Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = capacitive pulsed power supply

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5997 KiB  
Article
Novel 3D Capacitors: Integrating Porous Nickel-Structured and Through-Glass-Via-Fabricated Capacitors
by Baichuan Zhang, Libin Gao, Hongwei Chen and Jihua Zhang
Nanomaterials 2025, 15(11), 819; https://doi.org/10.3390/nano15110819 - 28 May 2025
Viewed by 472
Abstract
In this research work, two distinct types of three-dimensional (3D) capacitors were successfully fabricated, each with its own unique features and advantages. The first type of capacitor is centered around a 3D nanoporous structure. This structure is formed on a nickel substrate through [...] Read more.
In this research work, two distinct types of three-dimensional (3D) capacitors were successfully fabricated, each with its own unique features and advantages. The first type of capacitor is centered around a 3D nanoporous structure. This structure is formed on a nickel substrate through anodic oxidation. After undergoing high-temperature thermal oxidation, a monolithic Ni-NiO-Pt metal–insulator–metal (MIM) capacitor with a nanoporous dielectric architecture is achieved. Structurally, this innovative design brings about several remarkable benefits. Due to the nanoporous structure, it has a significantly increased surface area, which can effectively store more charges. As a result, it exhibits an equivalent capacitance density of 69.95 nF/cm2, which is approximately 18 times higher than that of its planar, non-porous counterpart. This high capacitance density enables it to store more electrical energy in a given volume, making it highly suitable for applications where miniaturization and high energy storage in a small space is crucial. The second type of capacitor makes use of Through-Glass Via (TGV) technology. This technology is employed to create an interdigitated blind-via array within a glass substrate, attaining an impressively high aspect ratio of 22.5:1 (with a via diameter of 20 μm and a depth of 450 μm). By integrating atomic layer deposition (ALD), a conformal interdigital electrode structure is realized. Glass, as a key material in this capacitor, has outstanding insulating properties. This characteristic endows the capacitor with a high breakdown field strength exceeding 8.2 MV/cm, corresponding to a withstand voltage of 5000 V. High breakdown field strength and withstand voltage mean that the capacitor can handle high-voltage applications without breaking down easily, which is essential for power-intensive systems like high-voltage power supplies and some high-power pulse-generating equipment. Moreover, due to the low-loss property of glass, the capacitor can achieve an energy conversion efficiency of up to 95%. Such a high energy conversion efficiency ensures that less energy is wasted during the charge–discharge process, which is highly beneficial for energy-saving applications and systems that require high-efficiency energy utilization. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

21 pages, 10452 KiB  
Article
Influence of Selected Parameters of Medium-Voltage Network on the Value of Voltage Asymmetry Factors
by Grzegorz Hołdyński and Zbigniew Skibko
Appl. Sci. 2025, 15(3), 1560; https://doi.org/10.3390/app15031560 - 4 Feb 2025
Cited by 1 | Viewed by 642
Abstract
The correct and safe operation of electricity grids is a fundamental consideration in guaranteeing the supply of electricity with the correct parameters to consumers. One of the key aspects is how neutral point earthing works. In grids with the neutral point grounded by [...] Read more.
The correct and safe operation of electricity grids is a fundamental consideration in guaranteeing the supply of electricity with the correct parameters to consumers. One of the key aspects is how neutral point earthing works. In grids with the neutral point grounded by a Petersen coil, it is very important to properly tune its inductance in relation to the natural capacitance of the power grid. This is important both for the proper operation of earth fault protection and from the point of view of power quality, especially voltage asymmetry. Asymmetry of phase voltages in MV networks has a very negative impact on the operation of the railway network supplied by 12-pulse rectifiers. In this paper, the authors present the influence of the detuning factor of the earth fault compensation and the length and cross-section of the line on the value of voltage asymmetry factors. As the analyses carried out have shown, significant (up to 90%) values of the zero-sequence asymmetry factor can occur at low detuning, which can contribute not only to a decrease in the quality of the transmitted electricity but also to the unnecessary activation of protections. The values of the negative-sequence voltage asymmetry factor are much smaller (do not exceed 0.5% in the analysed cases) and do not depend on the network detuning factor. As the distance from the substation increases, an increase in the values of both types of asymmetry factors is also observed, with the relationship already negligibly small at considerable distances (above 20 km). Full article
Show Figures

