Integrated Multi-Omics Reveal the Genetic and Metabolic Blueprint for Corn Straw Degradation in the White-Rot Fungus Irpex lacteus J2
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain and Culture Conditions
2.2. Genome Extraction, Sequencing, and Assembly
2.3. Gene Function Analysis
2.4. Comparative Genomics Analysis
2.5. Metabolomic Profiling of I. lacteus J2 During Corn Straw Bioconversion
2.6. Ultra-High-Performance Liquid Chromatography—Tandem Mass Spectrometry (UHPLC-MS/MS) Analysis of Metabolites Produced by I. lacteus J2 from Corn Straw
2.7. Data Processing and Metabolite Identification
2.8. Data Analysis
3. Results
3.1. Genome Sequence Assembly and Annotation
3.2. Comparative Genomics Between I. lacteus J2 and Irplac1
3.3. Metabolomic Analysis of I. lacteus J2 During Corn Straw Degradation
3.4. KEGG Pathway and LIPID MAPS Enrichment Analysis
3.5. Functional Analysis of Differential Metabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NGS | Next-generation high-throughput sequencing |
SMRT | Single-molecule real time |
CCTCC | China Center for Type Culture Collection |
PDA | potato dextrose agar |
DNBs | DNA nanoballs |
cPAS | Combinatorial probe-anchor synthesis |
CCS | Circular Consensus Sequencing |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
COG | Clusters of Orthologous Groups |
NR | Non-Redundant Protein Database database |
TCDB | Transporter Classification Database |
CAZY | Carbohydrate-Active enZYmes |
UHPLC-MS/MS | Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry |
CV | Coefficient of variation |
PLS-DA | Partial least squares discriminant analysis |
PCA | Principal component analysis |
tRNAs | Transfer RNAs |
rRNAs | ribosomal RNAs |
snRNAs | small nuclear RNAs |
miRNAs | microRNAs |
ZWMs | Zero-Mode Waveguide stands |
XCMS | eXtracted Chromatographic Mass Spectrometry |
LC-MS/MS | Liquid Chromatography—Tandem Mass Spectrometry |
References
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- G, G.; S, K.; R, Y.K.; Bhatia, S.K.; S, A.K.; M, R.; Kumar, G.; Pugazhendhi, A.; Chi, N.T.L.; J, R.B. Valorization of agricultural residues: Different biorefinery routes. J. Environ. Chem. Eng. 2021, 9, 105435. [Google Scholar] [CrossRef]
- Velvizhi, G.; Goswami, C.; Shetti, N.P.; Ahmad, E.; Kishore Pant, K.; Aminabhavi, T.M. Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint. Fuel 2022, 313, 122678. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Sánchez-Corzo, L.D.; Álvarez-Gutiérrez, P.E.; Meza-Gordillo, R.; Villalobos-Maldonado, J.J.; Enciso-Pinto, S.; Enciso-Sáenz, S. Lignocellulolytic Enzyme Production from Wood Rot Fungi Collected in Chiapas, Mexico, and Their Growth on Lignocellulosic Material. J. Fungi 2021, 7, 450. [Google Scholar] [CrossRef]
- Luo, H.Z.; Jiang, H.; Huang, X.S.; Jia, A.Q. New Sesquiterpenoids From Plant-Associated Irpex lacteus. Front. Chem. 2022, 10, 905108. [Google Scholar] [CrossRef]
- Qin, X.; Su, X.; Luo, H.; Ma, R.; Yao, B.; Ma, F. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. Biotechnol. Biofuels 2018, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Niu, D.; Zhang, S.; Li, C.; Yin, D.; Zhi, J.; Zhang, L.; Jiang, X.; Ren, J. Enhanced delignification and production of bioactive compounds in wheat straw by optimizing sterilization methods for Irpex lacteus fermentation. Food Chem. 2024, 435, 137570. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.; Zhang, M.; Liang, C.; Li, W.; Liu, C.; Ye, Y. Genome Sequencing and Metabolic Potential Analysis of Irpex lacteus. J. Fungi 2024, 10, 846. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, L.; Xu, M.; Feng, Z.; Sun, X.; Lu, J.; Xu, Y.; Du, P.; Wang, T.; Hu, R.; et al. The ChinaMAP analytics of deep whole genome sequences in 10,588 individuals. Cell Res. 2020, 30, 717–731. [Google Scholar] [CrossRef]
- Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.E.; Peluso, P.; Babayan, P.; Yeadon, P.J.; Yu, C.; Fisher, W.W.; Chin, C.S.; Rapicavoli, N.A.; Rank, D.R.; Li, J.; et al. Long-read, whole-genome shotgun sequence data for five model organisms. Sci. Data 2014, 1, 140045. [Google Scholar] [CrossRef]
- Faino, L.; Seidl, M.F.; Datema, E.; van den Berg, G.C.; Janssen, A.; Wittenberg, A.H.; Thomma, B.P. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome. mBio 2015, 6, e00936-15. [Google Scholar] [CrossRef]
