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Abstract: Due to having a number of advantages, Marx generators are still the most widely used
devices for generating high-voltage pulses in many fields of science and technology. To ensure
their proper operation, especially when the generation of many frequent, highly repetitive pulses is
required, a highly efficient high-voltage power supply is needed. The paper describes a specially
developed power supply (input voltage 48 V DC, output voltage up to 50 kV) based on the conven-
tional Full Bridge topology with two high-frequency high-voltage transformers and a 6-stage voltage
multiplier. In order to avoid many problems caused by low coupling between primary and secondary
windings of the transformers and the large parasitic capacitances of the secondary windings, a special
quasi-resonant zero-current switching transistor control algorithm with variable switching frequency
(dependent on output load) was developed. In the described method, the energy is supplied to the
transformer in short pulses, when a pair of diagonal transistors of the full-bridge converter were
turned on. Then, the freewheeling state is maintained until all of the energy stored in the leakage
inductance of the transformer has been transferred to the secondary side, which means that the
current in the primary windings drops to zero. This approach reduces energy losses, electromagnetic
disturbances and prevents current distortion in primary winding.

Keywords: Marx generator; high-voltage; DC-DC converters; parasitic capacitance

1. Introduction

The generation of high-voltage pulses is needed for carrying out a variety of tests and
research. These concern not only the simulation of lightning discharges [1] or dielectric
strength tests, but also the acceleration of particles [2–5], the generation of strong X-rays [6],
high-power microwaves [7], biological applications [8] or food processing [9,10]. Marx
generators are very often used in such applications. This type of device has a number
of advantages: a simple construction, low cost of components, simple voltage regulation
and expandability.

Problems may arise when it is necessary to generate many highly repetitive pulses
with a high frequency, exceeding 1 pulse per second. By analyzing the construction of
a conventional Marx generator (Figure 1), it can be seen why this task is quite difficult
to accomplish: the resistance of the resistors connecting the capacitors in parallel in the
charging phase (Figure 1a) must be much higher than the resistance of the spark gaps
in the discharge phase (Figure 1b). Otherwise, the efficiency of the generator will drop
significantly or the device will not work at all. On the other hand, the high resistance
of these resistors increases the time constant of the system during charging, which does
not allow all the capacitors to be recharged in a sufficiently short time. Therefore, in such
applications instead of resistors, inductors [10] are often used, or solutions with diodes in
the charging circuit and high-voltage transistors as triggers [11].
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Figure 1. Marx generator electric scheme during the charging phase (a) and discharging phase (b). 

An additional problem is the development of an appropriately efficient power sup-
ply. In order for the Marx generator to function properly, each of the stages (each of the 
capacitors) should be charged to a sufficiently high voltage needed to break down the 
spark gap. It should also be noted that a large number of stages reduces the efficiency of 
the device and the speed of its operation. Therefore, it is desirable that the power supply 
should generate the highest possible voltage. This causes a number of problems. The first 
is the performance of the power supply. The output current of such a device should be 
high enough to charge the generator capacitors to a sufficiently high voltage in an appro-
priately short time. In addition, the power supply should enable simple adjustment of the 
output voltage (preferably in a digital way), have a current limitation, compact dimen-
sions and low weight. 

For this purpose, high-frequency transformer-based converters are most commonly 
used. A literature review performed in the area of high-voltage power supplies for rapid 
capacitor charging showed that in most cases, topologies with full-bridge converters are 
used [12–19] due to the versatility of this topology and the possibility of implementing 
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In [12–14], a simple hard-switched duty cycle control method was used, but this way 
of control may cause significant electromagnetic disturbance and large power losses [20]. 
Therefore, a method with phase-shifted modulation is much more often used [15,16]. In a 
large number of applications, a resonant converter can be found [17,18]. This method has 
several benefits. The main advantage is that switching of the transistors occurs in a deen-
ergized state, which significantly reduces the losses and the electromagnetic disturbances 
caused by this process. However, the development of the resonant converters is problem-
atic, especially when transformers with high parasitic capacitance are used. 