Figure 1

18 pages, 4621 KiB  
Article
Development of a Miniaturized 2-Joule Pulsed Plasma Source Based on Plasma Focus Technology: Applications in Extreme Condition Materials and Nanosatellite Orientation
by Leopoldo Soto, Cristian Pavez, José Pedreros, Jalaj Jain, José Moreno, Patricio San Martín, Fermín Castillo, Daniel Zanelli and Luis Altamirano
Micromachines 2024, 15(9), 1123; https://doi.org/10.3390/mi15091123 - 1 Sep 2024
Viewed by 2356
Abstract
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, [...] Read more.
Plasma focus devices represent a class of hot and dense plasma sources that serve a dual role in fundamental plasma research and practical applications. These devices allow the observation of various phenomena, including the z-pinch effect, nuclear fusion reactions, plasma filaments, bursts, shocks, jets, X-rays, neutron pulses, ions, and electron beams. In recent years, considerable efforts have been directed toward miniaturizing plasma focus devices, driven by the pursuit of both basic studies and technological advancements. In this paper, we present the design and construction of a compact, portable pulsed plasma source based on plasma focus technology, operating at the ~2–4 Joule energy range for versatile applications (PF-2J: 120 nF capacitance, 6–9 kV charging voltage, 40 nH inductance, 2.16–4.86 J stored energy, and 10–15 kA maximum current at short circuit). The components of the device, including capacitors, spark gaps, discharge chambers, and power supplies, are transportable within hand luggage. The electrical characteristics of the discharge were thoroughly characterized using voltage and current derivative monitoring techniques. A peak current of 15 kiloamperes was achieved within 110 nanoseconds in a short-circuit configuration at a 9 kV charging voltage. Plasma dynamics were captured through optical refractive diagnostics employing a pulsed Nd-YAG laser with a 170-picosecond pulse duration. Clear evidence of the z-pinch effect was observed during discharges in a deuterium atmosphere at 4 millibars and 6 kilovolts. The measured pinch length and radius were approximately 0.8 mm and less than 100 μm, respectively. Additionally, we explore the potential applications of this compact pulsed plasma source. These include its use as a plasma shock irradiation device for analyzing materials intended for the first wall of nuclear fusion reactors, its capability in material film deposition, and its utility as an educational tool in experimental plasma physics. We also show its potential as a pulsed plasma thruster for nanosatellites, showcasing the advantages of miniaturized plasma focus technology. Full article
(This article belongs to the Special Issue Microreactors and Their Applications)
Show Figures

Figure 1

13 pages, 7954 KiB  
Article
Development of a High-Voltage Pulsed Electric Field Sterilization Power Supply Using a New Topology Circuit
by Bo Zhu, He Su, Zhihan Fang, Guoyan Wu and Xinlao Wei
Energies 2023, 16(6), 2741; https://doi.org/10.3390/en16062741 - 15 Mar 2023
Cited by 8 | Viewed by 2701
Abstract
Traditional thermal sterilization technology is easy to implement and safe, but it will destroy food nutrition and change food taste. Therefore, people began to turn their attention to non-thermal sterilization. High-voltage pulsed electric field sterilization technology is one of them; it has attracted [...] Read more.
Traditional thermal sterilization technology is easy to implement and safe, but it will destroy food nutrition and change food taste. Therefore, people began to turn their attention to non-thermal sterilization. High-voltage pulsed electric field sterilization technology is one of them; it has attracted much attention because of its high efficiency and little damage to food. Different types of loads will cause serious trailing of the pulse falling edge. In view of this situation, this paper proposes a new topology circuit that combines a solid-state switch with a half-bridge Marx generator. It can be used for high-voltage pulsed electric field sterilization. By improving the structure of the classical Marx circuit, the high-voltage pulse power supply of the new topology circuit has the characteristics of steep rising edge and short falling edge delay; does not require isolation inductance or isolation resistance, which solves the isolation problem between the DC charging power supply and the high-voltage terminal; and has a good voltage-clamping function and load adaptability. The working process of the topology circuit under resistive, capacitive and inductive loads and the voltage clamping effect when the solid-state switch does not work properly in the discharge process are analyzed in detail. The power supply is composed of an adjustable DC power supply, five-stage half-bridge Marx generator and control protection circuit. A field programmable gate array (FPGA) is used as the controller to generate control signals, and optical fiber isolation is used to provide control signals for the main loop. The power supply can output a high-voltage square wave pulse with a voltage amplitude of 10 kV, maximum pulse number of 1000 per second, maximum pulse width of 20 μs, pulse rise time of smaller than 300 ns and short pulse drop time, and the repeated voltage amplitude, frequency and pulse width are adjustable, which can meet the requirements of a high-voltage pulse sterilization experiment. Full article
(This article belongs to the Special Issue Advances in Pulsed Power Technologies)
Show Figures

