Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = brewery by-product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2470 KiB  
Review
Biotechnology in Agro-Industry: Valorization of Agricultural Wastes, By-Products and Sustainable Practices
by Sandra de Oliveira Silva, Amanda Kelly Cristiano Mafra, Franciele Maria Pelissari, Leandro Rodrigues de Lemos and Gustavo Molina
Microorganisms 2025, 13(8), 1789; https://doi.org/10.3390/microorganisms13081789 - 31 Jul 2025
Viewed by 340
Abstract
Agricultural and industrial residues are increasingly recognized as valuable resources for sustainable innovation, offering significant potential for biotechnological applications. By integrating waste valorization into production systems, this approach aims to mitigate environmental impacts and enhance economic value across various sectors. The findings underline [...] Read more.
Agricultural and industrial residues are increasingly recognized as valuable resources for sustainable innovation, offering significant potential for biotechnological applications. By integrating waste valorization into production systems, this approach aims to mitigate environmental impacts and enhance economic value across various sectors. The findings underline the critical need for further research and policy support to scale these solutions, advancing global sustainability goals through innovative resource management. In this perspective, this article reviews the utilization of key by-products, including coffee residues, sugarcane bagasse, whey, cassava wastewater (manipueira), and brewery waste, highlighting their transformation into high-value products such as biofuels, bioplastics, enzymes, bioactive compounds, and organic fertilizers. The discussion presented encompasses the challenges and opportunities in leveraging these residues, emphasizing the role of advanced technologies, intellectual property, and circular economy principles. Full article
Show Figures

Figure 1

15 pages, 1686 KiB  
Article
Effect of Sugar Beet Molasses and Compost from Brewery Sludge on Celery (Apium graveolens var. rapaceum) Yield and Nutrient Uptake
by Boris Adamović, Đorđe Vojnović, Ivana Maksimović, Marina Putnik Delić, Dragan Kovačević, Ranko Čabilovski, Milorad Živanov, Maja Ignjatov, Janko Červenski and Dragana Latković
Horticulturae 2025, 11(7), 836; https://doi.org/10.3390/horticulturae11070836 - 15 Jul 2025
Viewed by 293
Abstract
The rising cost of mineral fertilizers and the decreasing availability of manure in vegetable farming highlight the need for alternative fertilization strategies. To examine the possibility of applying byproducts from the food processing industry, sugar beet molasses, and compost from brewery sewage sludge [...] Read more.
The rising cost of mineral fertilizers and the decreasing availability of manure in vegetable farming highlight the need for alternative fertilization strategies. To examine the possibility of applying byproducts from the food processing industry, sugar beet molasses, and compost from brewery sewage sludge in celery production, the field experiment was conducted over two years, using a randomized complete block design with three replications. The examined variants were T0—control (without fertilizer); T1—mineral fertilizer; T2—cattle manure; T3—sheep manure; T4—poultry manure; T5—supercompost; and T6—molasses. In the first year, there was no significant difference between T1 and T5 in thickened root yield, while these two variants achieved significantly higher yield compared with other variants. In both years, the highest leaf yield was achieved with T1, while no significant difference was found between T5, T6, and conventional organic fertilizers of animal origin. The highest amount of N was absorbed by roots in T1 (42.0 kg/ha and 51.2 kg/ha, respectively), while the lowest amount was absorbed in T0 (25.5 kg/ha and 26.7 kg/ha, respectively). A significantly higher amount of P2O5 was absorbed by roots in all organic fertilizer variants compared to T0 and T1. In both years, of all the nutrients, K2O was the most absorbed nutrient by the celery root, while CaO was absorbed in greater quantities than N. Based on two years of research, it can be concluded that compost from brewery sludge and sugar beet molasses can be used as an alternative source of nutrients for plants. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

