Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization
Abstract
1. Introduction
2. Bibliometric Analysis of Coal Gangue
3. Theoretical Insights into Key Hotspots Identified by Bibliometric Analysis
3.1. Spontaneous Combustion Risk of Coal Gangue
3.2. Mechanisms of HM Migration in Coal Gangue
3.3. Modified Coal Gangue with Enhanced Activity
4. Conclusions and Prospects
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leclerc, H.O.; Erythropel, H.C.; Backhaus, A.; Lee, D.S.; Judd, D.R.; Paulsen, M.M.; Ishii, M.; Long, A.; Ratjen, L.; Bertho, G.G.; et al. The CO2 tree: The potential for carbon dioxide utilization pathways. ACS Sustain. Chem. Eng. 2021, 9, 10318–10325. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Zeng, Q. Research on coal gangue recognition based on multi-source time–frequency domain feature fusion. ACS Omega 2023, 8, 25221–25235. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Song, W.; He, Z.W.; Li, J.R.; Ding, Z.W.; Li, S.Y. Research progress on the pathway and mechanism of high-value-added utilization of coalgangue in China. Mod. Chem. Ind. 2025, 1–8. [Google Scholar]
- Li, X.Y.; Qiao, Y.J.; Shao, J.H.; Bai, C.Y.; Li, H.Q.; Lu, S.; Zhang, X.H.; Yang, K.; Colombo, P. Sodium-based alkali-activated foams from self-ignition coal gangue by facile microwave foaming route. Ceram. Int. 2022, 48, 33914–33925. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, Z.; Li, Z.; Xu, J.; Peng, H.; Guan, J.; Zhou, F.; Huang, J.; Zhua, Y. Properties of coal gangue used in building materials in wulanmulun coalfield, inner mongolia, China. Adv. Mater. Eng. 2015, 108–114. [Google Scholar]
- Li, N.; Han, B.Q. Chinese research into utilisation of coal waste in ceramics, refractories and cements. Adv. Appl. Ceram. 2006, 105, 64–68. [Google Scholar] [CrossRef]
- Xu, Y.H.; Wu, H.J.; Dong, Z.F.; Wang, Q.Q.; Chen, X.Y. Life cycle energy use efficiency and greenhouse gas emissions of circulating fluidized bed coal-fired plant with coal gangue and coal co-combustion. Environ. Dev. Sustain. 2023, 26, 20049–20071. [Google Scholar] [CrossRef]
- Peng, H.; Jia, X.L. Experimental study on heat energy recovery and utilization of coal gangue hill based on gravity heat pipe. Energy Rep. 2022, 8, 220–229. [Google Scholar] [CrossRef]
- Luo, C.; Li, S.H.; Ren, P.Y.; Yan, F.; Wang, L.; Guo, B.; Zhao, Y.M.; Yang, Y.; Sun, J.; Gao, P.C.; et al. Enhancing the carbon content of coal gangue for composting through sludge amendment: A feasibility study. Environ. Pollut. 2024, 348, 123439. [Google Scholar] [CrossRef]
- Zhao, G.W.; Wu, T.; Ren, G.Z.; Zhu, Z.; Gao, Y.; Shi, M.; Ding, S.J.; Fan, H.H. Reusing waste coal gangue to improve the dispersivity and mechanical properties of dispersive soil. J. Clean. Prod. 2023, 404, 136993. [Google Scholar] [CrossRef]
- Tian, T.; Wang, Z.; Chen, L.Z.; Wu, S.; Liu, Y. Opportunities, challenges and modification methods of coal gangue as a sustainable soil conditioner—A review. Environ. Sci. Pollut. Res. 2024, 31, 58231. [Google Scholar] [CrossRef]
- Shen, L.; Liu, W.B.; Zhou, W.; Zhu, J.B.; Qiao, E.L. Recycling coal from coal gangue. Filtr. Sep. 2017, 54, 40–41. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, Y.; Liu, X.; Liu, M.; Liao, L.B.; Liu, G.C. Environmental hazards and comprehensive utilization of solid waste coal gangue. Prog. Nat. Sci. Mater. Int. 2024, 34, 223–239. [Google Scholar] [CrossRef]
