Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,968)

Search Parameters:
Keywords = bus operation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 997 KiB  
Article
Reactive Power Optimization Control Method for Distribution Network with Hydropower Based on Improved Discrete Particle Swarm Optimization Algorithm
by Tao Liu, Bin Jia, Shuangxiang Luo, Xiangcong Kong, Yong Zhou and Hongbo Zou
Processes 2025, 13(8), 2455; https://doi.org/10.3390/pr13082455 - 3 Aug 2025
Abstract
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems [...] Read more.
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems of increasing network loss and reactive voltage exceeding the limit have become increasingly prominent. Aiming at the above problems, this paper proposes a reactive power optimization control method for DN with hydropower based on an improved discrete particle swarm optimization (PSO) algorithm. Firstly, this paper analyzes the specific characteristics of small hydropower and establishes its mathematical model. Secondly, considering the constraints of bus voltage and generator RP output, an extended minimum objective function for system power loss is established, with bus voltage violation serving as the penalty function. Then, in order to solve the following problems: that the traditional discrete PSO algorithm is easy to fall into local optimization and slow convergence, this paper proposes an improved discrete PSO algorithm, which improves the global search ability and convergence speed by introducing adaptive inertia weight. Finally, based on the IEEE-33 buses distribution system as an example, the simulation analysis shows that compared with GA optimization, the line loss can be reduced by 3.4% in the wet season and 13.6% in the dry season. Therefore, the proposed method can effectively reduce the network loss and improve the voltage quality, which verifies the effectiveness and superiority of the proposed method. Full article
Show Figures

Figure 1

22 pages, 5734 KiB  
Article
Analytical Inertia Identification of Doubly Fed Wind Farm with Limited Control Information Based on Symbolic Regression
by Mengxuan Shi, Yang Li, Xingyu Shi, Dejun Shao, Mujie Zhang, Duange Guo and Yijia Cao
Appl. Sci. 2025, 15(15), 8578; https://doi.org/10.3390/app15158578 (registering DOI) - 1 Aug 2025
Viewed by 88
Abstract
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia [...] Read more.
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia assessment methods, where physics-based modeling requires full control transparency and data-driven approaches lack interpretability for inertia response analysis, thus failing to reconcile commercial confidentiality constraints with analytical needs, this paper proposes a symbolic regression framework for inertia evaluation in doubly fed wind farms with limited control information constraints. First, a dynamic model for the inertia response of DFIG wind farms is established, and a mathematical expression for the equivalent virtual inertia time constant under different control strategies is derived. Based on this, a nonlinear function library reflecting frequency-active power dynamic is constructed, and a symbolic regression model representing the system’s inertia response characteristics is established by correlating operational data. Then, sparse relaxation optimization is applied to identify unknown parameters, allowing for the quantification of the wind farm’s equivalent virtual inertia. Finally, the effectiveness of the proposed method is validated in an IEEE three-machine nine-bus system containing a doubly fed wind power cluster. Case studies show that the proposed method can fully utilize prior model knowledge and operational data to accurately assess the system’s inertia level with low computational complexity. Full article
Show Figures

Figure 1

24 pages, 6699 KiB  
Article
Protecting Power System Infrastructure Against Disruptive Agents Considering Demand Response
by Jesús M. López-Lezama, Nicolás Muñoz-Galeano, Sergio D. Saldarriaga-Zuluaga and Santiago Bustamante-Mesa
Computers 2025, 14(8), 308; https://doi.org/10.3390/computers14080308 - 30 Jul 2025
Viewed by 84
Abstract
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach [...] Read more.
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach to protecting power system infrastructure against deliberate attacks, taking into account the effects of demand response. The interaction between the disruptive agent and the system operator is modeled as a leader–follower Stackelberg game. The leader, positioned in the upper-level optimization problem, must decide which elements to render out of service, anticipating the reaction of the follower (the system operator), who occupies the lower-level problem. The Stackelberg game is reformulated as a bilevel optimization model and solved using a metaheuristic approach. To evaluate the applicability of the proposed method, a 24-bus test system was employed. The results demonstrate that integrating demand response significantly enhances system resilience, compelling the disruptive agent to adopt alternative attack strategies that lead to lower overall disruption. The proposed model serves as a valuable decision-support tool for system operators and planners seeking to improve the robustness and security of electrical networks against disruptive agents. Full article
Show Figures