14 pages, 1224 KiB  
Article
Biotechnological Valorization of Brewer’s Spent Grain from Old Bread and Barley Malt: Fermentative Potential of Saccharomyces cerevisiae
by Anita Lalić, Jolita Jagelavičiūtė, Zorana Trivunović, Marina Marić, Andrea Karlović and Loreta Bašinskienė
Fermentation 2025, 11(7), 382; https://doi.org/10.3390/fermentation11070382 - 2 Jul 2025
Viewed by 950
Abstract
Brewer’s spent grain (BSG), the most abundant by-product from breweries, is mainly discarded or used as animal feed. However, to increase the brewing sustainability, biotechnological utilization of BSG is a much preferred solution. This study examined the fermentation of BSG, composed of old [...] Read more.
Brewer’s spent grain (BSG), the most abundant by-product from breweries, is mainly discarded or used as animal feed. However, to increase the brewing sustainability, biotechnological utilization of BSG is a much preferred solution. This study examined the fermentation of BSG, composed of old wheat bread and barley malt, by metabolic activity of Saccharomyces cerevisiae on both hydrolyzed and non-hydrolyzed media. Enzymatic hydrolysis with Viscozyme® W FG for 6 h was selected as the most effective and was used in the further research step to prepare the hydrolyzed BSG-based medium. Both media supported almost uniform yeast growth (numbers of S. cerevisiae cells was about 8 log10 CFU/g) in an acidic environment (pH value was about 5), but fermentation of hydrolyzed BSG resulted in 20% higher sugar consumption and 10% higher total titratable acidity. These findings underscore the potential of enzymatic pretreatment to improve fermentation performance. The adaptability of S. cerevisiae and the fermentability of both substrates suggest promising potential for scalable BSG valorization strategies in circular food systems. Full article
(This article belongs to the Special Issue Wine and Beer Fermentation, 2nd Edition)
Show Figures

Figure 1

20 pages, 5341 KiB  
Article
Characterization of Processes Aimed at Maximizing the Reuse of Brewery’s Spent Grain: Novel Biocomposite Materials, High-Added-Value Molecule Extraction, Codigestion and Composting
by Jessica Di Mario, Agnese Bertoldi, Dario Priolo, Eleonora Calzoni, Alberto Maria Gambelli, Franco Dominici, Marco Rallini, Daniele Del Buono, Debora Puglia, Carla Emiliani and Giovanni Gigliotti
Recycling 2025, 10(4), 124; https://doi.org/10.3390/recycling10040124 - 21 Jun 2025
Cited by 1 | Viewed by 719
Abstract
Brewery’s spent grain (BSG) consists of the largest by-product by volume in the beer production sector and offers potential for both bio-composite material production, high-added-value molecular extraction and bioenergy recovery. Aiming at exploring the ideal biorefinery approach for this agro-industrial residual, the present [...] Read more.
Brewery’s spent grain (BSG) consists of the largest by-product by volume in the beer production sector and offers potential for both bio-composite material production, high-added-value molecular extraction and bioenergy recovery. Aiming at exploring the ideal biorefinery approach for this agro-industrial residual, the present study experimentally investigated several methodologies to enhance the reuse of BSG and proposed a scheme of biorefinery focused on it. According to it, BSGs were firstly tested to produce high-added-value byproducts, such as protein hydrolysates and for the extraction of lignin via ionic liquids-based methods. The residuals were then used for biogas/biomethane production via anaerobic codigestion. The different matrices were rearranged in varying mixtures, aiming at ensuring high availability of nutrients for methanogens, thus achieving higher energy production than what achievable with untreated BSG. For the scope, further agro-industrial wastes were considered. The resulted digestate was finally composted. Untreated BSGs were also directly tested as fillers for bio-composite material production (in a mixture with PHB). Different concentrations were tested and the mechanical properties of each sample were compared with those of pure PHB. Disintegration tests were finally carried out to measure the improved biodegradability of the produced bio-composite material. Full article
Show Figures

