyez, C.; Van Wormhoudt, A. Influence of dietary carbohydrate on the metabolism of juvenile Litopenaeus stylirostris. J. Exp. Mar. Biol. Ecol. 2000, 249, 181–198. [Google Scholar] [CrossRef]
- Cheng, K.; Li, P.; Zheng, S.; Zhu, X.; Ma, X.; Li, X. Utilization and Metabolism of Dietary Digestible Carbohydrates in Fish. Fish. Sci. Technol. Inf. 2022, 49, 224–234. [Google Scholar] [CrossRef]
- Kamalam, B.S.; Medale, F.; Panserat, S. Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture 2017, 467, 3–27. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Han, T.; Yang, Y.; Jiang, Y.; Yang, M.; Xu, Y.; Harpaz, S. Effects of different dietary carbohydrate levels on growth, feed utilization and body composition of juvenile grouper Epinephelus akaara. Aquaculture 2016, 459, 143–147. [Google Scholar] [CrossRef]
- Enes, P.; Panserat, S.; Kaushik, S.; Oliva-Teles, A.A. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 143, 89–96. [Google Scholar]
- Stone, D.A. Dietary carbohydrate utilization by fish. Rev. Fish. Sci. 2003, 11, 337–369. [Google Scholar] [CrossRef]
- Paredes, J.F.; Habte-Tsion, M.; Riche, M.; Mejri, S.; Bradshaw, D.; Chin, L.S.; Perricone, C.; Wills, P.S. Effects of different carbohydrates on growth, hepatic glucose metabolism, and gut microbiome of Florida pompano (Trachinotus carolinus). Aquaculture 2025, 600, 742237. [Google Scholar] [CrossRef]
- Zhou, C.; Ge, X.; Niu, J.; Lin, H.; Huang, Z.; Tan, X. Effect of dietary carbohydrate levels on growth performance, body composition, intestinal and hepatic enzyme activities, and growth hormone gene expression of juvenile golden pompano, Trachinotus ovatus. Aquaculture 2015, 437, 390–397. [Google Scholar] [CrossRef]
- Marandel, L.; Lepais, O.; Arbenoits, E.; Véron, V.; Dias, K.; Zion, M.; Panserat, S. Remodelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout (Oncorhynchus mykiss) by nutritional status and dietary carbohydrates. Sci. Rep. 2016, 6, 32187. [Google Scholar] [CrossRef]
- Hemre, G.I.; Mommsen, T.P.; Krogdahl, A. Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 2001, 8, 175–194. [Google Scholar] [CrossRef]
- Boonanuntanasarn, S.; Jangprai, A.; Kumkhong, S.; Plagnes-Juan, E.; Veron, V.; Burel, C.; Marandel, L.; Panserat, S. Adaptation of Nile tilapia (Oreochromis niloticus) to different levels of dietary carbohydrates: New insights from a long term nutritional study. Aquaculture 2018, 496, 58–65. [Google Scholar] [CrossRef]
- Xiao, P.; Wu, Y.; Sha, H.; Luo, X.; Zou, G.; Liang, H. Effects of Different Carbohydrate Levels in Diets on Growth Performance and Muscle Nutritive Value of Ying Carp and Scattered-Scaled Mirror Carp (Cyprinus carpio). Aquac. Nutr. 2025, 2025, 9966429. [Google Scholar]
- Barton, B.A.; Iwama, G.K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1991, 1, 3–26. [Google Scholar] [CrossRef]
- Xu, R.; Li, M.; Wang, T.; Zhao, Y.W.; Shan, C.J.; Qiao, F.; Chen, L.Q.; Zhang, W.B.; Du, Z.Y.; Zhang, M.L. Bacillus amyloliquefaciens ameliorates high-carbohydrate diet-induced metabolic phenotypes by restoration of intestinal acetate-producing bacteria in Nile Tilapia. Br. J. Nutr. 2022, 127, 653–665. [Google Scholar]
- Tan, Q.; Wang, F.; Xie, S.; Zhu, X.; Lei, W.; Shen, J. Effect of high dietary starch levels on the growth performance, blood chemistry and body composition of gibel carp (Carassius auratus var. gibelio). Aquac. Res. 2009, 40, 1011–1018. [Google Scholar]
- Bedford, M. Enzyme Action-Under the Microscope. Feed Mix 1996, 4, 22–24. [Google Scholar]
- Batterham, E.S. Development of cost-effective diets for the pig industry: How to utilize low quality ingredients to formulate cost-effective diets. In Proceedings of the Aquaculture Nutrition Workshop, Salamander Bay, Australia, 15–17 April 1991; pp. 15–17. [Google Scholar]