An interesting solution was described in [19] where a series connection of the DC-
DC converters (double-boost and isolated resonant) was used. 

In high-voltage power supplies, solutions involving only one transformer and a sim-
ple rectifier are not used often. To increase the voltage, popular solutions include the us-
age of several transformers with separated rectifiers connected in series [14], voltage mul-
tipliers such as the Villard cascade [17] or a combination of these solutions [19] where SiC 
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Figure 1. Marx generator electric scheme during the charging phase (a) and discharging phase (b).

An additional problem is the development of an appropriately efficient power supply.
In order for the Marx generator to function properly, each of the stages (each of the
capacitors) should be charged to a sufficiently high voltage needed to break down the
spark gap. It should also be noted that a large number of stages reduces the efficiency of
the device and the speed of its operation. Therefore, it is desirable that the power supply
should generate the highest possible voltage. This causes a number of problems. The first
is the performance of the power supply. The output current of such a device should be high
enough to charge the generator capacitors to a sufficiently high voltage in an appropriately
short time. In addition, the power supply should enable simple adjustment of the output
voltage (preferably in a digital way), have a current limitation, compact dimensions and
low weight.

For this purpose, high-frequency transformer-based converters are most commonly
used. A literature review performed in the area of high-voltage power supplies for rapid
capacitor charging showed that in most cases, topologies with full-bridge converters are
used [12–19] due to the versatility of this topology and the possibility of implementing
various control algorithms.

In [12–14], a simple hard-switched duty cycle control method was used, but this way
of control may cause significant electromagnetic disturbance and large power losses [20].
Therefore, a method with phase-shifted modulation is much more often used [15,16]. In
a large number of applications, a resonant converter can be found [17,18]. This method
has several benefits. The main advantage is that switching of the transistors occurs in a
deenergized state, which significantly reduces the losses and the electromagnetic distur-
bances caused by this process. However, the development of the resonant converters is
problematic, especially when transformers with high parasitic capacitance are used.

An interesting solution was described in [19] where a series connection of the DC-DC
converters (double-boost and isolated resonant) was used.

In high-voltage power supplies, solutions involving only one transformer and a simple
rectifier are not used often. To increase the voltage, popular solutions include the usage of
several transformers with separated rectifiers connected in series [14], voltage multipliers
such as the Villard cascade [17] or a combination of these solutions [19] where SiC MOSFETs
are also used.
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The multitude of solutions shows that the problem of building high-voltage power
supplies, in particular for rapid charging of Marx generators, is not a trivial matter.

The high-frequency high-voltage transformer is the most critical and key element of
the power supply. However, due to the large number of turns of the secondary winding,
such transformers will have a large value of parasitic capacitances and thus a low value of
the resonance frequency.

The phenomenon of parasitic capacities is usually undesirable, as it causes a number
of problems related to high-voltage high-frequency transformers, which cannot be ignored
and necessitate a change in the approach to the design of HV power supplies [21]. These
capacities cause distortions of the currents flowing in the primary and secondary windings
of the transformer, causing the occurrence of higher harmonics of these currents, increasing
energy losses both in the windings related to the winding resistance (caused by a higher
current value and the skin effect), losses on semiconductor elements and in the power
supply [22], forcing additional cooling or increasing the size of the elements used, including
the transformer core [23,24]. Moreover, this phenomenon may also cause the occurrence of
electromagnetic disturbances [22,25] and difficulties with control (especially in the case of
resonant converters), and affect the output voltage of the transformer.

The article presents a power supply that uses a special methodology of designing and
controlling transistors, which significantly reduces problems related to parasitic capacitance
that occur in transformers, facilitates the process of designing the power supply and
increases its reliability.