- Keskin, T.; Yilmaz, E.; Kasap, T.; Sari, M.; Cao, S. Toward viable industrial solid residual waste recycling: A review of its innovative applications and future perspectives. Minerals 2024, 14, 943. [Google Scholar] [CrossRef]
- Ju, T.Y.; Han, S.Y.; Meng, Y.; Jiang, J.G. High-end reclamation of coal fly ash focusing on elemental extraction and synthesis of porous materials. ACS Sustain. Chem. Eng. 2021, 9, 6894–6911. [Google Scholar] [CrossRef]
- Zhang, W.; Lang, L.; Dong, C.X.; Qi, Z.; Zhang, Z.R.; Li, J.S. Comprehensive study on coal gangue-based geopolymer activated by phosphoric acid: From macroscale properties to molecular simulation. Constr. Build. Mater. 2024, 438, 137271. [Google Scholar] [CrossRef]
- Huang, Z.C.; Cai, Y.T.; Fan, X.L.; Ning, K.; Yu, X.H.; Zheng, S.C.; Chen, H.S.; Xie, Y.L. Synthesis of 4A zeolite molecular sieves by modifying fly ash with water treatment residue to remove ammonia nitrogen from water. Sustainability 2024, 16, 5683. [Google Scholar] [CrossRef]
- Ma, X.; Ding, C.L.; Yang, H.S.; Zhu, X. Effects of a cellulose aerogel template on the preparation and adsorption properties of coal gangue-based multistage porous ZSM-5. Materials 2023, 16, 3896. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, H.; Liu, J.; Xia, Y.; Xu, M.; Xing, Y.; Li, J.; Gui, X. Improving flotation decarbonization efficiency of coal gasification fly ash by mechanically breaking pore: An experimental and molecular dynamics simulation study. Colloids Surf. A-Physicochem. Eng. Asp. 2023, 663, 131074. [Google Scholar] [CrossRef]
- Gao, F.; Dong, L.P.; Xue, Z.H.; Cai, S.J.; Fan, M.Q.; Hao, B.; Fan, P.P.; Bao, W.R.; Wang, J.C. Dodecylamine enhanced coal gasification fine slag flotation and its molecular dynamics simulation. Miner. Eng. 2023, 203, 108322. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Chen, X. Adsorption and diffusion characteristics of CO2 and CH4 in anthracite pores: Molecular dynamics simulation. Processes 2024, 12, 1131. [Google Scholar] [CrossRef]
- Xue, Z.H.; Feng, Y.L.; Li, H.R.; Xu, C.L.; Ju, J.R.; Dong, L.P.; Bao, W.R.; Wang, J.C.; Fan, P.P.; Zhu, Z.L.; et al. Molecular simulation investigation of pore structure impact on the wettability and flotation efficiency of coal gasification fine slag. J. Mol. Liq. 2023, 386, 122452. [Google Scholar] [CrossRef]
- Dong, J.H.; Li, J.B.; Huang, Y.; Zhong, J.Y.; Dun, K.; Wu, M.; Zhang, L.J.; Chen, Q.; Pan, B. Understanding the release, migration, and risk of heavy metals in coal gangue: An approach by combining experimental and computational investigations. J. Hazard. Mater. 2024, 416, 132707. [Google Scholar] [CrossRef]
- Lunghi, A.; Sanvito, S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat. Rev. Chem. 2022, 6, 761–781. [Google Scholar] [CrossRef]
- Chen, L.Z.; Qi, X.Y.; Tang, J.; Xin, H.H.; Liang, Z.Q. Reaction pathways and cyclic chain model of free radicals during coal spontaneous combustion. Fuel 2021, 293, 120436. [Google Scholar] [CrossRef]
- Lin, Y.C.; Si, M.Y.; Han, H.J.; Jin, H.; Long, Y.L.; Deng, L.; Gong, Z.L.; Feng, W.; Nie, T.; Xu, X.Q.; et al. Advances in studies investigating the comprehensive utilization of coal gangue: A visualization analysis based on CiteSpace. Discov. Appl. Sci. 2025, 7, 38. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Assoc. Inf. Sci. Technol. 2014, 57, 359–377. [Google Scholar] [CrossRef]