- Chesson, A. Feed enzyme. Anim. Feed. Sci. Tech. 1993, 45, 65–79. [Google Scholar]
- Ravindran, V.; Son, J.H. Feed enzyme technology: Present status and future developments. Recent Pat. Food Nutr. Agric. 2011, 3, 102–109. [Google Scholar] [PubMed]
- Kalhoro, H.; Zhou, J.; Hua, Y.; Ng, W.K.; Ye, L.; Zhang, J.; Shao, Q. Soy protein concentrate as a substitute for fish meal in diets for juvenile Acanthopagrus schlegelii: Effects on growth, phosphorus discharge and digestive enzyme activity. Aquac. Res. 2018, 49, 1896–1906. [Google Scholar] [CrossRef]
- Maas, R.M.; Verdegem, M.C.; Wiegertjes, G.F.; Schrama, J.W. Carbohydrate utilisation by tilapia: A meta-analytical approach. Rev. Aquac. 2020, 12, 1851–1866. [Google Scholar]
- Ai, Q.; Mai, K.; Zhang, W.; Xu, W.; Tan, B.; Zhang, C.; Li, H. Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 147, 502–508. [Google Scholar]
- Farhangi, M.; Carter, C.G. Effect of enzyme supplementation to dehulled lupin-based diets on growth, feed efficiency, nutrient digestibility and carcass composition of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res. 2007, 38, 1274–1282. [Google Scholar] [CrossRef]
- Lin, S.; Mai, K.; Tan, B. Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus × O. aureus. Aquac. Res. 2007, 38, 1645–1653. [Google Scholar] [CrossRef]
- Kumar, S.; Sahu, N.P.; Pal, A.K.; Choudhury, D.; Mukherjee, S.C. Studies on digestibility and digestive enzyme activities in Labeo rohita (Hamilton) juveniles: Effect of microbial α-amylase supplementation in non-gelatinized or gelatinized corn-based diet at two protein levels. Fish Physiol. Biochem. 2006, 32, 209–220. [Google Scholar]
- Stone, D.A.J.; Allan, G.L.; Anderson, A.A. Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell). III. The protein-sparing effect of wheat starch-based carbohydrates. Aquac. Res. 2003, 34, 123–134. [Google Scholar]
- Ogunkoya, A.E.; Page, G.I.; Adewolu, M.A.; Bureau, D.P. Dietary incorporation of soybean meal and exogenous enzyme cocktail can affect physical characteristics of faecal material egested by rainbow trout (Oncorhynchus mykiss). Aquaculture 2006, 254, 466–475. [Google Scholar] [CrossRef]
- Khalil, F.; Emeash, H. Behavior and stereotypies of Nile Tilapia (Oreochromis niloticus) in response to experimental infection with Aeromonas hydrophila. Aquat. Sci. Eng. 2018, 33, 124–130. [Google Scholar] [CrossRef]
- Carter, C.G.; Houlihan, D.F.; Buchanan, B.; Mitchell, A.I. Growth and feed utilization efficiencies of seawater Atlantic salmon, Salmo salar L., fed a diet containing supplementary enzymes. Aquac. Res. 1994, 25, 37–46. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC Inc.: Washington, DC, USA, 2010. [Google Scholar]
- Yigit, M.; Sahinyilmaz, M.; Acar, Ü.; Kesbic, O.; Yilmaz, S.; Bulut, M.; Gürses, K.; Maita, M. Evaluation of dietary protein level in practical feed for twoband bream Diplodus vulgaris. N. Am. J. Aquac. 2018, 80, 379–387. [Google Scholar]
- Ranjan, A.; Sahu, N.P.; Deo, A.D.; Kumar, H.S.; Kumar, S.; Jain, K.K. Comparative evaluation of fermented and non-fermented de-oiled rice bran with or without exogenous enzymes supplementation in the diet of Labeo rohita (Hamilton, 1822). Fish Physiol. Biochem. 2018, 44, 1037–1049. [Google Scholar] [PubMed]
- Drapeau, G. Protease from Staphylococcus aureus. In Methods in Enzymology; Lorand, B.L., Ed.; Academic Press: Cambridge, MA, USA, 1974; p. 469. [Google Scholar]
- Cherry, I.S.; Crandall, L.A., Jr. The specificity of pancreatic lipase: Its appearance in the blood after pancreatic injury. Am. J. Physiol. Leg. Content 1932, 100, 266–273. [Google Scholar]
- Rick, W.; Stegbauer, H.P. α-Amylase measurement of reducing groups. In Methods of Enzymatic Analysis; Academic Press: Cambridge, MA, USA, 1974; pp. 885–890. [Google Scholar]