2. Parasitic Capacitance in the Secondary Winding

In cases of low-voltage low-power high-frequency transformers, a value of the parasitic
capacitance is usually less than 1 pF. Due to the large area of the windings and the core
used in high-power transformers, this value can reach several pF. However, due to the
low voltage, this is not a big problem for this type of component. For high-voltage high-
frequency transformers, parasitic capacitance can reach much higher values of tens of
pF [26] which, combined with a high generated voltage, require a large amount of energy
to charge them.

Transformers with high parasitic capacitance (Figure 2) are characterized by a high
value of current already in the idle state, because a significant part of the energy supplied
to the primary winding is absorbed only for charging the parasitic capacitances in the
secondary winding. This energy is greater the higher the voltage at the transformer output,
which reduces the transformer efficiency [22,26].
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Figure 2. Self-capacitance of a single layer on the spacing between windings.

In order to demonstrate this problem, a simplified transformer model was prepared
(Figure 3), in which all of the parasitic capacitances of secondary winding are presented
as a one capacitance (Cpar) connected in parallel with this winding [27–30]. The primary
winding was supplied with 10 V, 10 kHz rectangular voltage. The secondary winding was
connected to a discharged 10 nF capacitor by Graetz rectifier.
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Figure 3. Simulation model with high-voltage high-frequency transformer equivalent diagram loaded
with Graetza rectifier and capacitor. Lpri—primary winding inductance, Lsec—secondary winding
inductance, Cpar—capacitance being the sum of the parasitic capacitances of the secondary winding,
CO—load capacitor.

The simulation was performed in LTSpice—high performance SPICE simulator soft-
ware. Despite certain inaccuracies of the built-in models in the program and the developed
transformer simplification, the model sufficiently presents the described problem.

The simulation results (Figure 4) show that with an increase in output voltage the
current used to charge the parasitic capacitances increases, reducing the current that can
be used for charging the load capacitor. Thus, the current flowing in the primary winding
is increasingly the resonant current flowing between the parasitic capacitances of the
secondary winding and the dissipation inductance, and it causes a significant additional
load of the transformer and a much greater current flowing in the primary winding, it
increases energy losses.
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Figure 4. The value of the peak voltage on the transformer secondary winding (Uout), the current
induced in the secondary winding (lsec) and the current flowing through the parasitic capacitance of
the secondary winding (Icpar) during charging a 10 nF capacitor.

Therefore, many methods have been developed to help at least roughly estimate the
capacitances values, both in classical [24,31] and simulation [26,27,32] methods, to decrease
this problem in transformers through the use of appropriate winding techniques, as well
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as to predict the possible impact of this phenomenon on the operation of the device, and
select the appropriate design.

Based on these considerations, it can be concluded that the self-resonant frequency
of the transformer should be raised as high as possible by reducing the parasitic capaci-
tances and inductance of the secondary winding, and thus the winding (in particular the
secondary winding) should contain as few turns as possible. Therefore, when designing
HV transformers, it is necessary to select cores with the largest possible cross-section area
and, at the same time, with the lowest possible AL value.

However, even using this approach, the high number of turns in the secondary wind-
ing means that the problem of parasitic capacitance cannot be completely eliminated. As a
result, the traditional control methods used in low-voltage switching power converters can-
not be used, and this forces a change in the approach to designing HV power supplies [22].

3. The Problem of Control

As already mentioned, high-voltage high-frequency transformers are characterized
by a high current value already in the idle state, because a significant part of the energy
supplied to the primary winding is absorbed only for charging the parasitic capacitances in
the secondary winding.