Figure 1

18 pages, 3533 KiB  
Article
Efficient Dual Output Regulating Rectifier and Adiabatic Charge Pump for Biomedical Applications Employing Wireless Power Transfer
by Noora Almarri, Peter Langlois, Dai Jiang and Andreas Demosthenous
J. Low Power Electron. Appl. 2023, 13(1), 20; https://doi.org/10.3390/jlpea13010020 - 4 Mar 2023
Cited by 1 | Viewed by 3245
Abstract
A power management unit (PMU) is an essential block for diversified multi-functional low-power Internet of Things (IoT) and biomedical electronics. This paper includes a theoretical analysis of a high current, single-stage ac-dc, reconfigurable, dual output, regulating rectifier consisting of pulse width modulation (PWM) [...] Read more.
A power management unit (PMU) is an essential block for diversified multi-functional low-power Internet of Things (IoT) and biomedical electronics. This paper includes a theoretical analysis of a high current, single-stage ac-dc, reconfigurable, dual output, regulating rectifier consisting of pulse width modulation (PWM) and pulse frequency modulation (PFM). The regulating rectifier provides two independently regulated supply voltages of 1.8 V and 3.3 V from an input ac voltage. The PFM control feedback consists of feedback-driven regulation to adjust the driving frequency of the power transistors through adaptive buffers in the active rectifier. The PWM/PFM mode control provides a feedback loop to adjust the conduction duration accurately and minimize power losses. The design also includes an adiabatic charge pump (CP) to provide a higher voltage level. The adiabatic CP consists of latch-up and power-saving topologies to enhance its power efficiency. Simulation results show that the dual regulating rectifier has 94.3% voltage conversion efficiency with an ac input magnitude of 3.5 Vp. The power conversion efficiency of the regulated 3.3 V output voltage is 82.3%. The adiabatic CP has an overall voltage conversion efficiency (VCE) of 92.9% with a total on-chip capacitance of 60 pF. The circuit was designed using 180 nm CMOS technology. Full article
(This article belongs to the Special Issue Energy-Harvesting and Self-Powered Devices)
Show Figures

Figure 1

18 pages, 28296 KiB  
Article
Improved Current-Sharing Imbalance Control Model Based on Magnetic Ferrite Inductance and a Gate Drive Circuit
by Haitao Tian, Yuhong Li, Qiang Zhang, Ningru Xiao, Jingjing Wang, Hongwei Liu and Yuqiang Li
Machines 2023, 11(2), 197; https://doi.org/10.3390/machines11020197 - 1 Feb 2023
Viewed by 1294
Abstract
The dynamic and static imbalance of parallel current sharing has held the concern of researchers in view of the variation in multiple parasitic parameters on high-frequency parallel switching mode power supply (SMPS). The joint simulations and suppression experiments on the parallel current-sharing imbalance [...] Read more.
The dynamic and static imbalance of parallel current sharing has held the concern of researchers in view of the variation in multiple parasitic parameters on high-frequency parallel switching mode power supply (SMPS). The joint simulations and suppression experiments on the parallel current-sharing imbalance of various parasitic parameters are investigated on the improved dual-pulse detection circuit platform to determine the method of detecting the parallel current-sharing imbalance ratio using the sum of the differential magnetic flux. An improved model of current-sharing imbalance control is presented consisting of magnetic ferrite inductance and a gate drive circuit. The main concerns are the suppression performance of drain, gate, and source parasitic inductance, gate–source capacitance, driving time and voltage, gate resistance, and delayed forward/reverse driving signals on the ratio of parallel current-sharing imbalance, respectively. The improved model effectively reduces the parallel current-sharing imbalance ratio by more than 5% and 2–4.2%, compared with using a gate drive circuit alone and using magnetic ferrite inductance solely. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