- Maruthupandian, S.; Chaliasou, A.; Kanellopoulos, A. Recycling mine tailings as precursors for cementitious binders - Methods, challenges and future outlook. Constr. Build. Mater. 2021, 312, 125333. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Xu, L.; Seetharaman, S.; Liu, L.L.; Wang, X.D.; Zhang, Z.T. Effects of chemistry and mineral on structural evolution and chemical reactivity of coal gangue during calcination: Towards efficient utilization. Mater. Struct. 2015, 48, 2779–2793. [Google Scholar] [CrossRef]
- Xue, H.F.; Dong, X.S.; Fan, Y.P.; Ma, X.M.; Yao, S.L. Study of structural transformation and chemical reactivity of kaolinite-based high ash slime during calcination. Minerals 2023, 13, 466. [Google Scholar] [CrossRef]
- Liu, F.Q.; Xie, M.Z.; Yu, G.Q.; Ke, C.Y.; Zhao, H.L. Study on calcination catalysis and the desilication mechanism for coal gangue. ACS Sustain. Chem. Eng. 2021, 9, 10318–10325. [Google Scholar] [CrossRef]
- Wang, R.Y.; Song, Y.; Yang, X.; Zhou, J.H.; Jiang, Q.Q.; Wang, Z.B.; Wang, L.; Peng, B.; Song, H.T.; Lin, W. Self-combustion–Depolymerization approach to activate solid-waste coal gangue minerals for fluid catalytic cracking catalyst synthesis. ACS Sustain. Chem. Eng. 2022, 10, 11376–11386. [Google Scholar] [CrossRef]
- Ren, H.Y.; Mao, R.Y.; Wu, H.W.; Liang, X.; Zhou, J.R.; Zhang, Z.J. Preparation and properties of phosphogypsum-based calcined coal gangue composite cementitious materials. Case Stud. Constr. Mater. 2024, 21, e03963. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, H.Y.; Zhang, Z.Y.; Guo, X.L.; Du, H.B.; Han, W.; Zhuang, Y.X.; Xing, P.F. An improved process for the preparation of Si-Fe-Al-Ca alloy from coal gasification fine slag via three-phase plasma smelting. Process Saf. Environ. Prot. 2024, 192, 907–914. [Google Scholar] [CrossRef]
- Liang, C.; Wang, J.J.; Li, C.Q.; Han, W.; Song, Y.M.; Li, B.; Yin, S.J.; Sun, Z.M. Magnetic coal gangue-based catalysts for peroxymonosulfate activation and benzo[a]pyrene degradation: The construction of Fe and N dual active sites. J. Environ. Chem. Eng. 2024, 12, 114613. [Google Scholar] [CrossRef]
- Guo, C.B.; Song, Y.H.; Ye, M.Y.; Sun, Y.P.; Liang, S.; Zou, J.J. Synthesis of tobermorite using coal fly ash and its utilization in highly efficient CO2 adsorption. Sep. Purif. Technol. 2025, 358, 130382. [Google Scholar] [CrossRef]
- Farwa, M.; Muhammad, Z.; Ijaz, A.B.; Saqib, N.; Tajamal, H. Possible applications of coal fly ash in wastewater treatment. J. Environ. Manag. 2019, 240, 27–46. [Google Scholar] [CrossRef]
- Luoyang, Y.X.; Wang, H.; Li, J.; Chen, B.; LI, X.; Zhang, G.T. Microstructural tuning and high-efficiency adsorption performance of carbonaceous porous adsorbents from coal gasification fine slag for methylene blue removal. Sep. Purif. Technol. 2025, 357, 130135. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Zou, Y.; Jiang, J.J.; Liu, X.L.; Zhu, T.Y. Exploring the promotion effect of low MnCoOx doping for low-temperature NH3-SCR of 13X zeolite synthesized from coal fly ash. Sep. Purif. Technol. 2025, 357, 130064. [Google Scholar] [CrossRef]
- Wang, C.; Feng, K.; Wang, L.P.; Yu, Q.R.; Du, F.L.; Guo, X.L. Characterization of coal gangue and coal gangue-based sodalite and their adsorption properties for Cd2+ ion and methylene blue from aqueous solution. J. Mater. Cycles Waste Manag. 2023, 25, 1622–1634. [Google Scholar] [CrossRef]
- Liu, S.H.; Wei, L.H.; Zhou, Q.; Yang, T.H.; Li, S.B.; Zhou, Q. Simulation strategies for ReaxFF molecular dynamics in coal pyrolysis applications: A review. J. Anal. Appl. Pyrolysis 2023, 170, 105882. [Google Scholar] [CrossRef]