In the case of low-voltage power supplies, the problem of high current in the primary
winding is solved by applying a peak or average current limitation, which in fact translates
into a reduction in the duty cycle of the signal controlling the operation of the transistors,
and thus decreasing the duration of the pulse supplying energy to the transformer. In the
case of low-voltage power supplies, this is not a problem. However, in the case of power
supplies with a transformer with the problems described, it is not possible to shorten the
duration of the pulse supplying energy to the primary winding, because such a power
supply may not provide a sufficiently high output voltage. This problem is illustrated by
the simulation results presented in Figure 5, where a model with an idealized transformer
was compared to a transformer with parasitic capacitance.
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In both cases of the simulations presented in Figure 5, a peak current limiter was
used. The current value of this limitation was set to approximately 12 A. As can be seen in
the case of a model in which a transformer without parasitic capacitance was used, this
protection worked only at the beginning of the operation of the power supply (Figure 5a),
while in the later phase, even with the maximum duty cycle of the signal controlling
the transistors, the current is lower than the value of the protection, and the voltage on
the charged capacitor after approximately 12 ms. (Figure 5b) is approaching the voltage
resulting from the transformer ratio and its supply voltage (15 kV). On the other hand,
using a transformer model that reflects the real element much more closely, taking into
account even a small parasitic capacitance of 10 pF, the current in the primary winding is
much higher throughout the whole simulation period (Figure 5d), the peak current limiter
protection works all the time (Figure 5c), and the voltage on the charged capacitor increases
only to approximately 2.5 kV, which is a much lower value than assumed.

The simplest solution to this problem is to increase the value of the current limiter.
However, this will result in the flow of a very high current in the primary winding, which
may be technically difficult to implement, or not worth doing due to the additional costs of
the increase in the cross-section of all connections, or the use of more durable transistors.

4. Quasi-Resonant Algorithm

In the presented power supply, a typical full-bridge topology was used (Figure 6),
but to avoid many problems related to the low coupling between primary and secondary
windings of the transformer and the large parasitic capacitance, a special transistor control
algorithm was developed.
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Figure 6. Full-bridge converter schematic.

Energy is transferred to the transformer in very short pulses only when a pair of
opposing transistors are turned on (Figure 6—M1–M4 and M2–M3). The duration of these
pulses is fixed, which ensures that the energy supplied to the transformer will always be
constant. Meanwhile, the value of the current in the primary winding is regulated by the
dead time, i.e., the time in which energy is not supplied to the transformer.

The disadvantage of using transformers with a large parasitic capacitance is that large
current distortions can occur in the primary winding when using phase-shifted control
(Figure 7). This will cause problems with controlling the current and increase the losses in
the windings, making this method difficult to apply.



Energies 2022, 15, 6902 7 of 14Energies 2022, 15, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 7. Current in the primary winding of the transformer with a high value of parasitic capaci-
tance in the secondary winding of the converter in phase-shifted mode (simulation results). 

To prevent current distortion in the primary winding, increase the efficiency and re-
duce electromagnetic disturbances, a modified phase-shifted control was used. In the typ-
ical phase-shifted method, a pair of transistors (M1 and M2 or M3 and M4) are switched 
at almost 50% duty and 180 degrees out of phase with each other. The amount of overlap 
(phase-shift) between diagonal switches determine the amount of energy transferred to 
the transformer (Figure 8). In the developed method, the supply state looks the same, 
when a pair of diagonal transistors were turned on (Figure 9a,c). Then, in freewheeling 
state (in contrast to phase-shifted method), the low side transistor is turned off and only 
the one high side transistor is still on to ensure a continuous flow of current through the 
primary winding (Figure 9b,d). 

 
Figure 8. Transistors control signals (M1–M4) in the typical phase-shifted control method. 

 

Figure 7. Current in the primary winding of the transformer with a high value of parasitic capacitance
in the secondary winding of the converter in phase-shifted mode (simulation results).

To prevent current distortion in the primary winding, increase the efficiency and
reduce electromagnetic disturbances, a modified phase-shifted control was used. In the
typical phase-shifted method, a pair of transistors (M1 and M2 or M3 and M4) are switched
at almost 50% duty and 180 degrees out of phase with each other. The amount of overlap
(phase-shift) between diagonal switches determine the amount of energy transferred to the
transformer (Figure 8). In the developed method, the supply state looks the same, when a
pair of diagonal transistors were turned on (Figure 9a,c). Then, in freewheeling state (in
contrast to phase-shifted method), the low side transistor is turned off and only the one
high side transistor is still on to ensure a continuous flow of current through the primary
winding (Figure 9b,d).