- Sit, C.S.; Ruzzini, A.C.; Van Arnam, E.B.; Ramadhar, T.R.; Currie, C.R.; Clardy, J. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants. Proc. Natl. Acad. Sci. USA 2015, 112, 13150–13154. [Google Scholar] [CrossRef]
- Tsuji, M.; Kudoh, S.; Hoshino, T. Draft Genome Sequence of Cryophilic Basidiomycetous Yeast Mrakia blollopis SK-4, Isolated from an Algal Mat of Naga-ike Lake in the Skarvsnes Ice-Free Area, East Antarctica. Genome Announc. 2015, 3, e01474-14. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- Galperin, M.Y.; Wolf, Y.I.; Makarova, K.S.; Vera Alvarez, R.; Landsman, D.; Koonin, E.V. COG database update: Focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2021, 49, D274–D281. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jaroszewski, L.; Godzik, A. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 2002, 18, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H., Jr.; Reddy, V.S.; Tsu, B.V.; Ahmed, M.S.; Li, C.; Moreno-Hagelsieb, G. The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res. 2016, 44, D372–D379. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res. 2015, 43, D204–D212. [Google Scholar] [CrossRef] [PubMed]
- Drula, E.; Garron, M.L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef]
- Wen, B.; Mei, Z.; Zeng, C.; Liu, S. metaX: A flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 2017, 18, 183. [Google Scholar] [CrossRef]
- Zhuo, R.; Fan, F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Sci. Total Environ. 2021, 778, 146132. [Google Scholar] [CrossRef]
- Liaud, N.; Giniés, C.; Navarro, D.; Fabre, N.; Crapart, S.; Gimbert, I.H.; Levasseur, A.; Raouche, S.; Sigoillot, J.-C. Exploring fungal biodiversity: Organic acid production by 66 strains of filamentous fungi. Fungal Biol. Biotechnol. 2014, 1, 1. [Google Scholar] [CrossRef]
- Kimura, T.; Jennings, W.; Epand, R.M. Roles of specific lipid species in the cell and their molecular mechanism. Prog. Lipid Res. 2016, 62, 75–92. [Google Scholar] [CrossRef]
Feature | Value |
---|---|
Valid ZWM number | 127,431 |
Subreads number | 1,546,034 |
Subreads total bases (bp) | 15,016,142,153 |
Subreads mean length (bp) | 9712 |
Subreads N50 (bp) | 10,169 |
Subreads N90 (bp) | 6630 |
Subreads max length (bp) | 245,281 |
Subreads min length (bp) | 2000 |
Number of contigs | 114 |
Total length (bp) | 46,386,314 |
Max length (bp) | 4,106,595 |
Min length (bp) | 9353 |
N50 (bp) | 2,420,162 |
N90 (bp) | 297,826 |
GC Content (%) | 50.22 |
CDS number | 14,647 |
tRNAs | 295 |
rRNAs | 33 |
snRNAs | 45 |
miRNAs | 98 |
Substrate | Gene ID | Function |
---|---|---|
Cellulose | GME1266_g | Endoglucanase |
GME11700_g | Exoglucanase/Cellobiohydrolase | |
GME12463_g | β-glucosidase | |
Hemicellulose | GME2307_g | Xylanase |
GME5730_g | β-xylosidase | |
GME10460_g | Mannanase | |
GME10049_g | β-mannosidase | |
Lignin | GME3599_g | Laccase |
GME7340_g | Lignin peroxidase | |
GME12823_g | Manganese peroxidase | |
GME12823_g | Versatile peroxidase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, J.; Zhao, S.; Hua, T.; Fan, J.; Yan, Z.; Chen, M.; Zhao, F.; Yu, J.; Shang, Q. Integrated Multi-Omics Reveal the Genetic and Metabolic Blueprint for Corn Straw Degradation in the White-Rot Fungus Irpex lacteus J2. Biology 2025, 14, 1339. https://doi.org/10.3390/biology14101339
Pang J, Zhao S, Hua T, Fan J, Yan Z, Chen M, Zhao F, Yu J, Shang Q. Integrated Multi-Omics Reveal the Genetic and Metabolic Blueprint for Corn Straw Degradation in the White-Rot Fungus Irpex lacteus J2. Biology. 2025; 14(10):1339. https://doi.org/10.3390/biology14101339
Chicago/Turabian StylePang, Jian, Shizhen Zhao, Tao Hua, Jiahui Fan, Zhe Yan, Mingyuan Chen, Fan Zhao, Jingshi Yu, and Qiaoxia Shang. 2025. "Integrated Multi-Omics Reveal the Genetic and Metabolic Blueprint for Corn Straw Degradation in the White-Rot Fungus Irpex lacteus J2" Biology 14, no. 10: 1339. https://doi.org/10.3390/biology14101339
APA StylePang, J., Zhao, S., Hua, T., Fan, J., Yan, Z., Chen, M., Zhao, F., Yu, J., & Shang, Q. (2025). Integrated Multi-Omics Reveal the Genetic and Metabolic Blueprint for Corn Straw Degradation in the White-Rot Fungus Irpex lacteus J2. Biology, 14(10), 1339. https://doi.org/10.3390/biology14101339