Figure 1

17 pages, 2135 KiB  
Article
Overcoming the Difficulties of Thermophilic Co-Digestion of Sewage Sludge and Beverage Industry Wastes in the Presence of Zeolite
by Aleksandra Szaja, Agnieszka Montusiewicz and Magdalena Lebiocka
Energies 2025, 18(8), 2085; https://doi.org/10.3390/en18082085 - 17 Apr 2025
Viewed by 462
Abstract
The thermophilic anaerobic bioconversion of various wastes is still challenging, mainly due to process instability and economic profitability. This group includes orange wastes (OWs) and brewery spent grain (BSG), the main by-products generated by the beverage industry. In this study, a strategy allowing [...] Read more.
The thermophilic anaerobic bioconversion of various wastes is still challenging, mainly due to process instability and economic profitability. This group includes orange wastes (OWs) and brewery spent grain (BSG), the main by-products generated by the beverage industry. In this study, a strategy allowing for improving methane production by the multicomponent co-digestion of sewage sludge (SS), OW, and BSG was proposed. To overcome the difficulties in the thermophilic co-digestion of those wastes, the application of natural zeolite (Z), i.e., clinoptilolite, was proposed. The experiment was performed in the batch mode at a temperature of 55 °C. Four experimental series were conducted with differing feedstock compositions, one of which was a control supplied only by SS. As compared with the control, in the series supplied by OW and OW with BSG, methane production decreased by 20% and 13%, respectively. In turn, significant improvements were achieved in the presence of Z. The most beneficial results were observed in the reactor supplied by SS, OW, and Z, characterized by a methane yield of 420.2 mLCH4/gVS, which is an increase of almost 14% as compared with the control. In this case, significantly improved stability parameters, as well as decreased presence of inhibitors, i.e., limonene and phenols, were achieved. It was also characterized by enhanced energy balance by 69%, as compared with the control. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 3282 KiB  
Article
Environmental Sustainability of Brewers’ Spent Grains Composting: Effect of Turning Strategies and Mixtures Composition on Greenhouse Gas Emissions
by Davide Assandri, Ginevra Giacomello, Angela Bianco, Giacomo Zara, Marilena Budroni and Niccolò Pampuro
Agronomy 2025, 15(4), 771; https://doi.org/10.3390/agronomy15040771 - 21 Mar 2025
Viewed by 1213
Abstract
The global production of brewers’ spent grains (BSG) is 37 million tons yearly. Composting represents an eco-friendly method to manage and valorize organic by-products in a circular economy model. This project aims to compare two BSG bin-composting mixtures (BSG and wheat straw with [...] Read more.
The global production of brewers’ spent grains (BSG) is 37 million tons yearly. Composting represents an eco-friendly method to manage and valorize organic by-products in a circular economy model. This project aims to compare two BSG bin-composting mixtures (BSG and wheat straw with pig slurry solid fraction, MIX1, or sheep manure, MIX2) and approaches (manual turning, MT, and static composting, ST). The two mixtures’ physicochemical characteristics and greenhouse gas (GHG) emissions were assessed during the process. The evolution of physicochemical properties is reported in detail. Headspace samples of GHG emissions were collected and analyzed with gas chromatography coupled with specific detectors. Carbon dioxide (CO2) emissions were 34.3 ± 0.03 and 31.0 ± 0.06 g C kg−1 fresh matter (FM) for MIX1-MT and MIX2-MT, and 28.8 ± 0.01 and 31.2 ± 0.02 g Ckg−1 FM for MIX1-ST and MIX2-ST. Methane emissions were negligible (all conditions < 0.086 ± 0.00 mg C kg−1 FM). Nitrous oxide (N2O) emissions from composting are affected by the substrate, bulking material, pile dimension, and manure. Particularly, the total emissions of N2O, estimated as CO2 equivalents, were 45.8 ± 0.2 and 63.0 ± 0.4 g CO2 eq kg−1 FM for MIX1-MT and MIX1-ST, respectively. In both composting approaches, MIX2 showed a low CO2 equivalent (1.8 ± 0.02 and 9.9 ± 0.05 g CO2 eq kg−1 FM for MT and ST), likely due to incomplete decomposition. The bin-composting process represents a solution for recycling and reusing organic waste and livestock manure in small to medium-sized breweries. The solid fraction of the pig slurry resulted in the most suitable manure. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

