Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,483)

Search Parameters:
Keywords = budget system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4456 KiB  
Article
Assessing Climate Change Impacts on Groundwater Recharge and Storage Using MODFLOW in the Akhangaran River Alluvial Aquifer, Eastern Uzbekistan
by Azam Kadirkhodjaev, Dmitriy Andreev, Botir Akramov, Botirjon Abdullaev, Zilola Abdujalilova, Zulkhumar Umarova, Dilfuza Nazipova, Izzatullo Ruzimov, Shakhriyor Toshev, Erkin Anorboev, Nodirjon Rakhimov, Farrukh Mamirov, Inessa Gracheva and Samrit Luoma
Water 2025, 17(15), 2291; https://doi.org/10.3390/w17152291 - 1 Aug 2025
Viewed by 280
Abstract
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly [...] Read more.
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly understood. This study employed a three-dimensional MODFLOW-based groundwater flow model to assess climate change impacts on water budget components under the SSP5-8.5 scenario for 2020–2099. Model calibration yielded RMSE values between 0.25 and 0.51 m, indicating satisfactory performance. Simulations revealed that lateral inflows from upstream and side-valley alluvial deposits contribute over 84% of total inflow, while direct recharge from precipitation (averaging 120 mm/year, 24.7% of annual rainfall) and riverbed leakage together account for only 11.4%. Recharge occurs predominantly from November to April, with no recharge from June to August. Under future scenarios, winter recharge may increase by up to 22.7%, while summer recharge could decline by up to 100%. Groundwater storage is projected to decrease by 7.3% to 58.3% compared to 2010–2020, indicating the aquifer’s vulnerability to prolonged dry periods. These findings emphasize the urgent need for adaptive water management strategies and long-term monitoring to ensure sustainable groundwater use under changing climate conditions. Full article
(This article belongs to the Special Issue Climate Change Uncertainties in Integrated Water Resources Management)
Show Figures

Figure 1

27 pages, 2327 KiB  
Article
Experimental Study of Ambient Temperature Influence on Dimensional Measurement Using an Articulated Arm Coordinate Measuring Machine
by Vendula Samelova, Jana Pekarova, Frantisek Bradac, Jan Vetiska, Matej Samel and Robert Jankovych
Metrology 2025, 5(3), 45; https://doi.org/10.3390/metrology5030045 - 1 Aug 2025
Viewed by 123
Abstract
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute [...] Read more.
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute Arm 8312. The experiment was carried out in a laboratory setting simulating typical shop floor conditions through controlled temperature changes in the range of approximately 20–31 °C. A calibrated steel gauge block was used as a reference standard, allowing separation of the influence of the measuring system from that of the measured object. The results showed that the gauge block length changed in line with the expected thermal expansion, while the articulated arm coordinate measuring machine exhibited only a minor residual thermal drift and stable performance. The experiment also revealed a constant measurement offset of approximately 22 µm, likely due to calibration deviation. As part of the study, an uncertainty budget was developed, taking into account all relevant sources of influence and enabling a more realistic estimation of accuracy under operational conditions. The study confirms that modern carbon composite articulated arm coordinate measuring machines with integrated compensation can maintain stable measurement behavior even under fluctuating temperatures in controlled environments. Full article
Show Figures

Figure 1

40 pages, 910 KiB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Viewed by 437
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