21 pages, 8009 KiB  
Article
Analysis of the Influence of System Parameters on Launch Performance of Electromagnetic Induction Coil Launcher
by Shaohua Guan, Xiaocun Guan, Baoqi Wu and Jingbin Shi
Energies 2022, 15(20), 7803; https://doi.org/10.3390/en15207803 - 21 Oct 2022
Cited by 9 | Viewed by 2789
Abstract
The influence of electromagnetic induction coil launcher (EICL) system parameters on the launch performance was analyzed, and a method for measuring the launch performance of an EICL system with a muzzle velocity and energy conversion efficiency was proposed. The EICL system mainly includes [...] Read more.
The influence of electromagnetic induction coil launcher (EICL) system parameters on the launch performance was analyzed, and a method for measuring the launch performance of an EICL system with a muzzle velocity and energy conversion efficiency was proposed. The EICL system mainly includes a pulse power supply and launcher. The parameters of the pulse power supply mainly include the discharge voltage and the capacitance value of the capacitor bank. The structural parameters of the launcher mainly include the bore size of the launcher, the air gap length between the armature and the drive coil, the length and width of the drive coil, and the trigger position of the armature. Change in single or multiple parameters in the launch system will influence the launch performance. The influence of single or multiple parameters on the launch performance was summarized, and the physical law as analyzed. The influence law of the EICL system parameters on the launch performance was obtained, which lays a theoretical foundation for the optimization design of EICL. Finally, experimental verification was carried out by a single-stage test platform. Full article
(This article belongs to the Topic Energy Storage and Conversion Systems)
Show Figures

Figure 1

17 pages, 4281 KiB  
Article
Nonthermal Plasma Multi-Reactor Scale-Up Using Pulse Capacitive Power Supplies
by Radu Burlica, Daniel-Eusebiu Cretu, Oana Beniuga and Dragos Astanei
Appl. Sci. 2022, 12(20), 10403; https://doi.org/10.3390/app122010403 - 15 Oct 2022
Cited by 2 | Viewed by 2117
Abstract
The scale up of nonthermal plasma (NTP) reactors requires the simultaneous operation in parallel of a large number of units supplied from the same power supply. The present paper aims to demonstrate the feasibility of parallel operation of multiple mini-NTP reactors. In order [...] Read more.
The scale up of nonthermal plasma (NTP) reactors requires the simultaneous operation in parallel of a large number of units supplied from the same power supply. The present paper aims to demonstrate the feasibility of parallel operation of multiple mini-NTP reactors. In order to demonstrate the parallel operation of a large number of NTP reactors, three different types of power supplies are considered. In addition to the most simple and common solution, which involves the use of individual, independent power supply for each reactor (an ignition coil driven by a pulse generator), two other configurations of supplies (capacitive AC and capacitive DC), simpler and less expensive, are tested. The capacitive pulsed power supplies allow the generation of HV pulses by an AC power supply (usually an AC transformer), as well as by a DC power supply using an R–C circuit. For the DC resistive–capacitive configuration, the frequency can be adjusted. For all configurations, the power of the discharge can be modified by changing the value of capacitors or resistors. The feasibility of the proposed systems was demonstrated by assessing the concentration of hydrogen peroxide induced in water after plasma treatment. The obtained results reveal that the proposed capacitive AC and DC power supplies allow a large number of plasma reactors to operate in parallel independently. Full article
Show Figures