Figure 1

19 pages, 4860 KiB  
Article
Load-Flow-Based Calculation of Initial Short-Circuit Currents for Converter-Based Power System
by Deepak Deepak, Anisatur Rizqi Oetoyo, Krzysztof Rudion, Christoph John and Hans Abele
Energies 2025, 18(15), 4045; https://doi.org/10.3390/en18154045 - 30 Jul 2025
Viewed by 280
Abstract
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These [...] Read more.
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These units have different fault current characteristics due to their physical properties and operation strategies. Consequently, the network’s short-circuit current profile is changing, both in terms of magnitude and injection time. Therefore, accurately estimating fault currents is crucial for reliable power system planning and operation. Traditionally, two calculation methods are employed: the equivalent voltage source (IEC 60909/VDE 0102) and the superimposition (complete) method. In this work, the assumptions, simplifications, and limitations from both types of methods are addressed. As a result, a new load-flow-based method is presented, improving the static modeling of generating units and the accuracy in the estimation of short-circuit currents. The method is tested for mixed generation types comprising of synchronous generators, and grid-following (current source) and grid-forming (voltage source before and current source after the current limit) converters. All methods are compared against detailed time-domain RMS simulations using a modified IEEE-39 bus system and a real network from ENTSO-E. It is shown that the proposed method provides the best accuracy in the calculation of initial short-circuit currents for converter-based power systems. Full article
Show Figures

Figure 1

33 pages, 709 KiB  
Article
Integrated Generation and Transmission Expansion Planning Through Mixed-Integer Nonlinear Programming in Dynamic Load Scenarios
by Edison W. Intriago Ponce and Alexander Aguila Téllez
Energies 2025, 18(15), 4027; https://doi.org/10.3390/en18154027 - 29 Jul 2025
Viewed by 231
Abstract
A deterministic Mixed-Integer Nonlinear Programming (MINLP) model for the Integrated Generation and Transmission Expansion Planning (IGTEP) problem is presented. The proposed framework is distinguished by its foundation on the complete AC power flow formulation, which is solved to global optimality using BARON, a [...] Read more.
A deterministic Mixed-Integer Nonlinear Programming (MINLP) model for the Integrated Generation and Transmission Expansion Planning (IGTEP) problem is presented. The proposed framework is distinguished by its foundation on the complete AC power flow formulation, which is solved to global optimality using BARON, a deterministic MINLP solver, which ensures the identification of truly optimal expansion strategies, overcoming the limitations of heuristic approaches that may converge to local optima. This approach is employed to establish a definitive, high-fidelity economic and technical benchmark, addressing the limitations of commonly used DC approximations and metaheuristic methods that often fail to capture the nonlinearities and interdependencies inherent in power system planning. The co-optimization model is formulated to simultaneously minimize the total annualized costs, which include investment in new generation and transmission assets, the operating costs of the entire generator fleet, and the cost of unsupplied energy. The model’s effectiveness is demonstrated on the IEEE 14-bus system under various dynamic load growth scenarios and planning horizons. A key finding is the model’s ability to identify the most economic expansion pathway; for shorter horizons, the optimal solution prioritizes strategic transmission reinforcements to unlock existing generation capacity, thereby deferring capital-intensive generation investments. However, over longer horizons with higher demand growth, the model correctly identifies the necessity for combined investments in both significant new generation capacity and further network expansion. These results underscore the value of an integrated, AC-based approach, demonstrating its capacity to reveal non-intuitive, economically superior expansion strategies that would be missed by decoupled or simplified models. The framework thus provides a crucial, high-fidelity benchmark for the validation of more scalable planning tools. Full article
Show Figures