- Castro-Marcano, F.; Russo, M.F.; Van Duin, A.C.T.; Mathews, J.P. Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field. J. Anal. Appl. Pyrolysis 2014, 109, 79–89. [Google Scholar] [CrossRef]
- Zheng, M.; Li, X.X.; Bai, J.; Guo, L. Chemical structure effects on coal pyrolyzates and reactions by using large-scale reactive molecular dynamics. Fuel 2022, 327, 125089. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Yang, S.Q.; Zhou, B.Z.; Song, W.X.; Cai, J.W.; Xu, Q.; Yang, K. The variations of free radical and index gas CO in spontaneous combustion of coal gangue under different oxygen concentrations. Fire Mater. 2021, 46, 549–559. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Yang, S.Q.; Zhou, B.Z.; Cai, J.W. Study on spontaneous combustion characteristics of waste coal gangue hill. Combust. Sci. Technol. 2023, 195, 713–727. [Google Scholar] [CrossRef]
- Querol, X.; Zhuang, X.; Font, O.; Izquierdo, M.; Alastuey, A.; Castro, I.; Drooge, B.L.; Moreno, T.; Grimalt, J.O.; Elvira, J.; et al. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. Int. J. Coal Geol. 2011, 85, 2–22. [Google Scholar] [CrossRef]
- Hu, Y.N.; Devegowda, D.; Striolo, A.; Phan, A.T.V.; Ho, T.A.; Civan, F.; Sigal, R. Microscopic dynamics of water and hydrocarbon in shale-kerogen pores of potentially mixed wettability. SPE J. 2015, 20, 112–124. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhang, Y.B.; Li, Y.Q.; Shi, X.Q.; Zhang, Y.J. Heat effects and kinetics of coal spontaneous combustion at various oxygen contents. Energy 2021, 234, 121299. [Google Scholar] [CrossRef]
- Wang, Q.B.; Ao, L.X.; Zhang, K. Research progress on the key influencing factors of spontaneous combustion of coal gangue and control methods. Clean Coal Technol. 2024, 30, 228–238. [Google Scholar]
- Wang, W.C.; Cao, Z.; Cao, Y.D.; Wu, Z.K.; Su, B.S. Study on adsorption-diffusion-seepage behavior of oxygen in coal gangue under the coupling of temperature and pressure. Mater. Today Commun. 2023, 36, 106817. [Google Scholar] [CrossRef]
- Huang, M.L.; Kang, J.Q.; Li, X.; Liu, X.; Fu, X.H. Microscopic mechanisms of competitive gas adsorption and diffusion during high volatile bituminous coal CO2-ECBM process. Fuel 2026, 404, 136265. [Google Scholar] [CrossRef]
- Wang, H.; Si, J.H.; Wang, C.Y.; Cheng, G.Y.; Zhang, Q.; Tang, X.C. Study on Adsorption Characteristics of CO2/N2 in Bituminous Coal with Different Volatile Contents. J. Chem. Eng. Technol. 2023, 13, 189–198. [Google Scholar]
- Wang, W.C.; Wang, P.; Cao, Z.; Li, J.P. Simulation of gas molecules permeation diffusion in coal structure and gangue slit structure. Safety in Coal Mines 2023, 54, 33–41. [Google Scholar]
- Zhang, J.; Li, Z.; Li, X.P.; Ren, X.P.; Zhou, C.H.; Li, T.Y. Molecular simulation of CO production and adsorption in a coal–kaolinite composite gangue slit model. RSC Adv. 2024, 14, 19301–19311. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.A.; Kazi, T.G.; Baig, J.A.; Arain, M.B.; Afridi, H.I. Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single heavy metals step extraction methods. Chemosphere 2020, 255, 126960. [Google Scholar] [CrossRef]
- Wen, S.; Xu, R.P.; Li, X.J.; Min, X.Y.; Zhang, J.N.; Zhang, H.Z.; Hu, X.; Li, J.Y. Soil reconstruction and heavy metals pollution risk in reclaimed cultivated land with coal gangue filling in mining areas. Catena 2023, 228, 107147. [Google Scholar] [CrossRef]