- Easterby, J.S.; O’Brien, M.J. Purification and properties of pig-heart hexokinase. Eur. J. Biochem. 1973, 38, 201–211. [Google Scholar]
- Shiau, S.Y.; Liang, H.S. Carbohydrate utilization and digestibility by tilapia Oreochromis niloticus × O. aureus are affected by chromic oxide inclusion in the diet. J. Nutr. 1994, 125, 976–982. [Google Scholar]
- Kumar, S.; Sahu, N.P.; Pal, A.K.; Choudhury, D.; Yengkokpam, S.; Mukherjee, S.C. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immunol. 2005, 19, 331–344. [Google Scholar] [PubMed]
- Goda, A.M.A.; Mabrouk, H.A.H.H.; Wafa, M.A.E.H.; El-Afifi, T.M. Effect of using baker’s yeast and exogenous digestive enzymes as growth promoters on growth, feed utilization and hematological indices of Nile tilapia, Oreochromis niloticus fingerlings. J. Agric. Sci. Technol. 2012, 2, 15–28. [Google Scholar]
- Li, J.; Li, J.; Wu, T. Effects of non-starch polysaccharides enzyme, phytase and citric acid on activities of endogenous digestive enzymes of tilapia (Oreochromis niloticus × Oreochromis aureus). Aquac. Nutr. 2009, 15, 415–420. [Google Scholar] [CrossRef]
- Zhang, L.; Mai, K.S.; Ai, Q.H.; Tan, B.P. Effects of phytase and non-starch polysaccharide enzyme supplementation in diets on growth and digestive enzyme activity in large yellow croaker, Pseudosciaena crocea R. Period. Ocean Univ. China 2006, 6, 923–928. [Google Scholar]
- Hlophe-Ginindza, S.N.; Moyo, N.A.; Ngambi, J.W.; Ncube, I. The effect of exogenous enzyme supplementation on growth performance and digestive enzyme activities in Oreochromis mossambicus fed kikuyu-based diets. Aquac. Res. 2016, 47, 3777–3787. [Google Scholar]
- Zhu, D.; Wen, X.; Li, S.; Xuan, X.; Li, Y. Effects of exogenous non-starch polysaccharide-degrading enzymes in diets containing Gracilaria lemaneiformis on white-spotted snapper Lutjanus stellatus Akazaki. Aquac. Int. 2016, 24, 491–502. [Google Scholar] [CrossRef]
- Song, H.L.; Tan, B.P.; Chi, S.Y.; Liu, Y.; Chowdhury, M.K.; Dong, X.H. The effects of a dietary protease-complex on performance, digestive and immune enzyme activity, and disease resistance of Litopenaeus vannamei fed high plant protein diets. Aquac. Res. 2017, 48, 2550–2560. [Google Scholar]
- Drew, M.D.; Racz, V.J.; Gauthier, R.; Thiessen, D.L. Effect of adding protease to coextruded flax: Pea or canola: Pea products on nutrient digestibility and growth performance of rainbow trout (Oncorhynchus mykiss). Anim. Feed Sci. Technol. 2005, 119, 117–128. [Google Scholar]
- Jobling, M. Fish Bioenergetics; Fish and Fisheries Series; Springer: Dordrecht, The Netherlands, 1994; Volume 13. [Google Scholar]
- Liu, Q.Z.; Zhang, H.; Dai, H.Q.; Zhao, P.; Mao, Y.F.; Chen, K.X.; Chen, Z.X. Inhibition of starch digestion: The role of hydrophobic domain of both α-amylase and substrates. Food Chem. 2021, 341, 128211. [Google Scholar] [CrossRef]
- Kumar, S.; Sahu, N.P.; Pal, A.K.; Choudhury, D.; Mukherjee, S.C. Non-gelatinized corn supplemented with α-amylase at sub-optimum protein level enhances the growth of Labeo rohita (Hamilton) fingerlings. Aquac. Res. 2006, 37, 284–292. [Google Scholar] [CrossRef]
- Dalsgaard, J.; Verlhac, V.; Hjermitslev, N.H.; Ekmann, K.S.; Fischer, M.; Klausen, M.; Pedersen, P.B. Effects of exogenous enzymes on apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fed diets with high inclusion of plant-based protein. Anim. Feed Sci. Technol. 2012, 171, 181–191. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Mohammady, E.Y.; Soaudy, M.R.; Abdel Rahman, A.A. Exogenous xylanase improves growth, protein digestibility and digestive enzymes activities in Nile tilapia, Oreochromis niloticus, fed different ratios of fish meal to sunflower meal. Aquac. Nutr. 2019, 25, 841–853. [Google Scholar] [CrossRef]