Figure 1

25 pages, 4407 KiB  
Article
A Reproducible Pipeline for Leveraging Operational Data Through Machine Learning in Digitally Emerging Urban Bus Fleets
by Bernardo Tormos, Vicente Bermudez, Ramón Sánchez-Márquez and Jorge Alvis
Appl. Sci. 2025, 15(15), 8395; https://doi.org/10.3390/app15158395 - 29 Jul 2025
Viewed by 212
Abstract
The adoption of predictive maintenance in public transportation has gained increasing attention in the context of Industry 4.0. However, many urban bus fleets remain in early digital transformation stages, with limited historical data and fragmented infrastructures that hinder the implementation of data-driven strategies. [...] Read more.
The adoption of predictive maintenance in public transportation has gained increasing attention in the context of Industry 4.0. However, many urban bus fleets remain in early digital transformation stages, with limited historical data and fragmented infrastructures that hinder the implementation of data-driven strategies. This study proposes a reproducible Machine Learning pipeline tailored to such data-scarce conditions, integrating domain-informed feature engineering, lightweight and interpretable models (Linear Regression, Ridge Regression, Decision Trees, KNN), SMOGN for imbalance handling, and Leave-One-Out Cross-Validation for robust evaluation. A scheduled batch retraining strategy is incorporated to adapt the model as new data becomes available. The pipeline is validated using real-world data from hybrid diesel buses, focusing on the prediction of time spent in critical soot accumulation zones of the Diesel Particulate Filter (DPF). In Zone 4, the model continued to outperform the baseline during the production test, indicating its validity for an additional operational period. In contrast, model performance in Zone 3 deteriorated over time, triggering retraining. These results confirm the pipeline’s ability to detect performance drift and support predictive maintenance decisions under evolving operational constraints. The proposed framework offers a scalable solution for digitally emerging fleets. Full article
(This article belongs to the Special Issue Big-Data-Driven Advances in Smart Maintenance and Industry 4.0)
Show Figures

Figure 1

18 pages, 2954 KiB  
Article
A Multi-Objective Decision-Making Method for Optimal Scheduling Operating Points in Integrated Main-Distribution Networks with Static Security Region Constraints
by Kang Xu, Zhaopeng Liu and Shuaihu Li
Energies 2025, 18(15), 4018; https://doi.org/10.3390/en18154018 - 28 Jul 2025
Viewed by 255
Abstract
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling [...] Read more.
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling operating point. To address this problem, this paper proposes a multi-objective dispatch decision-making optimization model for the IMDN with static security region (SSR) constraints. Firstly, the non-sequential Monte Carlo sampling is employed to generate diverse operational scenarios, and then the key risk characteristics are extracted to construct the risk assessment index system for the transmission and distribution grid, respectively. Secondly, a hyperplane model of the SSR is developed for the IMDN based on alternating current power flow equations and line current constraints. Thirdly, a risk assessment matrix is constructed through optimal power flow calculations across multiple load levels, with the index weights determined via principal component analysis (PCA). Subsequently, a scheduling optimization model is formulated to minimize both the system generation costs and the comprehensive risk, where the adaptive grid density-improved multi-objective particle swarm optimization (AG-MOPSO) algorithm is employed to efficiently generate Pareto-optimal operating point solutions. A membership matrix of the solution set is then established using fuzzy comprehensive evaluation to identify the optimal compromised operating point for dispatch decision support. Finally, the effectiveness and superiority of the proposed method are validated using an integrated IEEE 9-bus and IEEE 33-bus test system. Full article
Show Figures

Figure 1

20 pages, 3844 KiB  
Article
Study on the Fast Transient Process of Primary Equipment Operation in UHV Fixed Series Capacitors Based on PEEC Method
by Baojiang Tian, Kai Xu, Yingying Wang, Pei Guo, Chao Xiao, Wei Han, Yiran Dong and Jingang Wang
Sensors 2025, 25(15), 4662; https://doi.org/10.3390/s25154662 - 27 Jul 2025
Viewed by 337
Abstract
This manuscript proposes a fast transient simulation method based on PEEC to model overvoltage caused by spark gap and disconnecting switch operations in UHV series compensation (FSC). It proposes a simulation method based on the Partial Element Equivalent Circuit (PEEC) for modeling the [...] Read more.
This manuscript proposes a fast transient simulation method based on PEEC to model overvoltage caused by spark gap and disconnecting switch operations in UHV series compensation (FSC). It proposes a simulation method based on the Partial Element Equivalent Circuit (PEEC) for modeling the fast transient processes associated with the operation of primary equipment in UHV FSC. Initially, a multi-conductor system model for both primary and secondary equipment on the cascade platform is developed. Then, the lumped components′ modeling of primary equipment and secondary equipment is added on the basis of multi-conductor model. Through simulation, the rapid transient overvoltage of primary equipment and the electromagnetic disturbance of the secondary system are analyzed. The simulation results provide insights into the distribution of fast transient overvoltage and the transient electromagnetic disturbance along the bus, from the low-voltage bus to the high-potential platform, under various primary equipment operating conditions. These findings provide a basis for theoretical analysis of the layout of sensor devices on platform and the design of electromagnetic shielding for interference-prone systems on platform. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 353
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