- Zhou, C.C.; Liu, G.J.; Fang, T.; Wu, D.; Lam, P.K.S. Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue. Fuel 2014, 135, 1–8. [Google Scholar] [CrossRef]
- Zhou, C.C.; Liu, G.J.; Xu, Z.Y.; Sun, H.; Lam, P.K.S. Retention mechanisms of ash compositions on toxic elements (Sb, Se and Pb) during fluidized bed combustion. Fuel 2018, 213, 98–105. [Google Scholar] [CrossRef]
- Zhao, J.; He, M.C. Theoretical study of heavy metals Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(001) surface. Appl. Surf. Sci. 2014, 317, 718–723. [Google Scholar] [CrossRef]
- Zhao, S.L.; Duan, Y.F.; Li, Y.N.; Liu, M.; Lu, J.H.; Ding, Y.J.; Gu, X.B.; Tao, J.; Du, M.S. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. Fuel 2018, 214, 597–606. [Google Scholar] [CrossRef]
- Cheng, H.Q.; Huang, Y.J.; Zhu, Z.C.; Yu, M.Z.; Xu, W.T.; Li, Z.Y.; Xiao, Y.X. Experimental and theoretical studies on the adsorption characteristics of Si/Al-based adsorbents for lead and cadmium in incineration flue gas. Sci. Total Environ. 2023, 858, 159895. [Google Scholar] [CrossRef]
- Li, J.F.; Zhong, Z.P.; Ma, Y.Y.; Lai, X.D.; Li, Z.Y. Adsorption mechanism of PbO/PbCl2 on kaolinite surfaces during coal combustion based on frontier orbital theory. Energy Fuels 2020, 34, 11258–11269. [Google Scholar] [CrossRef]
- Yang, Y.X.; Zhong, Z.P.; Li, J.F.; Du, H.R.; Li, Q.; Zheng, X.; Qi, R.Z.; Zhang, S.; Li, Z.Y. Low-consumption with efficient capture and characteristics of heavy metals from coal combustion by modified kaolin: Experimental and simulation studies. Fuel 2022, 332, 126094. [Google Scholar] [CrossRef]
- Serre, S.D.; Silcox, G.D. Adsorption of elemental mercury on the residual carbon in coal fly ash. Ind. Eng. Chem. Res. 2000, 39, 1723–1730. [Google Scholar] [CrossRef]
- Yan, G.; Gao, Z.Y.; Zhao, M.L.; Yang, W.J.; Ding, X.L. A comprehensive exploration of mercury adsorption sites on the carbonaceous surface: A DFT study. Fuel 2020, 282, 118781. [Google Scholar] [CrossRef]
- Hua, Q.J.; Wu, G.X.; Xu, W.; Zhao, X.W.; Li, D.; Dong, R.X. Adsorption mechanism of PbCl2 on defective zigzag unburned carbon. J. Fuel Chem. Technol. 2022, 50, 1141–1146. [Google Scholar]
- Xu, Q.; Yan, Y.; Jiao, Y.; Wu, J.X.; Yan, X.L.; Su, X.T. Highly efficient adsorption of Pb(II) by functionalized humic acid: Molecular experiment and theoretical calculation. Materials 2023, 16, 7290. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.W.; Ao, H.; Xu, L.J.; Ao, S.L.; Zhang, T.L.; Li, W.; Yang, Y.H. Quantum chemical DFT-based adsorption mechanism of Pb(II) on a modified biochar. Biomass Convers. Biorefinery 2024, 14, 13547–13562. [Google Scholar] [CrossRef]
- Xue, Z.Y.; Dong, L.; Zhong, Z.P.; Lai, X.D.; Huang, Y.J. Capture effect of Pb, Zn, Cd and Cr by intercalation-exfoliation modified montmorillonite during coal combustion. Fuel 2021, 290, 119980. [Google Scholar] [CrossRef]
- Gao, Z.F.; Long, H.M.; Dai, B.; Gao, X.P. Investigation of reducing particulate matter (PM) and heavy metals pollutions by adding a novel additive from metallurgical dust (MD) during coal combustion. J. Hazard. Mater. 2019, 373, 335–346. [Google Scholar] [CrossRef]
- Tang, C.W.; Pan, W.G.; Zhang, J.K.; Wang, W.H.; Sun, X.L. A comprehensive review on efficient utilization methods of High-alkali coals combustion in boilers. Fuel 2022, 316, 123269. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Cheng, L.M.; Ji, J.Q.; Zhang, W.G. Ash deposition behavior in co-combusting high-alkali coal and bituminous coal in a circulating fluidized bed. Appl. Therm. Eng. 2019, 149, 520–527. [Google Scholar] [CrossRef]