- Onderci, M.; Sahin, N.; Sahin, K.; Cikim, G.; Aydin, A.; Ozercan, I.; Aydin, S. Efficacy of supplementation of α-amylase-producing bacterial culture on the performance, nutrient use, and gut morphology of broiler chickens fed a corn-based diet. Poult. Sci. 2006, 85, 505–510. [Google Scholar] [CrossRef]
- Breck, J.E. Body composition in fishes: Body size matters. Aquaculture 2014, 433, 40–49. [Google Scholar] [CrossRef]
- Haider, M.S.; Ashraf, M.; Azmat, H.; Khalique, A.; Javid, A.; Atique, U.; Zia, M.; Iqbal, K.J.; Akram, S. Nutritive evaluation of fish acid silage in Labeo rohita fingerlings feed. J. Appl. Anim. Res. 2016, 44, 158–164. [Google Scholar] [CrossRef]
- Sajjadi, M.; Carter, C.G. Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar L.). Aquac. Nutr. 2004, 10, 135–142. [Google Scholar] [CrossRef]
- Ng, W.K.; Chong, K.K. The nutritive value of palm kernel and the effect of enzyme supplementation in practical diets for red hybrid tilapia (Oreochromis sp.). Asian Fish. Sci. 2002, 15, 167–176. [Google Scholar] [CrossRef]
- Liu, H.; Pan, L.; Shen, J.; Tan, B.; Dong, X.; Yang, Q.; Chi, S.; Zhang, S. Effects of carbohydrase supplementation on growth performance, intestinal digestive enzymes and Flora, glucose metabolism enzymes, and glut2 gene expression of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) fed different CHO/L ratio diets. Metabolites 2023, 13, 98. [Google Scholar] [CrossRef]
- Govoni, J.J.; Boehlert, G.W.; Watanabe, Y. The physiology of digestion in fish larvae. Environ. Biol. Fishes 1986, 16, 59–77. [Google Scholar] [CrossRef]
- Hidalgo, M.C.; Urea, E.; Sanz, A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 1999, 170, 267–283. [Google Scholar] [CrossRef]
- Li, X.Q.; Chai, X.Q.; Liu, D.Y.; Kabir Chowdhury, M.A.; Leng, X.J. Effects of temperature and feed processing on protease activity and dietary protease on growths of white shrimp, Litopenaeus vannamei, and tilapia, Oreochromis niloticus × O. aureus. Aquac. Nutr. 2016, 22, 1283–1292. [Google Scholar] [CrossRef]
- Mohapatra, M.; Sahu, N.P.; Chaudhari, A. Utilization of gelatinized carbohydrate in diets of Labeo rohita fry. Aquac. Nutr. 2003, 9, 189–196. [Google Scholar] [CrossRef]
- Ali, M.Z.; Jauncey, K. Optimal dietary carbohydrate to lipid ratio in African catfish Clarias gariepinus (Burchell 1822). Aquac. Int. 2004, 12, 169–180. [Google Scholar] [CrossRef]
- Jiang, T.T.; Feng, L.; Liu, Y.; Jiang, W.D.; Jiang, J.; Li, S.H.; Tang, L.; Kuang, S.Y.; Zhou, X.Q. Effects of exogenous xylanase supplementation in plant protein-enriched diets on growth performance, intestinal enzyme activities and microflora of juvenile Jian carp (Cyprinus carpio var. J ian). Aquac. Nutr. 2014, 20, 632–645. [Google Scholar] [CrossRef]
- Magalhães, R.; Lopes, T.; Martins, N.; Díaz-Rosales, P.; Couto, A.; Pousão-Ferreira, P.; Oliva-Teles, A.; Peres, H. Carbohydrases supplementation increased nutrient utilization in white seabream (Diplodus sargus) juveniles fed high soybean meal diets. Aquaculture 2016, 463, 43–50. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, X.; Liang, X.F.; Fang, L.; Li, J.; Guo, X.; Bai, X.; He, S. Enhancement of growth and intestinal flora in grass carp: The effect of exogenous cellulase. Aquaculture 2013, 416, 1–7. [Google Scholar] [CrossRef]
- Tian, J.; Lu, X.; Jiang, M.; Wu, F.; Liu, W.; Yu, L.; Wen, H. AMPK activation by dietary AICAR affects the growth performance and glucose and lipid metabolism in juvenile grass carp. Aquac. Nutr. 2020, 26, 3–14. [Google Scholar] [CrossRef]
- Gilannejad, N.; Martínez-Rodríguez, G.; Moyano, F.J.; Yúfera, M. Effects of Different Feeding Protocols on Daily Proteolitic Enzyme Activity in Gilthead Seabream Juveniles; CSIC: Madrid, Spain, 2018.