17 pages, 3191 KiB  
Article
Optimizing Graphene Ring Modulators: A Comparative Study of Straight, Bent, and Racetrack Geometries
by Pawan Kumar Dubey, Ashraful Islam Raju, Rasuole Lukose, Christian Wenger and Mindaugas Lukosius
Nanomaterials 2025, 15(15), 1158; https://doi.org/10.3390/nano15151158 - 27 Jul 2025
Viewed by 305
Abstract
Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach [...] Read more.
Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach critical coupling. This work presents a comprehensive comparative analysis of straight, bent, and racetrack bus geometries in graphene-on-silicon nitride (Si3N4) micro-ring modulators operating near 1.31 µm. Based on finite-difference time-domain simulation results, a proposed racetrack-based modulator structure demonstrates that extending the coupling region enables critical coupling at larger gaps—up to 300 nm—while preserving high modulation efficiency. With only 6–12% graphene coverage, this geometry achieves extinction ratios of up to 28 dB and supports electrical bandwidths approaching 90 GHz. Findings from this work highlight a new co-design framework for coupling geometry and graphene coverage, offering a pathway to high-speed and high-modulation-depth graphene photonic modulators suitable for scalable integration in next-generation photonic interconnects devices. Full article
(This article belongs to the Special Issue 2D Materials for High-Performance Optoelectronics)
Show Figures

Figure 1

34 pages, 1593 KiB  
Article
Enhancing Radial Distribution System Performance Through Optimal Allocation and Sizing of Photovoltaic and Wind Turbine Distribution Generation Units with Rüppell’s Fox Optimizer
by Yacine Bouali and Basem Alamri
Mathematics 2025, 13(15), 2399; https://doi.org/10.3390/math13152399 - 25 Jul 2025
Viewed by 210
Abstract
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution [...] Read more.
Renewable energy sources are being progressively incorporated into modern power grids to increase sustainability, stability, and resilience. To ensure that residential, commercial, and industrial customers have a dependable and efficient power supply, the transmission system must deliver electricity to end-users via the distribution network. To improve the performance of the distribution system, this study employs distributed generator (DG) units and focuses on determining their optimal placement, sizing, and power factor. A novel metaheuristic algorithm, referred to as Rüppell’s fox optimizer (RFO), is proposed to address this optimization problem under various scenarios. In the first scenario, where the DG operates at unity power factor, it is modeled as a photovoltaic system. In the second and third scenarios, the DG is modeled as a wind turbine system with fixed and optimal power factors, respectively. The performance of the proposed RFO algorithm is benchmarked against five well-known metaheuristic techniques to validate its effectiveness and competitiveness. Simulations are conducted on the IEEE 33-bus and IEEE 69-bus radial distribution test systems to demonstrate the applicability and robustness of the proposed approach. Full article
(This article belongs to the Special Issue Mathematical Methods Applied in Power Systems, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 706 KiB  
Article
Empirical Energy Consumption Estimation and Battery Operation Analysis from Long-Term Monitoring of an Urban Electric Bus Fleet
by Tom Klaproth, Erik Berendes, Thomas Lehmann, Richard Kratzing and Martin Ufert
World Electr. Veh. J. 2025, 16(8), 419; https://doi.org/10.3390/wevj16080419 - 25 Jul 2025
Viewed by 344
Abstract
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational [...] Read more.
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational data, how energy consumption and charging behavior affect battery aging and how operational strategies can be optimized to extend battery life under realistic conditions. This article presents an energy consumption analysis with respect to ambient temperatures and average vehicle speed based exclusively on real-world data of an urban bus fleet, providing a data foundation for range forecasting and infrastructure planning optimized for public transport needs. Additionally, the State of Charge (SOC) window during operation and vehicle idle time as well as the charging power were analyzed in this case study to formulate recommendations towards a more battery-friendly treatment. The central research question is whether battery-friendly operational strategies—such as reduced charging power and lower SOC windows—can realistically be implemented in daily public transport operations. The impact of the recommendations on battery lifetime is estimated using a battery aging model on drive cycles. Finally, the reduction in CO2 emissions compared to diesel buses is estimated. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