Figure 1

14 pages, 3969 KiB  
Article
High-Voltage Power Supply for High Repetitive Rate Marx Generator with Quasi-Resonant Zero-Current Switching Transistor Control Algorithm
by Krzysztof Pachowicz
Energies 2022, 15(19), 6902; https://doi.org/10.3390/en15196902 - 21 Sep 2022
Cited by 1 | Viewed by 3101
Abstract
Due to having a number of advantages, Marx generators are still the most widely used devices for generating high-voltage pulses in many fields of science and technology. To ensure their proper operation, especially when the generation of many frequent, highly repetitive pulses is [...] Read more.
Due to having a number of advantages, Marx generators are still the most widely used devices for generating high-voltage pulses in many fields of science and technology. To ensure their proper operation, especially when the generation of many frequent, highly repetitive pulses is required, a highly efficient high-voltage power supply is needed. The paper describes a specially developed power supply (input voltage 48 V DC, output voltage up to 50 kV) based on the conventional Full Bridge topology with two high-frequency high-voltage transformers and a 6-stage voltage multiplier. In order to avoid many problems caused by low coupling between primary and secondary windings of the transformers and the large parasitic capacitances of the secondary windings, a special quasi-resonant zero-current switching transistor control algorithm with variable switching frequency (dependent on output load) was developed. In the described method, the energy is supplied to the transformer in short pulses, when a pair of diagonal transistors of the full-bridge converter were turned on. Then, the freewheeling state is maintained until all of the energy stored in the leakage inductance of the transformer has been transferred to the secondary side, which means that the current in the primary windings drops to zero. This approach reduces energy losses, electromagnetic disturbances and prevents current distortion in primary winding. Full article
(This article belongs to the Special Issue Design, Optimization and Applications of Power Converters)
Show Figures

Figure 1

12 pages, 3498 KiB  
Article
Utilization Optimization of Capacitive Pulsed Power Supply in Railgun
by Genrong Cao, Hongjun Xiang, Zhiming Qiao, Chunyan Liang, Xichao Yuan, Jin Wang and Bin Lei
Energies 2022, 15(14), 5051; https://doi.org/10.3390/en15145051 - 11 Jul 2022
Cited by 5 | Viewed by 2194
Abstract
The excitation pulse current used to drive the railgun needs to present very a high magnitude (hundreds of kA) flat-top with very low ripple. At present, the main method to obtain this current is to increase the number of the capacitive pulsed power [...] Read more.
The excitation pulse current used to drive the railgun needs to present very a high magnitude (hundreds of kA) flat-top with very low ripple. At present, the main method to obtain this current is to increase the number of the capacitive pulsed power supply (PPS) modules. However, low utilization and massive volume of the railgun system would occur with this method, hampering the application of railgun. Therefore, the utilization optimization technology of PPS is researched in this paper. In order to obtain highly stable flat-top current, the control strategy of the capacitive PPS is designed, and a new charging voltage configuration is proposed, which significantly decreases the use of the capacitive modules. Besides, a miniaturization transformation scheme of capacitive PPS is proposed based on the control strategy. The result shows that the flat-top current ripple has the biggest influence on the PPS utilization, and the smaller the flat-top current ripple, the lower the utilization. When the current with 200 kA magnitude and 0.75% flat-top current ripple is achieved, an 81.9% decrease of volume and a 428.7% utilization improvement are achieved through miniaturization transformation. Full article
Show Figures

Figure 1

27 pages, 9718 KiB  
Article
An 8.72 µW Low-Noise and Wide Bandwidth FEE Design for High-Throughput Pixel-Strip (PS) Sensors
by Folla Kamdem Jérôme, Wembe Tafo Evariste, Essimbi Zobo Bernard, Maria Liz Crespo, Andres Cicuttin, Mamun Bin Ibne Reaz and Mohammad Arif Sobhan Bhuiyan
Sensors 2021, 21(5), 1760; https://doi.org/10.3390/s21051760 - 4 Mar 2021
Cited by 6 | Viewed by 3096
Abstract
The front-end electronics (FEE) of the Compact Muon Solenoid (CMS) is needed very low power consumption and higher readout bandwidth to match the low power requirement of its Short Strip application-specific integrated circuits (ASIC) (SSA) and to handle a large number of pileup [...] Read more.
The front-end electronics (FEE) of the Compact Muon Solenoid (CMS) is needed very low power consumption and higher readout bandwidth to match the low power requirement of its Short Strip application-specific integrated circuits (ASIC) (SSA) and to handle a large number of pileup events in the High-Luminosity Large Hadron Collider (LHC). A low-noise, wide bandwidth, and ultra-low power FEE for the pixel-strip sensor of the CMS has been designed and simulated in a 0.35 µm Complementary Metal Oxide Semiconductor (CMOS) process. The design comprises a Charge Sensitive Amplifier (CSA) and a fast Capacitor-Resistor-Resistor-Capacitor (CR-RC) pulse shaper (PS). A compact structure of the CSA circuit has been analyzed and designed for high throughput purposes. Analytical calculations were performed to achieve at least 998 MHz gain bandwidth, and then overcome pileup issue in the High-Luminosity LHC. The spice simulations prove that the circuit can achieve 88 dB dc-gain while exhibiting up to 1 GHz gain-bandwidth product (GBP). The stability of the design was guaranteed with an 82-degree phase margin while 214 ns optimal shaping time was extracted for low-power purposes. The robustness of the design against radiations was performed and the amplitude resolution of the proposed front-end was controlled at 1.87% FWHM (full width half maximum). The circuit has been designed to handle up to 280 fC input charge pulses with 2 pF maximum sensor capacitance. In good agreement with the analytical calculations, simulations outcomes were validated by post-layout simulations results, which provided a baseline gain of 546.56 mV/MeV and 920.66 mV/MeV, respectively, for the CSA and the shaping module while the ENC (Equivalent Noise Charge) of the device was controlled at 37.6 e at 0 pF with a noise slope of 16.32 e/pF. Moreover, the proposed circuit dissipates very low power which is only 8.72 µW from a 3.3 V supply and the compact layout occupied just 0.0205 mm2 die area. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