- Walton, M.J.; Cowey, C.B. Aspects of intermediary metabolism in salmonid fish. Comp. Biochem. Physiol. Part B Comp. Biochem. 1982, 73, 59–79. [Google Scholar] [CrossRef]
- Panserat, S.; Capilla, E.; Gutierrez, J.; Frappart, P.O.; Vachot, C.; Plagnes-Juan, E.; Aguirre, P.; Breque, J.; Kaushik, A.S. Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2001, 128, 275–283. [Google Scholar] [CrossRef]
- Furuichi, M.; Yone, Y. Availability of carbohydrate in nutrition of carp and red sea bream. Bull. Jpn. Sot. Sci. Fish. 1982, 48, 945–948. [Google Scholar] [CrossRef]
- Furuichi, M.; Yone, Y. Effect of insulin on blood sugar levels of fishes. Bull. Jpn. Sot. Sci. Fish. 1982, 48, 1289–1291. [Google Scholar] [CrossRef]
- Wilson, R.P.; Poe, W.E. Apparent inability of channel catfish to utilize dietary mono-and disaccharides as energy sources. J. Nutr. 1987, 117, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Dandin, E.; Üstündağ, Ü.V.; Ünal, İ.; Ateş-Kalkan, P.S.; Cansız, D.; Beler, M.; Ak, E.; Alturfan, A.A.; Emekli-Alturfan, E. Stevioside ameliorates hyperglycemia and glucose intolerance, in a diet-induced obese zebrafish model, through epigenetic, oxidative stress and inflammatory regulation. Obes. Res. Clin. Pract. 2022, 16, 23–29. [Google Scholar] [CrossRef]
- Capilla, E.; Médale, F.; Navarro, I.; Panserat, S.; Vachot, C.; Kaushik, S.; Gutiérrez, J. Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regul. Pept. 2003, 110, 123–132. [Google Scholar] [CrossRef]
- Borrebaek, B.; Waagbø, R.; Christophersen, B.; Tranulis, M.A.; Hemre, G.I. Adaptable hexokinase with low affinity for glucose in the liver of Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. Part B Comp. Biochem. 1993, 106, 833–836. [Google Scholar] [CrossRef]
- Gao, X.Q.; Fei, F.; Huo, H.H.; Huang, B.; Meng, X.S.; Zhang, T.; Liu, B.L. Impact of nitrite exposure on plasma biochemical parameters and immune-related responses in Takifugu rubripes. Aquat. Toxicol. 2020, 218, 105362. [Google Scholar] [CrossRef]
- Sheikh, Z.A.; Ahmed, I. Impact of environmental changes on plasma biochemistry and hematological parameters of Himalayan snow trout, Schizothorax plagiostomus. Comp. Clin. Pathol. 2019, 28, 793–804. [Google Scholar] [CrossRef]
- Hilton, J.W.; Atkinson, J.L. Response of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. Br. J. Nutr. 1982, 47, 597–607. [Google Scholar] [CrossRef]
- Yang, J.L.; Chen, H.C. Serum metabolic enzyme activities and hepatocyte ultrastructure of common carp after gallium exposure. Zool. Stud. 2003, 42, 455–461. [Google Scholar]
- Zhai, S.W.; Shi, Q.C.; Chen, X.H. Effects of dietary surfactin supplementation on growth performance, intestinal digestive enzymes activities and some serum biochemical parameters of tilapia (Oreochromis niloticus) fingerlings. Ital. J. Anim. Sci. 2016, 15, 318–324. [Google Scholar] [CrossRef]
- Amin, K.A.; Hashem, K.S. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): Antioxidant defense and role of alpha-tocopherol. BMC Vet. Res. 2012, 8, 45. [Google Scholar] [CrossRef] [PubMed]