Energies 2022, 15, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 7. Current in the primary winding of the transformer with a high value of parasitic capaci-
tance in the secondary winding of the converter in phase-shifted mode (simulation results). 

To prevent current distortion in the primary winding, increase the efficiency and re-
duce electromagnetic disturbances, a modified phase-shifted control was used. In the typ-
ical phase-shifted method, a pair of transistors (M1 and M2 or M3 and M4) are switched 
at almost 50% duty and 180 degrees out of phase with each other. The amount of overlap 
(phase-shift) between diagonal switches determine the amount of energy transferred to 
the transformer (Figure 8). In the developed method, the supply state looks the same, 
when a pair of diagonal transistors were turned on (Figure 9a,c). Then, in freewheeling 
state (in contrast to phase-shifted method), the low side transistor is turned off and only 
the one high side transistor is still on to ensure a continuous flow of current through the 
primary winding (Figure 9b,d). 

 
Figure 8. Transistors control signals (M1–M4) in the typical phase-shifted control method. 

 

Figure 8. Transistors control signals (M1–M4) in the typical phase-shifted control method.

Another modification in relation to the traditional methods is that the freewheeling
state is maintained until all of the energy stored in the leakage inductance of the transformer
has been transferred to the secondary side, which means that the current in the primary
windings drops to zero. After that, the second pair of opposing transistors is switched
on and the current starts to flow in the opposite direction through the primary winding.
In addition, the developed transistor control algorithm keeps the M1 or M3 (Figure 6)
transistors turned on until the current drops to zero, thus creating a quasi-resonant mode
of operation. This approach enables a much better use of the transformer core as in each
cycle the magnetic flux density reaches the assumed maximum value. Figure 10a shows
the transistor control signals and an additional signal indicating the drop of current to
zero during the first charging state. The current in the primary winding is presented
in Figure 10b.
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Figure 10. Transistors control signals (M1–M4), current zero-crossing signal (ZC) (a), current flowing
through the primary winding (b) in beginning at the charging and transistors control signals (M1–M4),
current zero-crossing signal (ZC) (c), current flowing through the primary winding (d) at a later stage
of charging.

During this charging phase the transistors are driven with variable frequency depen-
dent on output load and the quasi-resonant algorithm is implemented. However, in this
condition there is no possibility to control the charging process. Therefore, a functionality of
minimum cycle time has been added. When the load is low (the load capacitor is partially
charged) the control algorithm is switched to a fixed frequency, as shown in Figure 10c,d.
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5. High-Voltage DC Power Supply

The block schema of the developed high-voltage power supply is presented in Fig-
ure 11. The use of a voltage multiplier was chosen because it allows us to decrease the
output voltage of high-voltage transformers. This solution reduces problems with isolation
and parasitic capacitance of the secondary windings.
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Due to the uniqueness of the presented method, none of the ICs available on the market
implement it. Therefore, the digital controller was equipped with a Complex Programmable
Logic Device (CPLD) which implemented the developed algorithm and functionalities of
peek current limiter and overvoltage protection. This way of implementation was chosen
due to fast pin to pin performance of CPLD and the ease of creating even complex logic
using a diagram or code. The power supply prepared on this basis is presented in Figure 12.
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The described power supply is designed to work with a 10-stage Marx generator. In
each stage, a 3300 pF capacitor was used, giving a net capacity of 33 nF. The assumed
frequency of generating pulses is 3 pulses per second at a voltage of 50 kV per stage.
Therefore, the power supply should charge the capacity of all stages within a maximum
time of 330 ms.