18 pages, 973 KiB  
Article
Assessing the Potential of Brewer’s Spent Grain to Enhance Cookie Physicochemical and Nutritional Profiles
by Marisa Nicolai, Maria Lídia Palma, Ricardo Reis, Rúben Amaro, Jaime Fernandes, Elsa M. Gonçalves, Mafalda Silva, Manuela Lageiro, Adília Charmier, Elisabete Maurício, Patrícia Branco, Carla Palma, Joaquim Silva, Maria Cristiana Nunes, Pedro C. B. Fernandes and Paula Pereira
Foods 2025, 14(1), 95; https://doi.org/10.3390/foods14010095 - 2 Jan 2025
Cited by 1 | Viewed by 2814
Abstract
Brewers’ spent grain (BSG), the major by-product of the brewery industry, has high nutritional value, making it suitable for upcycling into products such as healthy, and sustainable cookies. Nonetheless, the incorporation of BSG in cookies can impact their quality, given the increased fiber [...] Read more.
Brewers’ spent grain (BSG), the major by-product of the brewery industry, has high nutritional value, making it suitable for upcycling into products such as healthy, and sustainable cookies. Nonetheless, the incorporation of BSG in cookies can impact their quality, given the increased fiber and protein content. This work explored the effect of replacing wheat flour with BSG at 50% and 75% in cookie formulations, focusing on physical, chemical, and sensory properties. The dietary fiber, lipid, and protein content of cookies improved considerably with the highest incorporation of BSG, increasing from 6.37% to 15.54%, 9.95% to 13.06%, and 9.59% to 12.29%, respectively. Conversely, moisture and water activity decreased from 11.03% to 3.37% and 0.742 to 0.506, respectively, forecasting a lower risk of microbial contamination and increased shelf-life. The incorporation of BSG in cookies resulted in decreased brightness and increased hardness, from 40 N to 97 N. Moreover, colorimetric shifts among the control cookies and the two BSG-rich formulations could be easily identified by an untrained observer. Sensory evaluation showed that cookies with 50% BSG retained acceptable sensory characteristics, suggesting potential for further development. Overall, BSG enhances the nutritional profile of cookies with no excessive detrimental impact on sensory features. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

18 pages, 2796 KiB  
Article
Biomethane Production from Untreated and Treated Brewery’s Spent Grain: Feasibility of Anaerobic Digestion After Pretreatments According to Biogas Yield and Energy Efficiency
by Jessica Di Mario, Alberto Maria Gambelli and Giovanni Gigliotti
Agronomy 2024, 14(12), 2980; https://doi.org/10.3390/agronomy14122980 - 14 Dec 2024
Cited by 2 | Viewed by 1289
Abstract
The increasing global energy demand, coupled with the urgent need to reduce CO2 emissions, has intensified the search for renewable energy sources. Biogas, produced from agro-industrial biomass, presents a viable solution. In beer production, brewery’s spent grain (BSG), the largest by-product by [...] Read more.
The increasing global energy demand, coupled with the urgent need to reduce CO2 emissions, has intensified the search for renewable energy sources. Biogas, produced from agro-industrial biomass, presents a viable solution. In beer production, brewery’s spent grain (BSG), the largest by-product by volume, offers potential for bioenergy recovery. This study applied a biorefinery approach to BSG, extracting protein hydrolysates (PH) through mild alkaline hydrolysis and nanostructured lignin (LN) via the Ionic Liquid Method. The objective was to assess biogas production from the residual biorefinery biomass and evaluate the co-digestion of BSG with Olive Mill Wastewater (OMWW) and Olive Pomace (OP), by-products of the olive oil industry. Biogas was produced in lab-scale batch reactors and the quantity of biogas produced was measured via the volumetric method. Conversely, the amount of biomethane obtained was evaluated by introducing, in the production chain, an alkaline trap. Biogas yields were the highest for untreated BSG (1075.6 mL), co-digested BSG with OMWW (1130.1 mL), and BSG residue after PH extraction (814.9 mL). The concentration of biomethane obtained in the various samples ranged from 54.5 vol % (OMWW + BSG) to 76.59 vol % (BSG). An energy balance analysis considering both the theoretical energy consumed by a semi-continuous anaerobic digestion bioreactor and the energy produced as bio-CH4 revealed that BSG after PH extraction was the most energy-efficient treatment, producing a net energy gain of 5.36 kJ. For the scope, the energy consumption was calculated by considering a PEIO index equal to 33% of the energy produced during the day, showing the highest biogas production. In contrast, the co-digested BSG with OMWW yielded the lowest net energy gain of 1.96 kJ. This comprehensive analysis highlights the energy efficiency of different treatments, identifying which process should be improved. Full article
(This article belongs to the Special Issue Biogas and Biomethane Production from Pretreated Waste Biomasses)
Show Figures