Feed Composition | Diets 1 | Diets 2 | Diets 3 | Diets 4 | Diets 5 | Diets 6 | Diets 7 | Diets 8 | Diets 9 |
---|---|---|---|---|---|---|---|---|---|
C10A0 | C10A0.05 | C10A0.1 | C20A0 | C20A0.05 | C20A0.1 | C30A0 | C30A0.05 | C30A0.1 | |
Fish meal | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Acetes meal | 6.78 | 6.78 | 6.78 | 6.78 | 6.78 | 6.78 | 6.78 | 6.78 | 6.78 |
Fish protein hydrolysate | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Starch | 10 | 10 | 10 | 20 | 20 | 20 | 30 | 30 | 30 |
Fish oil | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Soybean oil | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Vit and Min mix 1,2 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 |
Vit C | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Tryptophan | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
CMC | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
BHT | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Cr2O3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Cellulose | 20.1 | 20.05 | 20 | 10.1 | 10.05 | 10 | 0.1 | 0.05 | 0 |
Amylase 3 | 0 | 0.05 | 0.1 | 0 | 0.05 | 0.1 | 0 | 0.05 | 0.1 |
100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |
Proximate composition 4 (% dry matter) | |||||||||
Crude Protein | 42.18 | 41.94 | 42.69 | 42.31 | 42.64 | 42.21 | 42.02 | 41.96 | 42.64 |
Crude Lipid | 7.16 | 7.16 | 7.16 | 7.33 | 7.40 | 7.33 | 7.13 | 7.16 | 7.16 |
Crude Fiber | 6.65 | 6.43 | 5.30 | 6.73 | 6.30 | 5.36 | 4.84 | 4.75 | 4.77 |
Ash | 14.50 | 14.66 | 15.00 | 14.66 | 14.89 | 15.16 | 15.33 | 15.33 | 15.30 |
Gross Energy (MJ/Kg) | 17.102 | 17.172 | 17.242 | 17.032 | 16.696 | 16.562 | 16.570 | 16.581 | 16.608 |
Treatments | 1 Final Wt. (g) | 2 WG (%) | 3 SGR (%/Day) | 4 FCR | 5 PER |
---|---|---|---|---|---|
C10A0 | 27.99 ab ± 1.56 | 95.13 a ± 10.5 | 0.41 ab ± 0.03 | 2.55 e ± 0.22 | 0.95 a ± 0.09 |
C10A0.05 | 31.06 bc ± 1.68 | 116.79 ab ± 12.2 | 0.48 bc ± 0.03 | 1.88 cd ± 0.13 | 1.28 bc ± 0.09 |
C10A0.1 | 34.77 de ± 0.77 | 142.72 cd ± 6.0 | 0.55 de ± 0.01 | 1.78 bc ± 0.09 | 1.34 bc ± 0.07 |
C20A0 | 39.86 f ± 0.83 | 178.50 e ± 5.7 | 0.64 f ± 0.01 | 1.40 a ± 0.11 | 1.72 e ± 0.13 |
C20A0.05 | 35.04 de ± 1.05 | 144.24 cd ± 7.8 | 0.55 de ± 0.02 | 1.61 abc ± 0.04 | 1.48 cde ± 0.04 |
C20A0.1 | 37.30 ef ± 1.10 | 160.41 de ± 7.6 | 0.59 ef ± 0.02 | 1.42 ab ± 0.03 | 1.67 de ± 0.04 |
C30A0 | 27.34 a ± 0.33 | 91.28 a ± 2.2 | 0.40 a ± 0.01 | 2.21 de ± 0.02 | 1.08 ab ± 0.01 |
C30A0.05 | 32.87 cd ± 1.17 | 128.43 bc ± 8.2 | 0.51 cd ± 0.02 | 1.66 abc ± 0.06 | 1.44 cd ± 0.05 |
C30A0.1 | 36.32 def ± 1.36 | 154.24 cde ± 9.5 | 0.58 def ± 0.02 | 1.57 abc ± 0.18 | 1.56 cde ± 0.16 |
Starch | |||||
10 | 31.27 a | 118.21 a | 0.48 a | 2.06 c | 1.19 a |
20 | 37.40 b | 161.05 b | 0.59 b | 1.47 a | 1.62 c |
30 | 32.17 a | 124.64 a | 0.49 a | 1.81 b | 1.35 b |
Amylase | |||||
0 | 31.73 a | 121.63 a | 0.48 a | 2.05 c | 1.24 a |