11 pages, 5500 KiB  
Article
Effects of the Power Supply Mode and Loading Parameters on the Characteristics of Micro-Arc Oxidation Coatings on Magnesium Alloy
by Jian-tao Yao, Sheng Wang, Yong Zhou and Hui Dong
Metals 2020, 10(11), 1452; https://doi.org/10.3390/met10111452 - 30 Oct 2020
Cited by 21 | Viewed by 2785
Abstract
Micro-arc Oxidation (MAO) is a technology for non-ferrous metal surface treatment through growth ceramic coating in situ. To determine the influence of the power supply mode and the loading parameters on the film forming of magnesium alloy micro-arc oxidation processing, the different power [...] Read more.
Micro-arc Oxidation (MAO) is a technology for non-ferrous metal surface treatment through growth ceramic coating in situ. To determine the influence of the power supply mode and the loading parameters on the film forming of magnesium alloy micro-arc oxidation processing, the different power supply modes of pulsed direct current DC, pulsed bipolar current (BC) and the pulsed with a discharge loop current (DLC) was used with MAO technology on the AZ91D magnesium alloy. The power load parameters were optimized. The average energy consumption was calculated. Results showed that the role of the negative voltage in the bipolar pulse power supply is to restrain the large arc tendency. Under the pulse power supply with a discharge loop, the current and energy consumption decreases with the increase of the discharge resistance at the same pulse parameters. The big arc phenomenon can be effectively avoided and the impact of load capacitance could be effectively avoided by using the pulse power supply with a discharge loop. Moreover, the processing of the micro-arc oxidation is stable, the arc point is uniform, the surface of the film is smooth, the hole is uniform and the coating is dense, and the film efficiency is improved effectively. Full article
Show Figures

Figure 1

17 pages, 3242 KiB  
Article
Investigation of Reverse Recovery Current of High-Power Thyristor in Pulsed Power Supply
by Jiufu Wei, Zhenxiao Li and Baoming Li
Electronics 2020, 9(8), 1292; https://doi.org/10.3390/electronics9081292 - 12 Aug 2020
Cited by 5 | Viewed by 3987
Abstract
The instantaneous overvoltages from the load side can cause damages of high-power thyristors in conventional pulsed power supply topologies, especially in cases of numerous pulse-forming units that operate together with discharge time intervals. The instantaneous overvoltages from the load side, which leads to [...] Read more.
The instantaneous overvoltages from the load side can cause damages of high-power thyristors in conventional pulsed power supply topologies, especially in cases of numerous pulse-forming units that operate together with discharge time intervals. The instantaneous overvoltages from the load side, which leads to high reverse recovery currents in high-power thyristors, can be induced by load mutations in the electromagnetic launching field. This paper establishes circuit models of PPS topologies, and investigates effects of the initial voltage of the energy-storage capacitor, the discharge time intervals, and the load resistance on the reverse recovery currents in high-power thyristors. To overcome the shortcomings of conventional PPS topologies, an improved PPS topology is developed. The improved PPS topology applies coupling inductor and resistance-capacitance snubber techniques, which can absorb the surge energy from the load side and reduce the reverse recovery currents in high-power thyristors. The simulation technique has been applied to validate theoretical analysis and the proposed model. Full article
(This article belongs to the Special Issue Challenges and New Trends in Power Electronic Devices Reliability)
Show Figures