17 pages, 4225 KiB  
Article
Comparative Nitrene-Transfer Chemistry to Olefins Mediated by First-Row Transition Metal Catalysts Supported by a Pyridinophane Macrocycle with N4 Ligation
by Himanshu Bhatia, Lillian P. Adams, Ingrid Cordsiemon, Suraj Kumar Sahoo, Amitava Choudhury, Thomas R. Cundari and Pericles Stavropoulos
Molecules 2025, 30(15), 3097; https://doi.org/10.3390/molecules30153097 - 24 Jul 2025
Viewed by 391
Abstract
A 12-membered pyridinophane scaffold containing two pyridine and two tertiary amine residues is examined as a prototype ligand (tBuN4) for supporting nitrene transfer to olefins. The known [(tBuN4)MII(MeCN)2]2+ (M = Mn, Fe, Co, and [...] Read more.
A 12-membered pyridinophane scaffold containing two pyridine and two tertiary amine residues is examined as a prototype ligand (tBuN4) for supporting nitrene transfer to olefins. The known [(tBuN4)MII(MeCN)2]2+ (M = Mn, Fe, Co, and Ni) and [(tBuN4)CuI(MeCN)]+ cations are synthesized with the hexafluorophosphate counteranion. The aziridination of para-substituted styrenes with PhI=NTs (Ts = tosyl) in various solvents proved to be high yielding for the Cu(I) and Cu(II) reagents, in contrast to the modest efficacy of all other metals. For α-substituted styrenes, aziridination is accompanied by products of aziridine ring opening, especially in chlorinated solvents. Bulkier β-substituted styrenes reduce product yields, largely for the Cu(II) reagent. Aromatic olefins are more reactive than aliphatic congeners by a significant margin. Mechanistic studies (Hammett plots, KIE, and stereochemical scrambling) suggest that both copper reagents operate via sequential formation of two N–C bonds during the aziridination of styrene, but with differential mechanistic parameters, pointing towards two distinct catalytic manifolds. Computational studies indicate that the putative copper nitrenes derived from Cu(I) and Cu(II) are each associated with closely spaced dual spin states, featuring high spin densities on the nitrene N atom. The computed electrophilicity of the Cu(I)-derived nitrene reflects the faster operation of the Cu(I) manifold. Full article
Show Figures

Graphical abstract

16 pages, 5175 KiB  
Data Descriptor
From Raw GPS to GTFS: A Real-World Open Dataset for Bus Travel Time Prediction
by Aigerim Mansurova, Aigerim Mussina, Sanzhar Aubakirov, Aliya Nugumanova and Didar Yedilkhan
Data 2025, 10(8), 119; https://doi.org/10.3390/data10080119 - 23 Jul 2025
Viewed by 417
Abstract
The data descriptor introduces an open, high-resolution dataset of real-world bus operations in Astana, Kazakhstan, captured from GPS trajectories between July and September 2024. The data covers three high-frequency routes and have been processed into a GTFS format, enabling direct use with existing [...] Read more.
The data descriptor introduces an open, high-resolution dataset of real-world bus operations in Astana, Kazakhstan, captured from GPS trajectories between July and September 2024. The data covers three high-frequency routes and have been processed into a GTFS format, enabling direct use with existing transit modeling tools. Unlike typical static GTFS feeds, this dataset provides empirically observed dwell times, run times, and travel times, offering a detailed snapshot of operational variability in urban bus systems. The dataset supports applications in machine learning–based travel time prediction, timetable optimization, and transit reliability analysis, especially in settings where live feeds are unavailable. By releasing this dataset publicly, we aim to promote transparent, data-driven transport research in emerging urban contexts. Full article
Show Figures

Figure 1

20 pages, 13715 KiB  
Article
Dynamic Reconfiguration for Energy Management in EV and RES-Based Grids Using IWOA
by Hossein Lotfi, Mohammad Hassan Nikkhah and Mohammad Ebrahim Hajiabadi
World Electr. Veh. J. 2025, 16(8), 412; https://doi.org/10.3390/wevj16080412 - 23 Jul 2025
Viewed by 187
Abstract
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations [...] Read more.
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations (EVCSs), RESs, and capacitors. The goal is to minimize both Energy Not Supplied (ENS) and operational costs, particularly under varying demand conditions caused by EV charging in grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes. To improve optimization accuracy and avoid local optima, an improved Whale Optimization Algorithm (IWOA) is employed, featuring a mutation mechanism based on Lévy flight. The model also incorporates uncertainties in electricity prices and consumer demand, as well as a demand response (DR) program, to enhance practical applicability. Simulation studies on a 95-bus test system show that the proposed approach reduces ENS by 16% and 20% in the absence and presence of distributed generation (DG) and EVCSs, respectively. Additionally, the operational cost is significantly reduced compared to existing methods. Overall, the proposed framework offers a scalable and intelligent solution for smart grid integration and distribution network modernization. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

Back to TopTop