21 pages, 2965 KiB  
Article
Inspection Method Enabled by Lightweight Self-Attention for Multi-Fault Detection in Photovoltaic Modules
by Shufeng Meng and Tianxu Xu
Electronics 2025, 14(15), 3019; https://doi.org/10.3390/electronics14153019 - 29 Jul 2025
Viewed by 237
Abstract
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity [...] Read more.
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity concurrent detection in existing robotic inspection systems, while stringent onboard compute budgets also preclude the adoption of bulky detectors. To resolve this accuracy–efficiency trade-off for dual-defect detection, we present YOLOv8-SG, a lightweight yet powerful framework engineered for mobile PV inspectors. First, a rigorously curated multi-modal dataset—RGB for stains and long-wave infrared for hotspots—is assembled to enforce robust cross-domain representation learning. Second, the HSV color space is leveraged to disentangle chromatic and luminance cues, thereby stabilizing appearance variations across sensors. Third, a single-head self-attention (SHSA) block is embedded in the backbone to harvest long-range dependencies at negligible parameter cost, while a global context (GC) module is grafted onto the detection head to amplify fine-grained semantic cues. Finally, an auxiliary bounding box refinement term is appended to the loss to hasten convergence and tighten localization. Extensive field experiments demonstrate that YOLOv8-SG attains 86.8% mAP@0.5, surpassing the vanilla YOLOv8 by 2.7 pp while trimming 12.6% of parameters (18.8 MB). Grad-CAM saliency maps corroborate that the model’s attention consistently coincides with defect regions, underscoring its interpretability. The proposed method, therefore, furnishes PV operators with a practical low-latency solution for concurrent bird-dropping and hotspot surveillance. Full article
Show Figures

Figure 1

17 pages, 1377 KiB  
Article
Technology Adoption Framework for Supreme Audit Institutions Within the Hybrid TAM and TOE Model
by Babalwa Ceki and Tankiso Moloi
J. Risk Financial Manag. 2025, 18(8), 409; https://doi.org/10.3390/jrfm18080409 - 23 Jul 2025
Viewed by 372
Abstract
Advanced technologies, such as robotic process automation, blockchain, and machine learning, increase audit efficiency. Nonetheless, some Supreme Audit Institutions (SAIs) have not undergone digital transformation. This research aimed to develop a comprehensive framework for supreme audit institutions to adopt and integrate emerging technologies [...] Read more.
Advanced technologies, such as robotic process automation, blockchain, and machine learning, increase audit efficiency. Nonetheless, some Supreme Audit Institutions (SAIs) have not undergone digital transformation. This research aimed to develop a comprehensive framework for supreme audit institutions to adopt and integrate emerging technologies into their auditing processes using a hybrid theoretical approach based on the TAM (Technology Acceptance Model) and TOE (Technology–Organisation–Environment) models. The framework was informed by insights from nineteen highly experienced experts in the field from eight countries. Through a two-round Delphi questionnaire, the experts provided valuable input on the key factors, challenges, and strategies for successful technology adoption by public sector audit organisations. The findings of this research reveal that technology adoption in SAIs starts with solid management support led by the chief technology officer. They must evaluate the IT infrastructure and readiness for advanced technologies, considering the budget and funding. Integrating solutions like the SAI of Ghana’s Audit Management Information System can significantly enhance audit efficiency. Continuous staff training is essential to build a positive attitude toward new technologies, covering areas like data algorithm auditing and big data analysis. Assessing the complexity and compatibility of new technologies ensures ease of use and cost-effectiveness. Continuous support from technology providers and monitoring advancements will keep SAIs aligned with technological developments, enhancing their auditing capabilities. Full article
(This article belongs to the Special Issue Financial Management)
Show Figures

Figure 1

26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 338
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