- Li, M.Q.; Zhang, Z.X.; Wu, X.J.; Fan, J.J. Experiment and mechanism study on the effect of kaolin on melting characteristics of zhundong coal ash. Energy Fuels 2016, 30, 7763–7769. [Google Scholar] [CrossRef]
- Wang, C.A.; Zhao, L.; Sun, R.J.; Hu, Y.Y.; Tang, G.T.; Chen, W.F.; Du, Y.B.; Che, D.F. Effects of silicon-aluminum additives on ash mineralogy, morphology, and transformation of sodium, calcium, and iron during oxy-fuel combustion of zhundong high-alkali coal. Int. J. Greenh. Gas Control 2019, 91, 102832. [Google Scholar] [CrossRef]
- Fan, Y.Q.; Lyu, Q.G.; Zhu, Z.P.; Zhang, H.X. The impact of additives upon the slagging and fouling during Zhundong coal gasification. J. Energy Inst. 2020, 93, 1651–1665. [Google Scholar] [CrossRef]
- Luo, J.Z.; Yi, H.C.; Wang, J.Q.; Wang, Z.Z.; Shen, B.X.; Xu, J.; Liu, L.J.; Shi, Q.Q.; Huang, C. Effect of alkaline metals (Na, Ca) on heavy metals adsorption by kaolinite during coal combustion: Experimental and DFT studies. Fuel 2023, 348, 128503. [Google Scholar] [CrossRef]
- Yu, Y.M.; Chen, M.; Zhu, J.M.; Sun, Y.; Zhou, Y.Z.; Chen, X.Y. Effects of mechanochemical modification on adsorption properties of Cd, Cu and Pb speciation in intrinsic heavy metals of coal gangue. Coal Convers. 2025, 48, 116–127. [Google Scholar]
- Liu, C.L.; Xia, J.P.; Fan, H.; Zheng, G.Y.; Liang, Y.F.; Ma, G.; Bai, X.L. Research progress on microwave technology in resource utilization of coal gangue. Appl. Chem. Ind. 2019, 48, 2246–2250. [Google Scholar]
- Zhang, N.; Tang, B.; Liu, X. Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete. Constr. Build. Mater. 2021, 288, 123022. [Google Scholar] [CrossRef]
- Xiong, J.B.; Zang, L.; Zha, J.F.; Mahmood, Q.; He, Z.L. Phosphate removal from secondary effluents using coal gangue loaded with zirconium oxide. Sustainability 2019, 11, 2453. [Google Scholar] [CrossRef]
- Han, L.N.; Ren, W.G.; Wang, B.; He, X.X.; Ma, L.J.; Huo, Q.H.; Wang, J.C.; Bao, W.R.; Chang, L.P. Extraction of SiO2 and Al2O3 from coal gangue activated by supercritical water. Fuel 2019, 253, 1184–1192. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, X.N.; Yao, X.H.; Han, R.C.; Li, L.L.; Zhang, M. Using chinese coal gangue as an ecological aggregate and its modification: A Review. Materials 2022, 15, 4495. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Z.; Liu, J.X.; Wang, J.X.; Liu, X.S.; Liu, Y.J. Research progress in environmental functional materials prepared from coal gangue. Chemistry 2022, 85, 1090–1095. [Google Scholar]
- Sun, Z.H.; Wang, Y.b.; Ma, S.X.; Li, M. Energy storage modification of coal gangue and its application in high-specific-energy batteries. Coal Sci. Technol. 2025, 53, 318–326. [Google Scholar]
- Ding, D.F.; Guo, L.; Mu, Y.D.; Ye, G.T.; Chen, L.G. Use of coal gangue to prepare refractory saggars with superior corrosion resistance and thermomechanical properties for the calcination of Li-Ion battery cathode materials. ACS Sustain. Chem. Eng. 2021, 9, 254–263. [Google Scholar] [CrossRef]
- Sun, Z.H.; Hu, Y.J.; Zeng, K.; Li, M.; Zhao, S.; Zhang, J.X. Turn “Waste” into wealth: MoO2@coal gangue electrocatalyst with amorphous/crystalline heterostructure for efficient Li–O2 batteries. Small 2023, 19, 2208145. [Google Scholar] [CrossRef]