In order to obtain the required parameters, the power delivery state time was set to
5 µs (Figure 9a,c) and the minimum freewheeling state time (in non-quasi-resonant mode)
was set to 20 µs (Figure 9b,d). A longer time of the power delivery state will saturate
the transformer core, while shorter will decrease the power supply performance. The
opposite is true with minimum free-wheeling state time—a higher value will decrease the
performance but a lower will over-load the power source.
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6. Experiments

In all the tests performed, a 33 nF high-voltage capacitor was used as a load of the power
supply. To measure the output voltage, a high-voltage oscilloscope probe able to measure
voltage up to 70 kV DC with a divider ratio of 10,000:1 was used (Figures 13 and 14). The
accuracy of used high-voltage probe (North Star VD-100) is better than 0.1% for DC voltage
and 1% for 10 Hz–1 Mhz range and fully meets the needs for presented measurements.
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Figure 14. Photo of the measurement setup. HV power supply (1), 33 nF MKP capacitor (2), triggered
spark gap (3), 50 Ω resistive load (4), HV oscilloscope probe (5).

Figure 15 presents the developed transistor control algorithm. At the beginning of the
charging process (Figure 15a) the frequency of the current is approximately 15 kHz and
the transistors are switched when the current drops to zero. In a later stage of charging
(Figure 15b), the transistors are switched when the minimal time of one cycle is reached
and the frequency of the current is approximately 20 kHz.
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Figure 15. The current in the primary winding circuit (CH1), the signal from the comparator de-
tecting the zero current in the primary circuit (CH2) and the signal controlling one of the transistor
on the high side HS (CH3) in a situation where the current fades in a time greater than the min-
imum switching time of the transistors—measurement performed in the initial charging phase
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The first test was carried out to demonstrate the charging process. As the test results
show (Figure 16), the charging time up to 50 kV is approximately 300 ms. This value is
lower than the required 330 ms.
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Figure 16. Charging of the Marx generator to 50 kV.

The next test was performed with a sequence of ten discharge-charge cycles. In this test
the load capacitor was discharged into a resistive load using a spark gap switch controlled
by the power supply. The waveform in Figure 17 shows the Marx generator recharging
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process after generating a sequence of pulses. It can be seen that the recharge time is always
lower than 330 ms, and after the discharge, the next charging cycle starts automatically.
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7. Conclusions

The quasi-resonant control method is very effective for high-voltage power supplies
used to charge capacitors. Its use causes almost all the energy supplied to the transformer,
which can be stored in the leakage inductance or auxiliary inductance, to be transferred
to the load. It also ensures a much better usage of the transformer core (because in each
cycle the maximum assumed value of magnetic flux density is reached), reduction in losses
on the transistors (in the developed method, two transistors are always switched in a
de-energized state) and reduction in electromagnetic disturbances that may be generated
when switching off transistors when a current of non-zero value flows in the primary
winding, and the use of the CPLD chip greatly facilitates its implementation.

The rather unusual design of the power supply, using a high frequency converter, two
high-voltage transformers, a voltage multiplier and a specially developed algorithm can
reduce problems related to parasitic capacitance that occur in high-voltage high-frequency
transformers while maintaining the required performance.

All the tests carried out showed that the designed power supply fulfilled the assumed
requirements when all of the parts were properly designed. The device has a sufficiently
high current efficiency, enabling the charging of 33 nF capacitance up to the assumed 50 kV
voltage in a time much less than the required 330 ms. The output voltage is very stable and
the value set using a dedicated computer program corresponds to the measured value.

The selected solution is easier to implement than those typically used for this purpose,
increasing failure-free operation, by reducing the current distortion in the primary winding,
and increasing the safety of the device (due to performance of the CPLD). The properties
of the multi-stage multiplier allow for the easy expansion of the capabilities of the power
supply by adding voltage multiplier stages and easily adapting the power supply to
different requirements.
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