31 pages, 345 KiB  
Article
The Limits of a Success Story: Rethinking the Shenzhen Metro “Rail Plus Property” Model for Planning Sustainable Urban Transit in China
by Congcong Li and Natacha Aveline-Dubach
Land 2025, 14(8), 1508; https://doi.org/10.3390/land14081508 - 22 Jul 2025
Viewed by 473
Abstract
Land Value Capture (LVC) is increasingly being emphasized as a key mechanism for financing mass transit systems, promoted as a sustainability-oriented policy tool amid tightening public budgets. China has adopted a development-led approach to value capture through the “Rail plus Property (R + [...] Read more.
Land Value Capture (LVC) is increasingly being emphasized as a key mechanism for financing mass transit systems, promoted as a sustainability-oriented policy tool amid tightening public budgets. China has adopted a development-led approach to value capture through the “Rail plus Property (R + P)” model, drawing inspiration from the Hong Kong experience. The Shenzhen Metro’s “R + P” strategy has been widely acclaimed as the key to its reputation as “the only profitable transit company in mainland China without subsidies.” This paper questions this assumption and argues that the Shenzhen model is neither sustainable nor replicable, as its past performance depended on two exceptional conditions: an ascending phase of a real-estate cycle and unique institutional concessions from the central state. To substantiate this argument, we contrast Shenzhen’s value capture strategy with that of Nanjing—a provincial capital operating under routine institutional conditions, with governance and spatial structures broadly reflecting the prevailing urban development model in China. Using a comparative framework structured around three key dimensions of LVC—urban governance, risk management, and the transit company’s shift toward real estate—this paper reveals how distinct urban political economies give rise to contrasting value capture approaches: one expansionary, prioritizing short-term profit and rapid scale-up while downplaying risk management (Shenzhen); the other conservative, shaped by institutional constraints and characterized by reactive, incremental adjustments (Nanjing). These findings suggest that while LVC instruments offer valuable potential as a funding source for public transit, their long-term viability depends on early institutional embedding that aligns spatial, fiscal, and political interests, alongside well-developed project planning and capacity support in real estate expertise. Full article
20 pages, 2263 KiB  
Article
Optimizing the Sampling Strategy for Future Libera Radiance to Irradiance Conversions
by Mathew van den Heever, Jake J. Gristey and Peter Pilewskie
Remote Sens. 2025, 17(15), 2540; https://doi.org/10.3390/rs17152540 - 22 Jul 2025
Viewed by 244
Abstract
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term [...] Read more.
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term climate data record established by NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission. In addition to ensuring data continuity, Libera will introduce a novel split-shortwave spectral channel to quantify the partitioning of the outgoing reflected solar component into visible and near-infrared sub-components. However, converting these split-shortwave radiances into the ERB-relevant irradiances requires the development of split-shortwave Angular Distribution Models (ADMs), which demand extensive angular sampling. Here, we show how Rotating Azimuthal Plane Scan (RAPS) parameters—specifically operational cadence and azimuthal scan rate—affect the observational coverage of a defined scene and angular space. Our results show that for a fixed number of azimuthal rotations, a relatively slow azimuthal scan rate of 0.5° per second, combined with more time spent in the RAPS observational mode, provides a more comprehensive sampling of the desired scene and angular space. We also show that operating the Libera instrument in RAPS mode at a cadence between every fifth day and every other day for the first year of space-based operations will provide sufficient scene and angular sampling for the observations to achieve radiance convergence for the scenes that comprise more than half of the expected Libera observations. Obtaining radiance convergence is necessary for accurate ADMs. Full article
Show Figures

Graphical abstract

30 pages, 1042 KiB  
Article
A Privacy-Preserving Polymorphic Heterogeneous Security Architecture for Cloud–Edge Collaboration Industrial Control Systems
by Yukun Niu, Xiaopeng Han, Chuan He, Yunfan Wang, Zhigang Cao and Ding Zhou
Appl. Sci. 2025, 15(14), 8032; https://doi.org/10.3390/app15148032 - 18 Jul 2025
Viewed by 249
Abstract
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for [...] Read more.
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for sensitive industrial data processing. In contrast to existing work that treats scheduling and privacy as separate concerns, this paper proposes a unified polymorphic heterogeneous security architecture that integrates hybrid event–time triggered scheduling with adaptive privacy-preserving arbitration, specifically designed to address the unique challenges of cloud–edge collaboration ICSs where both security resilience and privacy preservation are paramount requirements. The architecture introduces three key innovations: (1) a hybrid event–time triggered scheduling algorithm with credibility assessment and heterogeneity metrics to mitigate common-mode escape scenarios, (2) an adaptive privacy budget allocation mechanism that balances privacy protection effectiveness with system availability based on attack activity levels, and (3) a unified framework that organically integrates privacy-preserving arbitration with heterogeneous redundancy management. Comprehensive evaluations using natural gas pipeline pressure control and smart grid voltage control systems demonstrate superior performance: the proposed method achieves 100% system availability compared to 62.57% for static redundancy and 86.53% for moving target defense, maintains 99.98% availability even under common-mode attacks (102 probability), and consistently outperforms moving target defense methods integrated with state-of-the-art detection mechanisms (99.7790% and 99.6735% average availability when false data deviations from true values are 5% and 3%, respectively) across different attack detection scenarios, validating its effectiveness in defending against availability attacks and privacy leakage threats in cloud–edge collaboration environments. Full article
Show Figures