Figure 1

15 pages, 2847 KiB  
Article
Cluster and Principal Component Analyses of the Bioactive Compounds and Antioxidant Activity of Celery (Apium graveolens L.) Under Different Fertilization Schemes
by Anita Milić, Boris Adamović, Nataša Nastić, Aleksandra Tepić Horecki, Lato Pezo, Zdravko Šumić, Branimir Pavlić, Milorad Živanov, Nemanja Pavković and Đorđe Vojnović
Foods 2024, 13(22), 3652; https://doi.org/10.3390/foods13223652 - 17 Nov 2024
Cited by 1 | Viewed by 1399
Abstract
This research investigates the impact of various fertilization methods on the bioactive compound content and antioxidant activity of celery (Apium graveolens L.) root and leaf. Mineral fertilizer, poultry manure, cattle manure, sheep manure, supercompost, and molasses were applied. Total dry weight, phenolic [...] Read more.
This research investigates the impact of various fertilization methods on the bioactive compound content and antioxidant activity of celery (Apium graveolens L.) root and leaf. Mineral fertilizer, poultry manure, cattle manure, sheep manure, supercompost, and molasses were applied. Total dry weight, phenolic and flavonoid compounds, and antioxidant activity were assessed, along with fiber, protein, fat, sugar, and starch in celery root. Principal component analysis (PCA) and cluster analysis were used to correlate production conditions with the parameters. The highest fiber and protein contents were found in mineral-fertilized roots, while total fat and sugar were highest in cattle-manure-fertilized roots, and starch was highest in supercompost-fertilized roots. Fertilization with supercompost yielded the highest total phenolic and flavonoid contents in leaves, while mineral fertilizer resulted in the highest antioxidant activity in roots. Notably, the highest dry weight in leaves and the highest total phenolic and flavonoid contents in roots were also observed with supercompost. PCA and cluster analysis demonstrated significant correlations between plant parts, i.e., the celery root and leaf samples, cultivation conditions, and the observed parameters, emphasizing the importance of selecting suitable cultivation methods to optimize celery’s nutritional properties. Also, these findings suggest that supercompost, a byproduct of breweries, could potentially replace animal-based organic fertilizers, addressing the problem of reduced availability due to declining livestock numbers. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 4409 KiB  
Article
Experimental Design, Statistical Analysis, and Modeling of the Reduction in Methane Emissions from Dam Lake Treatment Using Agro-Industrial Biochar: A New Methane Capture Index
by Pelin Soyertaş Yapıcıoğlu and Mehmet İrfan Yeşilnacar
Water 2024, 16(19), 2792; https://doi.org/10.3390/w16192792 - 30 Sep 2024
Viewed by 828
Abstract
This study aimed to reduce the methane (CH4) emissions originating from dam lake treatment using malt dust-derived biochar, which is an agro-industrial byproduct of the brewery industry. Optimum operating and water quality parameters for CH4 reduction were determined using statistical [...] Read more.
This study aimed to reduce the methane (CH4) emissions originating from dam lake treatment using malt dust-derived biochar, which is an agro-industrial byproduct of the brewery industry. Optimum operating and water quality parameters for CH4 reduction were determined using statistical analyses based on the Box–Behnken design method. Also, a Monte Carlo simulation was performed to determine the correlation between CH4 emissions and operating parameters. According to the simulation, dissolved oxygen (DO) and the oxidation–reduction potential (ORP) had the highest correlation with CH4 emissions, with values of 92.03% and 94.57%, respectively. According to the Box–Behnken design methodology, the optimum operating parameters were 4 mg/L of dissolved oxygen, −359 mV of ORP, and 7.5 pH for the minimum CH4 emissions. There was a reported reduction of up to 19.4% in CH4 emissions for the dam lake treatment using malt dust-derived biochar. Finally, a new methane capture index, based on the biochar application (MCI), was developed and validated. The largest methane capture capacity was related to the malt dust-derived biochar produced at the lowest temperature (M1). Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