Figure 1

12 pages, 2617 KiB  
Article
Pulse-Current Sources for Plasma Accelerators
by Alexei Shurupov, Alexander Kozlov, Mikhail Shurupov, Valentina Zavalova, Anatoly Zhitlukhin, Vitalliy Bakhtin, Nikolai Umrikhin and Alexei Es’kov
Energies 2018, 11(11), 3057; https://doi.org/10.3390/en11113057 - 7 Nov 2018
Cited by 3 | Viewed by 3400
Abstract
The pulse source for plasma-accelerators supply operates under the conditions of nonlinear growth of load inductance, which complicates the matching of the source and the load. This article presents experimental studies of the use of both traditional pulse-energy sources based on capacitive storage [...] Read more.
The pulse source for plasma-accelerators supply operates under the conditions of nonlinear growth of load inductance, which complicates the matching of the source and the load. This article presents experimental studies of the use of both traditional pulse-energy sources based on capacitive storage and alternative ones based on explosive magnetic generators (EMG). It is shown that the EMG with the special device of the current-pulse formation more effectively matches with such a plasma load as the pulse plasma-accelerator (PPA). This device allows a wide range to manage the current-pulse formation in a variable load and, consequently, to optimize the operation of the power source for the specific plasma load. A mathematical model describing the principle of operation of this device in EMG on inductive load was developed. The key adjustable parameters are the current into the load, the residual inductance of the EMG, and the sample time of the specified inductance and the final current in the load. The device was successfully tested in experiments with the operation on both one and two accelerators connected in parallel. In the experiments, the optimal mode of device operation was found in which the total energy inputted to a pair of accelerators in one pulse reached 0.55 MJ, and the maximum current reached about 3.5 MA. A comparison with the results of experiments performed with capacitive sources of the same level of stored energy is given. The experiments confirmed not only the principal possibility of using EMG with a special device of current-pulse formation for operation with plasma loads in the MJ energy range but also showed the advantages of its application with specific types of plasma load. Full article
(This article belongs to the Special Issue Control and Nonlinear Dynamics on Energy Conversion Systems)
Show Figures

Figure 1

17 pages, 3931 KiB  
Article
Feature Extraction and Comprehension of Partial Discharge Characteristics in Transformer Oil from Rated AC Frequency to Very Low Frequency
by Zhongliu Zhou, Yuanxiang Zhou, Xin Huang, Yunxiao Zhang, Mingyuan Wang and Shaowei Guo
Energies 2018, 11(7), 1702; https://doi.org/10.3390/en11071702 - 1 Jul 2018
Cited by 2 | Viewed by 3054
Abstract
The reactive current can be reduced effectively by decreasing the frequency of the voltage in partial discharge (PD) test, especially for equipment with large capacitance. Thus, the cost and volume of the test power supply can be economized. To figure out the difference [...] Read more.
The reactive current can be reduced effectively by decreasing the frequency of the voltage in partial discharge (PD) test, especially for equipment with large capacitance. Thus, the cost and volume of the test power supply can be economized. To figure out the difference of PD characteristics in transformer oil between rated alternating-current (AC) frequency (50 Hz) and low frequency, tests are conducted from rated AC frequency to very low frequency (0.1 Hz) based on impulse current method. The results show that with the decrease of frequency, the inception voltage increases. The maximum and mean magnitude of discharge and pulse repetition rate first increase slightly, then decrease obviously. The main features of the variation of phase resolved PD (PRPD) patterns, discharge statistical patterns (phase distribution of maximum and mean discharge magnitude, pulse repetition rate qmaxφ, qmeanφ, nφ; and number distribution of discharge magnitude nq), and their characteristic parameters (skewness Sk+, Sk; kurtosis Ku+, Ku; asymmetry Asy; and correlation coefficient Cc) are depicted in detail, which should be paid attention to when using low frequency voltage. The inner mechanism for these variations is discussed from the aspects of the influence on electric field distribution and discharge process of frequency. Additionally, the variation trend of PD characteristics with the decrease of frequency can provide more information about insulation defect, which can be the supplement for discharge mode recognition. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop