Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,146)

Search Parameters:
Keywords = byproducts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1253 KiB  
Article
Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace
by Gabrielė Kaminskytė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(15), 8722; https://doi.org/10.3390/app15158722 (registering DOI) - 7 Aug 2025
Abstract
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the [...] Read more.
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the study was to evaluate the impact of modification methods, such as enzymatic hydrolysis and supercritical carbon dioxide extraction (SFE-CO2), on the chemical composition and technological properties of SBP. SBP and SBP obtained after SFE-CO2 (SBP-CO2) were enzymatically modified using Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 L (Novozyme A/S, Bagsværd, Denmark). The SBP’s main constituent was insoluble dietary fiber (IDF), followed by crude proteins and lipids (respectively, 58.7, 21.1 and 12.6 g/100 in d.m.). SFE-CO2 reduced the lipid content (by 85.7%) in the pomace while increasing protein and TDF content. Enzymatic hydrolysis decreased the content of both soluble dietary fiber (SDF) and IDF, and increased the content of mono- and oligosaccharides as well as free phenolics, depending on the commercial enzyme preparation used in SBP and SBP-CO2 samples. Celluclast® 1.5 L was the most effective in hydrolyzing IDF, while Viscozyme® L and Pectinex® Ultra Tropical were the most effective in degrading SDF. Enzymatic treatment improved water swelling capacity, water retention capacity, water solubility index, oil retention capacity of SBP and SBP-CO2; however, it did not have a significant effect on the stability of the emulsions. Modification of SBP by SFE-CO2 effectively increased WSC and WSI, however it reduced WRC. These findings highlight the potential of targeted modifications to enhance the nutritional and technological properties of SBP for functional food applications. Full article
Show Figures

Figure 1

18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 (registering DOI) - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

15 pages, 858 KiB  
Article
Valorization of Coffee Cherry Pulp into Potential Functional Poultry Feed Additives by Pectinolytic Yeast Kluyveromyces marxianus ST5
by Thanongsak Chaiyaso, Kamon Yakul, Wilasinee Jirarat, Wanaporn Tapingkae, Orranee Srinual, Hien Van Doan and Pornchai Rachtanapun
Animals 2025, 15(15), 2311; https://doi.org/10.3390/ani15152311 (registering DOI) - 7 Aug 2025
Abstract
Coffee cherry pulp (CCP), a coffee by-product rich in pectin and phenolic compounds, serves as a valuable substrate for microbial enzyme production, improving the nutritional and antioxidant properties of poultry feed. This study evaluated the potential of Kluyveromyces marxianus ST5 to produce pectin-degrading [...] Read more.
Coffee cherry pulp (CCP), a coffee by-product rich in pectin and phenolic compounds, serves as a valuable substrate for microbial enzyme production, improving the nutritional and antioxidant properties of poultry feed. This study evaluated the potential of Kluyveromyces marxianus ST5 to produce pectin-degrading enzymes using CCP. Under unoptimized conditions, the pectin lyase (PL) and polygalacturonase (PG) activities were 3.29 ± 0.22 and 6.32 ± 0.13 U/mL, respectively. Optimization using a central composite design (CCD) identified optimal conditions at 16.81% (w/v) CCP, 5.87% (v/v) inoculum size, pH 5.24, and 30 °C for 48 h, resulting in PL and PG activities of 9.17 ± 0.20 and 15.78 ± 0.14 U/mL, representing increases of 178.7% and 149.7% over unoptimized conditions. Fermented CCP was further evaluated using an in vitro chicken gastrointestinal digestion model. Peptide release increased by 66.2% compared with unfermented CCP. Antioxidant capacity also improved, with significant increases observed in DPPH (32.4%), ABTS (45.0%), and FRAP (42.3%) assays, along with an 11.1% increase in total phenolic content. These results demonstrate that CCP bioconversion by K. marxianus ST5 enhances digestibility and antioxidant properties, supporting its potential as a sustainable poultry feed additive and contributing to the valorization of agro-industrial waste. Full article
Show Figures

Figure 1

25 pages, 1677 KiB  
Review
Sustainable, Targeted, and Cost-Effective Laccase-Based Bioremediation Technologies for Antibiotic Residues in the Ecosystem: A Comprehensive Review
by Rinat Ezra, Gulamnabi Vanti and Segula Masaphy
Biomolecules 2025, 15(8), 1138; https://doi.org/10.3390/biom15081138 (registering DOI) - 7 Aug 2025
Abstract
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. [...] Read more.
Widespread antibiotic residues are accumulating in the environment, potentially causing adverse effects for humans, animals, and the ecosystem, including an increase in antibiotic-resistant bacteria, resulting in worldwide concern. There are various commonly used physical, chemical, and biological treatments for the degradation of antibiotics. However, the elimination of toxic end products generated by physicochemical methods and the need for industrial applications pose significant challenges. Hence, environmentally sustainable, green, and readily available approaches for the transformation and degradation of these antibiotic compounds are being sought. Herein, we review the impact of sustainable fungal laccase-based bioremediation strategies. Fungal laccase enzyme is considered one of the most active enzymes for biotransformation and biodegradation of antibiotic residue in vitro. For industrial applications, the low laccase yields in natural and genetically modified hosts may constitute a bottleneck. Methods to screen for high-laccase-producing sources, optimizing cultivation conditions, and identifying key genes and metabolites involved in extracellular laccase activity are reviewed. These include advanced transcriptomics, proteomics, and metagenomics technologies, as well as diverse laccase-immobilization technologies with different inert carrier/support materials improving enzyme performance whilst shifting from experimental assays to in situ monitoring of residual toxicity. Still, more basic and applied research on laccase-mediated bioremediation of pharmaceuticals, especially antibiotics that are recalcitrant and prevalent, is needed. Full article
(This article belongs to the Special Issue Recent Advances in Laccases and Laccase-Based Bioproducts)
Show Figures

Figure 1

23 pages, 3580 KiB  
Review
Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization
by Xinyue Wang, Xuan Niu, Xinge Zhang, Xuelu Ma and Kai Zhang
Sustainability 2025, 17(15), 7135; https://doi.org/10.3390/su17157135 - 6 Aug 2025
Abstract
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue [...] Read more.
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue stockpiles, characterized by a low comprehensive utilization rate that fails to meet the country’s ecological and environmental protection requirements. The environmental challenges posed by the treatment and disposal of gangue are becoming increasingly severe. This review employs bibliometric analysis and theoretical perspectives to examine the latest advancements in gangue utilization, specifically focusing on the application of computational chemistry to elucidate the structural features and interaction mechanisms of coal gangue, and to collate how these insights have been leveraged in the literature to inform its potential utilization routes. The aim is to promote the effective resource utilization of this material, and key topics discussed include evaluating the risks of spontaneous combustion associated with gangue, understanding the mechanisms governing heavy metal migration, and modifying coal byproducts to enhance both economic viability and environmental sustainability. The case studies presented in this article offer valuable insights into the gangue conversion process, contributing to the development of more efficient and eco-friendly methods. By proposing a theoretical framework, this review will support ongoing initiatives aimed at the sustainable management and utilization of coal gangue, emphasizing the critical need for continued research and development in this vital area. This review uniquely combines bibliometric analysis with computational chemistry to identify new trends and gaps in coal waste utilization, providing a roadmap for future research. Full article
Show Figures

Figure 1

16 pages, 1369 KiB  
Article
Recycling Waste Cottonseed Hulls to Biomaterials for Ammonia Adsorption
by Thomas Klasson, Bretlyn Pancio and Allen Torbert
Recycling 2025, 10(4), 158; https://doi.org/10.3390/recycling10040158 - 6 Aug 2025
Abstract
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to [...] Read more.
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to remove ammonia from air. In this study, the efficacy of ammonia removal was observed using cottonseed hull biomaterials pyrolyzed at seven different temperatures: 250, 300, 350, 400, 500, 600, and 700 °C. In this study, ammonia was passed through a column filled with pyrolyzed material, and ammonia in the filtered air was monitored. The results showed that materials pyrolyzed at intermediate temperatures of 350 and 400 °C were the most efficient at ammonia removal and were able to adsorb approximately 3.7 mg NH3/g of material. Despite extensive characterization, ammonia adsorption could not be linked to intrinsic material properties. Evaluation of the materials showed that the carbon in the pyrolyzed materials would be stable over time should the spent material be used as a soil amendment. Full article
Show Figures

Figure 1

14 pages, 302 KiB  
Article
On Surfaces of Exceptional Lorentzian Lie Groups with a Four-Dimensional Isometry Group
by Giovanni Calvaruso and Lorenzo Pellegrino
Mathematics 2025, 13(15), 2529; https://doi.org/10.3390/math13152529 - 6 Aug 2025
Abstract
In total, geodesic surfaces and their generalizations, namely totally umbilical and parallel surfaces, are well-known topics in Submanifold Theory and have been intensively studied in three-dimensional ambient spaces, both Riemannian and Lorentzian. In this paper, we prove the non-existence of parallel and totally [...] Read more.
In total, geodesic surfaces and their generalizations, namely totally umbilical and parallel surfaces, are well-known topics in Submanifold Theory and have been intensively studied in three-dimensional ambient spaces, both Riemannian and Lorentzian. In this paper, we prove the non-existence of parallel and totally umbilical (in particular, totally geodesic) surfaces for three-dimensional Lorentzian Lie groups, which admit a four-dimensional isometry group, but are neither of Bianchi–Cartan–Vranceanu-type nor homogeneous plane waves. Consequently, the results of the present paper complete the investigation of these fundamental types of surfaces in all homogeneous Lorentzian manifolds, whose isometry group is four-dimensional. As a byproduct, we describe a large class of flat surfaces of constant mean curvature in these ambient spaces and exhibit a family of examples. Full article
(This article belongs to the Special Issue Recent Studies in Differential Geometry and Its Applications)
22 pages, 1419 KiB  
Article
Bioconversion of Olive Pomace: A Solid-State Fermentation Strategy with Aspergillus sp. for Detoxification and Enzyme Production
by Laura A. Rodríguez, María Carla Groff, Sofía Alejandra Garay, María Eugenia Díaz, María Fabiana Sardella and Gustavo Scaglia
Fermentation 2025, 11(8), 456; https://doi.org/10.3390/fermentation11080456 - 6 Aug 2025
Abstract
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which [...] Read more.
This study aimed to evaluate solid-state fermentation (SSF) as a sustainable approach for the simultaneous detoxification of olive pomace (OP) and the production of industrially relevant enzymes. OP, a semisolid byproduct of olive oil extraction, is rich in lignocellulose and phenolic compounds, which limit its direct reuse due to phytotoxicity. A native strain of Aspergillus sp., isolated from OP, was employed as the biological agent, while grape pomace (GP) was added as a co-substrate to enhance substrate structure. Fermentations were conducted at two scales, Petri dishes (20 g) and a fixed-bed bioreactor (FBR, 2 kg), under controlled conditions (25 °C, 7 days). Key parameters monitored included dry and wet weight loss, pH, color, phenolic content, and enzymatic activity. Significant reductions in color and polyphenol content were achieved, reaching 68% in Petri dishes and 88.1% in the FBR, respectively. In the FBR, simultaneous monitoring of dry and wet weight loss enabled the estimation of fungal biotransformation, revealing a hysteresis phenomenon not previously reported in SSF studies. Enzymes such as xylanase, endopolygalacturonase, cellulase, and tannase exhibited peak activities between 150 and 180 h, with maximum values of 424.6 U·g−1, 153.6 U·g−1, 67.43 U·g−1, and 6.72 U·g−1, respectively. The experimental data for weight loss, enzyme production, and phenolic reduction were accurately described by logistic and first-order models. These findings demonstrate the high metabolic efficiency of the fungal isolate under SSF conditions and support the feasibility of scaling up this process. The proposed strategy offers a low-cost and sustainable solution for OP valorization, aligning with circular economy principles by transforming agro-industrial residues into valuable bioproducts. Full article
Show Figures

Figure 1

17 pages, 3330 KiB  
Article
Valorization of Coffee Silverskin via Integrated Biorefinery for the Production of Bioactive Peptides and Xylooligosaccharides: Functional and Prebiotic Properties
by Thanongsak Chaiyaso, Kamon Yakul, Wilasinee Jirarat, Wanaporn Tapingkae, Noppol Leksawasdi and Pornchai Rachtanapun
Foods 2025, 14(15), 2745; https://doi.org/10.3390/foods14152745 - 6 Aug 2025
Abstract
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional [...] Read more.
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional alkaline extraction (CAE) under optimized conditions (1.0 M NaOH, 90 °C, 30 min) yielded 80.64 mg of protein per gram of CS and rendered the solid residue suitable for XOS production. Enzymatic hydrolysis of the extracted protein using protease_SE5 generated low-molecular-weight peptides (0.302 ± 0.01 mg/mL), including FLGY, FYDTYY, and FDYGKY. These peptides were non-toxic, exhibited in vitro antioxidant activity (0–50%), and showed ACE-inhibitory activities of 60%, 26%, and 79%, and DPP-IV-inhibitory activities of 19%, 18%, and 0%, respectively. Concurrently, the alkaline-treated CS solid residue (ACSS) was hydrolyzed using recombinant endo-xylanase, yielding 52.5 ± 0.08 mg of CS-XOS per gram of ACSS. The CS-XOS exhibited prebiotic effects by enhancing the growth of probiotic lactic acid bacteria (μmax 0.100–0.122 h−1), comparable to commercial XOS. This integrated bioprocess eliminates the need for separate processing lines, enhances resource efficiency, and provides a sustainable strategy for valorizing agro-industrial waste. The co-produced peptides and CS-XOS offer significant potential as functional food ingredients and nutraceuticals. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

55 pages, 2103 KiB  
Review
Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics
by Manisha Nigam, Bajrang Punia, Deen Bandhu Dimri, Abhay Prakash Mishra, Andrei-Flavius Radu and Gabriela Bungau
Cells 2025, 14(15), 1207; https://doi.org/10.3390/cells14151207 - 6 Aug 2025
Abstract
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment [...] Read more.
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment dynamics remain unclear. Specifically, the spatial and temporal aspects of ROS regulation (i.e., the distinct effects of mitochondrial versus cytosolic ROS on the PI3K/Akt and NF-κB pathways, and the differential cellular outcomes driven by acute versus chronic ROS exposure) have been underexplored. Additionally, the specific contributions of ROS-generating enzymes, like NOX isoforms and xanthine oxidase, to tumor microenvironment remodeling and immune modulation remain poorly understood. This review synthesizes current findings with a focus on these critical gaps, offering novel mechanistic insights into the dualistic nature of ROS in cancer biology. By systematically integrating data on ROS source-specific functions and redox-sensitive signaling pathways, the complex interplay between ROS concentration, localization, and persistence is elucidated, revealing how these factors dictate the paradoxical support of tumor progression or induction of cancer cell death. Particular attention is given to antioxidant mechanisms, including NRF2-mediated responses, that may undermine the efficacy of ROS-targeted therapies. Recent breakthroughs in redox biosensors (i.e., redox-sensitive fluorescent proteins, HyPer variants, and peroxiredoxin–FRET constructs) enable precise, real-time ROS imaging across subcellular compartments. Translational advances, including redox-modulating drugs and synthetic lethality strategies targeting glutathione or NADPH dependencies, further highlight actionable vulnerabilities. This refined understanding advances the field by highlighting context-specific vulnerabilities in tumor redox biology and guiding more precise therapeutic strategies. Continued research on redox-regulated signaling and its interplay with inflammation and therapy resistance is essential to unravel ROS dynamics in tumors and develop targeted, context-specific interventions harnessing their dual roles. Full article
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

21 pages, 4264 KiB  
Article
Study on the Performance Restoration of Aged Asphalt Binder with Vegetable Oil Rejuvenators: Colloidal Stability, Rheological Properties, and Solubility Parameter Analysis
by Heng Yan, Xinxin Cao, Wei Wei, Yongjie Ding and Jukun Guo
Coatings 2025, 15(8), 917; https://doi.org/10.3390/coatings15080917 (registering DOI) - 6 Aug 2025
Abstract
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into [...] Read more.
This study evaluates the effectiveness of various rejuvenating oils, including soybean oil (N-oil), waste frying oil (F-oil), byproduct oil (W-oil), and aromatic hydrocarbon oil (A-oil), in restoring aged asphalt coatings by reducing asphaltene flocculation and improving colloidal stability. The rejuvenators were incorporated into aged asphalt binder via direct mixing at controlled dosages. Their effects were assessed using microscopy, droplet diffusion analysis, rheological testing (DSR and BBR), and molecular dynamics simulations. The aim is to compare the compatibility, solubility behavior, and rejuvenation potential of plant-based and mineral-based oils. The results indicate that N-oil and F-oil promote asphaltene aggregation, which supports structural rebuilding. In contrast, A-oil and W-oil act as solvents that disperse asphaltenes. Among the tested oils, N-oil exhibited the best overall performance in enhancing flowability, low-temperature flexibility, and chemical compatibility. This study presents a novel method to evaluate rejuvenator effectiveness by quantifying colloidal stability through grayscale analysis of droplet diffusion patterns. This integrated approach offers both mechanistic insights and practical guidance for selecting bio-based rejuvenators in asphalt recycling. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 2632 KiB  
Article
Treatment of Dairy Wastewater Retentate After Microfiltration: Evaluation of the Performance of the System Based on Activated Sludge and Activated Carbon
by Maciej Życki, Wioletta Barszcz and Monika Łożyńska
Membranes 2025, 15(8), 237; https://doi.org/10.3390/membranes15080237 - 6 Aug 2025
Abstract
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential [...] Read more.
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential batch reactor (SBR) and adsorption on activated carbon. The first stage involved cross-flow microfiltration using a 0.2 µm PVDF membrane at 0.5 bar, resulting in reductions of 99% in turbidity and 79% in chemical oxygen demand (COD), as well as a partial reduction in conductivity. The second stage involved 24-h biological treatment in a sequential batch reactor (SBR) with activated sludge (activated sludge index: 80 cm3/g, MLSS 2500 mg/dm3), resulting in further reductions in COD (62%) and TOC (30%), as well as the removal of 46% of total phosphorus (TP) and 35% of total nitrogen (TN). In the third stage, the decantate underwent adsorption in a column containing powdered activated carbon (PAC; 1 g; S_(BET) = 969 m2 g−1), reducing the concentrations of key indicators to the following levels: COD 84%, TOC 70%, TN 77%, TP 87% and suspended solids 97%. Total pollutant retention ranged from 24.6% to 97.0%. These results confirm that the MF–SBR–PAC system is an effective, compact solution that significantly reduces the load of organic and biogenic pollutants in MF retentates, paving the way for their reuse or safe discharge into the environment. Full article
Show Figures

Figure 1

21 pages, 4070 KiB  
Article
Effects of Aggregate Size and Nozzle Diameter on Printability and Mechanical Properties of 3D Printed Ferronickel Slag–GGBFS Concrete
by Suguo Wang, Xing Wang, Xueyuan Yan and Shanghong Chen
Materials 2025, 18(15), 3681; https://doi.org/10.3390/ma18153681 - 5 Aug 2025
Abstract
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of [...] Read more.
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of ferronickel slag–GGBFS concrete in 3D printing, this study examines how aggregate size and nozzle diameter affect its performance. The investigation involves in situ printing, rheological characterization, mechanical testing, and scanning electron microscopy (SEM) analysis. Results indicate that excessively large average aggregate size negatively impacts the smooth extrusion of concrete strips, resulting in a cross-sectional width that exceeds the preset dimension. Excessively small average aggregate size results in insufficient yield stress, leading to a narrow cross-section of the extruded strip that fails to meet printing specifications. The extrusion performance is closely related to both the average aggregate size and nozzle diameter, which can significantly influence the normal extrusion stability and print quality of 3D printed concrete strips. The thixotropic performance improves with an increase in the aggregate size. Both compressive and flexural strengths improve with increasing aggregate size but decrease with an increase in the printing nozzle size. Anisotropy in mechanical behavior decreases progressively as both parameters mentioned increase. By examining the cracks and pores at the interlayer interface, this study elucidates the influence mechanism of aggregate size as well as printing nozzle parameters on the mechanical properties of 3D printed ferronickel slag–GGBFS concrete. This study also recommends the following ranges. When the maximum aggregate size exceeds 50% of the nozzle diameter, smooth extrusion is not achievable. If it falls between 30% and 50%, extrusion is possible but shaping remains unstable. When it is below 30%, both stable extrusion and good shaping can be achieved. Full article
Show Figures

Figure 1

19 pages, 3596 KiB  
Article
Radon Exposure to the General Population of the Fernald Community Cohort
by John F. Reichard, Swade Barned, Angelico Mendy and Susan M. Pinney
Atmosphere 2025, 16(8), 939; https://doi.org/10.3390/atmos16080939 (registering DOI) - 5 Aug 2025
Abstract
The Fernald Feed Materials Production Center (FMPC), located in Fernald, Ohio, USA, released radon (Rn) as a byproduct of the processing of uranium materials during the years from 1951 to 1989. Rn is a colorless, odorless gas that emits charged alpha radiation that [...] Read more.
The Fernald Feed Materials Production Center (FMPC), located in Fernald, Ohio, USA, released radon (Rn) as a byproduct of the processing of uranium materials during the years from 1951 to 1989. Rn is a colorless, odorless gas that emits charged alpha radiation that interacts with cells in the lung and trachea-bronchial tree, leading to DNA damage, mutations, and tumor initiation. The purpose of this project was to use evidence collected by the Fernald Dosimetry Reconstruction Project and other sources to estimate the outdoor Rn exposure to individuals in the community immediately surrounding the FMPC during the years of plant operation. Using previously tabulated source terms, diffusion and meteorological data, and self-reported detailed residential histories, we estimated radon exposure for approximately 9300 persons who lived at more than 14,000 addresses. The results indicated that a portion of the population cohort experiences mean annual Rn exposure exceeding the U.S. Environmental Protection Agency (EPA) action limit of 4 pCiL−1. These exposure estimates support the analysis of the incidence of lung cancer in the Fernald Community Cohort (FCC). Full article
Show Figures

Figure 1

Back to TopTop