Figure 1

20 pages, 1236 KiB  
Article
A Smart Housing Recommender for Students in Timișoara: Reinforcement Learning and Geospatial Analytics in a Modern Application
by Andrei-Sebastian Nicula, Andrei Ternauciuc and Radu-Adrian Vasiu
Appl. Sci. 2025, 15(14), 7869; https://doi.org/10.3390/app15147869 - 14 Jul 2025
Viewed by 382
Abstract
Rental accommodations near European university campuses keep rising in price, while listings remain scattered and opaque. This paper proposes a solution that overcomes these issues by integrating real-time open listing ingestion, zone-level geospatial enrichment, and a reinforcement-learning recommender into one streamlined analysis pipeline. [...] Read more.
Rental accommodations near European university campuses keep rising in price, while listings remain scattered and opaque. This paper proposes a solution that overcomes these issues by integrating real-time open listing ingestion, zone-level geospatial enrichment, and a reinforcement-learning recommender into one streamlined analysis pipeline. On demand, the system updates price statistics for most districts in Timișoara and returns five budget-safe offers in a short amount of time. By combining adaptive ranking with new spatial metrics, it significantly cuts search time and removes irrelevant offers in pilot trials. Moreover, this implementation is fully open-data, open-source, and free, designed specifically for students to ensure accessibility, transparency, and cost efficiency. Full article
Show Figures

Figure 1

30 pages, 795 KiB  
Article
A Novel Heterogeneous Federated Edge Learning Framework Empowered with SWIPT
by Yinyin Fang, Sheng Shu, Yujun Zhu, Heju Li and Kunkun Rui
Symmetry 2025, 17(7), 1115; https://doi.org/10.3390/sym17071115 - 11 Jul 2025
Viewed by 215
Abstract
Federated edge learning (FEEL) is an innovative approach that facilitates collaborative training among numerous distributed edge devices while eliminating the need to transfer sensitive information. However, the practical deployment of FEEL faces significant constraints, owing to the limited and asymmetric computational and communication [...] Read more.
Federated edge learning (FEEL) is an innovative approach that facilitates collaborative training among numerous distributed edge devices while eliminating the need to transfer sensitive information. However, the practical deployment of FEEL faces significant constraints, owing to the limited and asymmetric computational and communication resources of these devices, along with their energy availability. To this end, we propose a novel asymmetry-tolerant training approach for FEEL, enabled via simultaneous wireless information and power transfer (SWIPT). This framework leverages SWIPT to offer sustainable energy support for devices while enabling them to train models with varying intensities. Given a limited energy budget, we highlight the critical trade-off between heterogeneous local training intensities and the quality of wireless transmission, suggesting that the design of local training and wireless transmission should be closely integrated, rather than treated as separate entities. To elucidate this perspective, we rigorously derive a new explicit upper bound that captures the combined impact of local training accuracy and the mean square error of wireless aggregation on the convergence performance of FEEL. To maximize overall system performance, we formulate two key optimization problems: the first aims to maximize the energy harvesting capability among all devices, while the second addresses the joint learning–communication optimization under the optimal energy harvesting solution. Comprehensive experiments demonstrate that our proposed framework achieves significant performance improvements compared to existing baselines. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