- Yang, C.G.; Yin, J.Q.; Wu, L.Q.; Zeng, Q.Y.; Zhang, L.W. Research on the identification mechanism of coal gangue based on the differences of mineral components. ACS Omega 2023, 8, 48–55. [Google Scholar] [CrossRef]
- Wang, A.; Hao, F.; Liu, P.; Mo, L.; Liu, K.; Li, Y.; Cao, J.; Sun, D. Separation of calcined coal gangue and its influence on the performance of cement-based materials. J. Build. Eng. 2022, 51, 104293. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zhang, Y.; Sun, J.; Hao, Z. The thermal activation process of coal gangue selected from Zhungeer in China. J. Therm. Anal. Calorim. 2016, 126, 1559–1566. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, H.; Liu, Z.; Du, C. Natural coal gangue activated persulfate for tetracycline hydrochloride degradation: Mechanisms, theoretical calculations, and comparative study. J. Mol. Struct. 2023, 1291, 136097. [Google Scholar] [CrossRef]
- Dong, J.H.; Li, J.B.; Zheng, S.Y.; Chen, Q.; Wu, M.; Yi, P.; Huang, Y.; Pan, B. Understanding the potential of coal gangue as photocatalyst for antibiotic degradation: The role of abundant oxygen vacancies and electron-hole pairs. J. Water Process Eng. 2024, 68, 106382. [Google Scholar] [CrossRef]
- Li, C.Q.; Sun, Z.M.; Dong, X.B.; Zheng, S.L.; Dionysiou, D.D. Acetic acid functionalized TiO2/kaolinite composite photocatalysts with enhanced photocatalytic performance through regulating interfacial charge transfer. J. Catal. 2018, 367, 126–138. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, R.; Zhang, N.; Su, Y.; Liu, Z.; Gao, R.; Du, C. Insight to unprecedented catalytic activity of double-nitrogen defective metal-free catalyst: Key role of coal gangue. Appl. Catal. B Environ. 2020, 263, 118316. [Google Scholar] [CrossRef]
- Shuang, Z.; Chen, Y.W.; Zhu, Y.A.; Ge, M.Q. Peroxymonosulfate activated by FeOx/MnOy modified kaolinite for the degradation of polyvinyl alcohol: Catalytic performance, mechanism and DFT study. Appl. Surf. Sci. 2022, 605, 154723. [Google Scholar]
- Zhai, S.; Chen, Y.; Ge, M. Efficient polyvinyl alcohol degradation via peroxymonosulfate activated by natural illite supported CoNi3O4 nanosheets. Chem. Eng. J. 2023, 452, 139155. [Google Scholar] [CrossRef]
- Fermoso, J.; Corbet, T.; Ferrara, F.; Pettinau, A.; Maggio, E.; Sanna, A. Synergistic effects during the co-pyrolysis and co-gasification of high volatile bituminous coal with microalgae. Energy Convers. Manag. 2018, 164, 399–409. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Miao, H.Y.; Wang, Z.Q.; Wang, Z.F.; Sun, H.C.; Li, X.Y.; Liu, Z.Y.; Dong, L.B.; Zhao, J.T.; Huang, J.J.; Fang, Y.T. Effects of Na2CO3/Na2SO4 on catalytic gasification reactivity and mineral structure of coal gangue. Energy 2022, 255, 124498. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Niu, X.; Zhang, X.; Ma, X.; Zhang, K. Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization. Sustainability 2025, 17, 7135. https://doi.org/10.3390/su17157135
Wang X, Niu X, Zhang X, Ma X, Zhang K. Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization. Sustainability. 2025; 17(15):7135. https://doi.org/10.3390/su17157135
Chicago/Turabian StyleWang, Xinyue, Xuan Niu, Xinge Zhang, Xuelu Ma, and Kai Zhang. 2025. "Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization" Sustainability 17, no. 15: 7135. https://doi.org/10.3390/su17157135
APA StyleWang, X., Niu, X., Zhang, X., Ma, X., & Zhang, K. (2025). Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization. Sustainability, 17(15), 7135. https://doi.org/10.3390/su17157135