0.05 | 32.99 a | 129.81 a | 0.51 a | 1.71 b | 1.40 b |
0.1 | 36.13 b | 152.46 b | 0.57 b | 1.59 a | 1.52 b |
2-way ANOVA p-value | |||||
Starch | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Amylase | <0.001 | <0.001 | <0.001 | <0.001 | 0.004 |
Starch × Amylase | <0.001 | <0.001 | <0.001 | 0.006 | 0.011 |
Treatments | Moisture | Crude Protein | Crude Lipid | Total Ash |
---|---|---|---|---|
C10A0 | 72.13 ± 2.17 | 17.54 ± 0.06 | 3.61 ± 0.03 | 4.15 ± 0.36 |
C10A0.05 | 72.47 ± 2.78 | 17.48 ± 0.11 | 3.69 ± 0.03 | 4.32 ± 0.26 |
C10A0.1 | 72.27 ± 2.77 | 17.86 ± 0.03 | 3.58 ± 0.03 | 4.28 ± 0.34 |
C20A0 | 72.40 ± 2.93 | 17.67 ± 0.13 | 3.64 ± 0.04 | 4.20 ± 0.54 |
C20A0.05 | 72.47 ± 4.24 | 17.67 ± 0.10 | 3.60 ± 0.11 | 4.28 ± 0.33 |
C20A0.1 | 72.53 ± 1.58 | 17.66 ± 0.13 | 3.72 ± 0.05 | 4.20 ± 0.18 |
C30A0 | 72.33 ± 3.20 | 17.63 ± 0.05 | 3.47 ± 0.04 | 4.20 ± 0.28 |
C30A0.05 | 72.47 ± 2.34 | 17.65 ± 0.10 | 3.60 ± 0.04 | 4.22 ± 0.02 |
C30A0.1 | 72.67 ± 5.88 | 17.65 ± 0.10 | 3.54 ± 0.06 | 4.23 ± 0.14 |
Starch | ||||
10 | 72.28 | 17.62 | 3.62 ab | 4.24 |
20 | 72.46 | 17.67 | 3.65 b | 4.22 |
30 | 72.48 | 17.64 | 3.53 a | 4.21 |
Amylase | ||||
0 | 72.28 | 17.61 | 3.57 | 4.18 |
0.05 | 72.46 | 17.60 | 3.62 | 4.27 |
0.1 | 72.48 | 17.72 | 3.61 | 4.23 |
2 Way ANOVA p-value | ||||
Starch | 0.997 | 0.861 | 0.042 | 0.991 |
Amylase | 0.997 | 0.247 | 0.469 | 0.934 |
Starch × Amylase | 1.000 | 0.223 | 0.246 | 0.999 |
Treatments | Dry Matter (%) | Crude Protein (%) | Crude Lipid (%) | Carbohydrates (%) |
---|---|---|---|---|
C10A0 | 57.97 bc ± 0.04 | 88.24 ± 0.36 | 84.59 ± 0.07 | 81.01 c ± 0.31 |
C10A0.05 | 59.77 d ± 0.05 | 87.76 ± 0.11 | 85.13 ± 0.09 | 83.67 d ± 0.15 |
C10A0.1 | 61.65 ef ± 0.14 | 87.73 ± 0.41 | 84.95 ± 0.09 | 85.76 e ± 0.14 |
C20A0 | 57.45 b ± 0.56 | 87.67 ± 0.07 | 85.23 ± 0.06 | 79.54 b ± 0.28 |
C20A0.05 | 61.13 ef ± 0.07 | 87.82 ± 0.13 | 85.09 ± 0.09 | 83.78 d ± 0.11 |
C20A0.1 | 61.73 f ± 0.09 | 88.06 ± 0.09 | 85.14 ± 0.16 | 86.47 e ± 0.26 |
C30A0 | 55.80 a ± 0.18 | 87.69 ± 0.14 | 85.33 ± 0.11 | 77.16 a ± 0.49 |
C30A0.05 | 58.29 c ± 0.27 | 87.87 ± 0.14 | 85.15 ± 0.18 | 79.50 b ± 0.17 |
C30A0.1 | 61.01 e ± 0.07 | 87.96 ± 0.20 | 85.19 ± 0.25 | 80.88 c ± 0.14 |
Starch | ||||
10 | 59.79 b | 87.91 | 84.88 a | 83.48 b |
20 | 60.10 b | 87.84 | 85.15 b | 83.26 b |
30 | 58.36 a | 87.84 | 85.22 b | 79.17 a |
Amylase | ||||
0 | 57.07 a | 87.86 | 85.05 | 79.23 a |
0.05 | 59.73 b | 87.81 | 85.12 | 82.32 b |
0.1 | 61.46 c | 87.91 | 85.09 | 84.36 c |
2 Way ANOVA p-value | ||||
Starch | <0.001 | 0.909 | 0.017 | <0.001 |
Amylase | <0.001 | 0.851 | 0.806 | <0.001 |
Starch × Amylase | <0.001 | 0.271 | 0.085 | <0.001 |
Diet | Protease (U/mg Protein) | Lipase (U/mg Protein) | Amylase (U/mg Protein) |
---|---|---|---|
C10A0 | 1.74 ± 0.01 | 1.83 a ± 0.09 | 0.44 ab ± 0.11 |
C10A0.05 | 1.71 ± 0.04 | 1.35 abc ± 0.08 | 0.48 b ± 0.09 |
C10A0.1 | 1.70 ± 0.03 | 1.03 a ± 0.04 | 0.54 c ± 0.04 |
C20A0 | 1.72 ± 0.03 | 1.25 ab ± 0.12 | 0.43 a ± 0.02 |