32 pages, 2917 KiB  
Article
Self-Adapting CPU Scheduling for Mixed Database Workloads via Hierarchical Deep Reinforcement Learning
by Suchuan Xing, Yihan Wang and Wenhe Liu
Symmetry 2025, 17(7), 1109; https://doi.org/10.3390/sym17071109 - 10 Jul 2025
Viewed by 341
Abstract
Modern database systems require autonomous CPU scheduling frameworks that dynamically optimize resource allocation across heterogeneous workloads while maintaining strict performance guarantees. We present a novel hierarchical deep reinforcement learning framework augmented with graph neural networks to address CPU scheduling challenges in mixed database [...] Read more.
Modern database systems require autonomous CPU scheduling frameworks that dynamically optimize resource allocation across heterogeneous workloads while maintaining strict performance guarantees. We present a novel hierarchical deep reinforcement learning framework augmented with graph neural networks to address CPU scheduling challenges in mixed database environments comprising Online Transaction Processing (OLTP), Online Analytical Processing (OLAP), vector processing, and background maintenance workloads. Our approach introduces three key innovations: first, a symmetric two-tier control architecture where a meta-controller allocates CPU budgets across workload categories using policy gradient methods while specialized sub-controllers optimize process-level resource allocation through continuous action spaces; second, graph neural network-based dependency modeling that captures complex inter-process relationships and communication patterns while preserving inherent symmetries in database architectures; and third, meta-learning integration with curiosity-driven exploration enabling rapid adaptation to previously unseen workload patterns without extensive retraining. The framework incorporates a multi-objective reward function balancing Service Level Objective (SLO) adherence, resource efficiency, symmetric fairness metrics, and system stability. Experimental evaluation through high-fidelity digital twin simulation and production deployment demonstrates substantial performance improvements: 43.5% reduction in p99 latency violations for OLTP workloads and 27.6% improvement in overall CPU utilization, with successful scaling to 10,000 concurrent processes maintaining sub-3% scheduling overhead. This work represents a significant advancement toward truly autonomous database resource management, establishing a foundation for next-generation self-optimizing database systems with implications extending to broader orchestration challenges in cloud-native architectures. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

37 pages, 4065 KiB  
Article
Cost Utility Modeling of Reducing Waiting Times for Elective Surgical Interventions: Case Study of Egyptian Initiative
by Ahmad Nader Fasseeh, Amany Ahmed Salem, Ahmed Yehia Khalifa, Asmaa Khairy ElBerri, Nada Abaza, Baher Elezbawy, Naeema Al Qasseer, Balázs Nagy, Zoltán Kaló, Bertalan Németh and Rok Hren
Healthcare 2025, 13(13), 1619; https://doi.org/10.3390/healthcare13131619 - 7 Jul 2025
Viewed by 548
Abstract
Background/Objectives: Reducing waiting times for elective surgeries remains a critical global healthcare challenge that negatively impacts patient outcomes and economic productivity. This study develops an adaptable cost-utility modeling framework for assessing the cost-effectiveness (CE) of reducing waiting time for elective surgeries in data-limited [...] Read more.
Background/Objectives: Reducing waiting times for elective surgeries remains a critical global healthcare challenge that negatively impacts patient outcomes and economic productivity. This study develops an adaptable cost-utility modeling framework for assessing the cost-effectiveness (CE) of reducing waiting time for elective surgeries in data-limited environments. Methods: We evaluated the economic and health impacts of Egypt’s recent initiative aimed at decreasing surgical waiting lists. The study conducts a CE analysis of the initiative by estimating incremental costs (expressed in Egyptian Pounds—EGP) and outcomes (expressed in quality-adjusted life years—QALYs) before and after its implementation, performs a benefit–cost analysis to quantify the initiative’s return on investment, and employs a budget share method to evaluate catastrophic health expenditure (CHE). The analysis included five elective surgical interventions: open-heart surgery, cardiac catheterization, cochlear implantation, ophthalmic surgery, and orthopedic (joint replacement) surgery. Results: The main research outcomes of the study are as follows. The initiative resulted in incremental cost-effectiveness ratios of EGP 46,795 (societal perspective) and EGP 56,094 (payer perspective) per QALY, both within acceptable CE thresholds. Most of the evaluated interventions demonstrated substantial returns on the investment. Without public funding, more than 90% of patients faced CHE, indicating considerable financial barriers to elective surgeries. Conclusions: Egypt’s initiative to reduce waiting times was deemed cost-effective. Our adaptable modeling framework could be practical for similar evaluations in low/middle-income countries, especially where data is limited. Scaling up the initiative to include additional curative and preventive services and integrating it with broader health system reforms in Egypt is strongly recommended. Full article
(This article belongs to the Section Health Assessments)
Show Figures

Figure 1

19 pages, 1891 KiB  
Article
Comparative Study on Energy Consumption of Neural Networks by Scaling of Weight-Memory Energy Versus Computing Energy for Implementing Low-Power Edge Intelligence
by Ilpyung Yoon, Jihwan Mun and Kyeong-Sik Min
Electronics 2025, 14(13), 2718; https://doi.org/10.3390/electronics14132718 - 5 Jul 2025
Cited by 1 | Viewed by 613
Abstract
Energy consumption has emerged as a critical design constraint in deploying high-performance neural networks, especially on edge devices with limited power resources. In this paper, a comparative study is conducted for two prevalent deep learning paradigms—convolutional neural networks (CNNs), exemplified by ResNet18, and [...] Read more.
Energy consumption has emerged as a critical design constraint in deploying high-performance neural networks, especially on edge devices with limited power resources. In this paper, a comparative study is conducted for two prevalent deep learning paradigms—convolutional neural networks (CNNs), exemplified by ResNet18, and transformer-based large language models (LLMs), represented by GPT3-small, Llama-7B, and GPT3-175B. By analyzing how the scaling of memory energy versus computing energy affects the energy consumption of neural networks with different batch sizes (1, 4, 8, 16), it is shown that ResNet18 transitions from a memory energy-limited regime at low batch sizes to a computing energy-limited regime at higher batch sizes due to its extensive convolution operations. On the other hand, GPT-like models remain predominantly memory-bound, with large parameter tensors and frequent key–value (KV) cache lookups accounting for most of the total energy usage. Our results reveal that reducing weight-memory energy is particularly effective in transformer architectures, while improving multiply–accumulate (MAC) efficiency significantly benefits CNNs at higher workloads. We further highlight near-memory and in-memory computing approaches as promising strategies to lower data-transfer costs and enhance power efficiency in large-scale deployments. These findings offer actionable insights for architects and system designers aiming to optimize artificial intelligence (AI) performance under stringent energy budgets on battery-powered edge devices. Full article
Show Figures

Figure 1

18 pages, 56511 KiB  
Article
A CMOS Current Reference with Novel Temperature Compensation Based on Geometry-Dependent Threshold Voltage Effects
by Francesco Gagliardi, Andrea Ria, Massimo Piotto and Paolo Bruschi
Electronics 2025, 14(13), 2698; https://doi.org/10.3390/electronics14132698 - 3 Jul 2025
Viewed by 316
Abstract
Next-generation smart sensing devices necessitate on-chip integration of power-efficient reference circuits. The latters are required to provide other circuit blocks with highly reliable bias signals, even in the presence of temperature shifts and supply voltage disturbances, while draining a small fraction of the [...] Read more.
Next-generation smart sensing devices necessitate on-chip integration of power-efficient reference circuits. The latters are required to provide other circuit blocks with highly reliable bias signals, even in the presence of temperature shifts and supply voltage disturbances, while draining a small fraction of the overall power budget. In particular, it is especially challenging to design current references with enhanced robustness and efficiency; hence, thorough exploration of novel architectures and design approaches is needed for this type of circuits. In this work, we propose a novel CMOS-only current reference, achieving temperature compensation by exploiting geometry dependences of the threshold voltage (specifically, the reverse short-channel effect and the narrow-channel effect). This allows reaching first-order temperature compensation within a single current reference core. Implemented in 0.18 µm CMOS, a version of the proposed current reference designed to deliver 141 nA (with 377 nW of total power consumption) achieved an average temperature coefficient equal to 194 ppm/°C (from −20 °C to 80 °C) and an average line sensitivity of −0.017%/V across post-layout statistical Monte Carlo simulations. Based on such findings, the newly proposed design methodology stands out as a noteworthy solution to design robust current references for power-constrained mixed-signal systems-on-chip. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

Back to TopTop