C20A0.05 | 1.74 ± 0.03 | 1.15 ab ± 0.18 | 0.53 c ± 0.01 |
C20A0.1 | 1.73 ± 0.05 | 1.28 ab ± 0.06 | 0.58 d ± 0.07 |
C30A0 | 1.71 ± 0.06 | 0.97 a ± 0.07 | 0.42 a ± 0.12 |
C30A0.05 | 1.69 ± 0.03 | 1.43 abc ± 0.06 | 0.46 ab ± 0.04 |
C30A0.1 | 1.71 ± 0.05 | 1.60 bc ± 0.16 | 0.52 c ± 0.01 |
Starch | |||
10 | 1.71 | 1.40 | 0.48 a |
20 | 1.72 | 1.22 | 0.51 b |
30 | 1.70 | 1.33 | 0.46 a |
Amylase | |||
0 | 1.72 | 1.35 | 0.43 a |
0.05 | 1.71 | 1.31 | 0.48 b |
0.1 | 1.71 | 1.30 | 0.54 c |
2 Way ANOVA p-value | |||
Starch | 0.715 | 0.434 | <0.000 |
Amylase | 0.939 | 0.928 | <0.000 |
Starch × Amylase | 0.953 | 0.007 | 0.092 |
Diet | Hexokinase (Milli Units/min/mg Protein) | AST (Serum) (U/L) | ALT (Serum) (U/L) |
---|---|---|---|
C10A0 | 0.47 ± 0.01 | 29.96 ± 0.01 | 1.69 c ± 0.01 |
C10A0.05 | 0.50 ± 0.03 | 29.85 ± 0.01 | 1.65 b ± 0.02 |
C10A0.1 | 0.53 ± 0.11 | 29.84 ± 0.02 | 1.62 b ± 0.01 |
C20A0 | 0.48 ± 0.04 | 29.97 ± 0.01 | 1.72 c ± 0.01 |
C20A0.05 | 0.50 ± 0.01 | 29.87 ± 0.04 | 1.63 b ± 0.03 |
C20A0.1 | 0.52 ± 0.02 | 29.85 ± 0.01 | 1.55 a ± 0.02 |
C30A0 | 0.48 ± 0.13 | 30.08 ± 0.03 | 1.77 d ± 0.01 |
C30A0.05 | 0.49 ± 0.09 | 30.01 ± 0.02 | 1.70 c ± 0.01 |
C30A0.1 | 0.52 ± 0.02 | 30.00 ± 0.01 | 1.62 b ± 0.02 |
Starch | |||
10 | 0.50 | 29.88 a | 1.65 a |
20 | 0.50 | 29.89 a | 1.63 a |
30 | 0.49 | 30.02 b | 1.69 b |
Amylase | |||
0 | 0.47 a | 30.00 b | 1.72 c |
0.05 | 0.50 b | 29.90 a | 1.65 b |
0.1 | 0.52 c | 29.89 a | 1.59 a |
2 Way ANOVA p-value | |||
Starch | 0.869 | <0.001 | <0.001 |
Amylase | <0.001 | <0.001 | <0.001 |
Starch × Amylase | 0.972 | 0.380 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriranjani, K.; Ranjan, A.; Thangarani, A.J.; Binesh, A.; Kavimugaraja, M.; Balasundari, S.; Felix, N. Interactive Effects of Dietary Starch Levels and Exogenous α-Amylase on Growth, Digestibility, and Metabolic Responses in Channa striata Juveniles. Biology 2025, 14, 1237. https://doi.org/10.3390/biology14091237
Sriranjani K, Ranjan A, Thangarani AJ, Binesh A, Kavimugaraja M, Balasundari S, Felix N. Interactive Effects of Dietary Starch Levels and Exogenous α-Amylase on Growth, Digestibility, and Metabolic Responses in Channa striata Juveniles. Biology. 2025; 14(9):1237. https://doi.org/10.3390/biology14091237
Chicago/Turabian StyleSriranjani, Kaliyaperumal, Amit Ranjan, Albin Jemila Thangarani, Ambika Binesh, Mohamood Kavimugaraja, Subbiah Balasundari, and Nathan Felix. 2025. "Interactive Effects of Dietary Starch Levels and Exogenous α-Amylase on Growth, Digestibility, and Metabolic Responses in Channa striata Juveniles" Biology 14, no. 9: 1237. https://doi.org/10.3390/biology14091237
APA StyleSriranjani, K., Ranjan, A., Thangarani, A. J., Binesh, A., Kavimugaraja, M., Balasundari, S., & Felix, N. (2025). Interactive Effects of Dietary Starch Levels and Exogenous α-Amylase on Growth, Digestibility, and Metabolic Responses in Channa striata Juveniles. Biology, 14(9), 1237. https://doi.org/10.3390/biology14091237