23 pages, 4914 KiB  
Article
Fruitful Brewing: Exploring Consumers’ and Producers’ Attitudes towards Beer Produced with Local Fruit and Agroindustrial By-Products
by Nazarena Cela, Michele Filippo Fontefrancesco and Luisa Torri
Foods 2024, 13(17), 2674; https://doi.org/10.3390/foods13172674 - 24 Aug 2024
Cited by 2 | Viewed by 2005
Abstract
This study explored beer consumers’ and producers’ perceptions of using local fruit and agroindustrial by-products in brewing. An online survey was conducted in Italy with 496 beer consumers and 54 beer producers. The survey assessed sociodemographic information, consumption behavior, and support for brewery [...] Read more.
This study explored beer consumers’ and producers’ perceptions of using local fruit and agroindustrial by-products in brewing. An online survey was conducted in Italy with 496 beer consumers and 54 beer producers. The survey assessed sociodemographic information, consumption behavior, and support for brewery neolocalism, along with brewers’ perceptions of the sustainability of their breweries. Findings showed high consumers’ involvement in sustainable eating and high support for breweries utilizing local resources and operating in a sustainable way. Breweries rated their sustainability practices as moderate, and most of them considered their efforts in using local raw materials and repurposing by-products as “excellent”. Both consumers and producers considered beer made with agroindustrial by-products less tasty than those with local fruit (p < 0.05), but no significant difference in willingness to buy was observed (p > 0.05). According to cluster analysis results, the ideal consumer profile for sustainable beers was characterized by a higher proportion of females prioritizing sustainability and local sourcing over sensory quality. Therefore, using local materials or agroindustrial by-products can align brewers’ practices with consumers’ preferences, enhancing competitiveness and market positioning by fostering a sense of sustainability and locality. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

14 pages, 2311 KiB  
Review
Harnessing Brewery Spent Grain for Polyhydroxyalkanoate Production
by Robe D. Terfa, Priyanshi N. Patel, Hwidong D. Kim, Matthew D. Gacura, Gary Vanderlaan, Longyan Chen, Xiaoxu Ji and Davide Piovesan
Macromol 2024, 4(3), 448-461; https://doi.org/10.3390/macromol4030026 - 22 Jun 2024
Viewed by 2994
Abstract
The utility of brewery spent grain (BSG), a byproduct of the beer production process, for the synthesis of polyhydroxyalkanoates (PHAs), is a significant advancement towards sustainable and cost-effective biopolymer production. This paper reviews the upcycling potential of BSG as a substrate for PHA [...] Read more.
The utility of brewery spent grain (BSG), a byproduct of the beer production process, for the synthesis of polyhydroxyalkanoates (PHAs), is a significant advancement towards sustainable and cost-effective biopolymer production. This paper reviews the upcycling potential of BSG as a substrate for PHA production, utilizing various biotechnological approaches to convert this abundant waste material into high-value biodegradable polymers. Through a comprehensive review of recent studies, we highlight the biochemical composition of BSG and its suitability for microbial fermentation processes. This research delves into different methodologies for PHA production from BSG, including the use of mixed microbial cultures (MMCs) for the synthesis of volatile fatty acids (VFAs), a critical precursor in PHA production, and solid-state fermentation (SSF) techniques. We also examine the optimization of process parameters such as pH, temperature, and microbial concentration through the application of the Doehlert design, revealing the intricate relationships between these factors and their impact on VFA profiles and PHA yields. Additionally, this paper discusses challenges and future perspectives for enhancing the efficiency and economic viability of PHA production from BSG. By harnessing the untapped potential of BSG, this research contributes to the development of a circular economy model, emphasizing waste valorization and the creation of sustainable alternatives to conventional plastics. Full article
Show Figures

Graphical abstract

19 pages, 843 KiB  
Review
Green Methods to Recover Bioactive Compounds from Food Industry Waste: A Sustainable Practice from the Perspective of the Circular Economy
by Vincenzo Roselli, Gianluca Pugliese, Rosalba Leuci, Leonardo Brunetti, Lucia Gambacorta, Vincenzo Tufarelli and Luca Piemontese
Molecules 2024, 29(11), 2682; https://doi.org/10.3390/molecules29112682 - 5 Jun 2024
Cited by 12 | Viewed by 2714
Abstract
The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste [...] Read more.
The worrying and constant increase in the quantities of food and beverage industry by-products and wastes is one of the main factors contributing to global environmental pollution. Since this is a direct consequence of continuous population growth, it is imperative to reduce waste production and keep it under control. Re-purposing agro-industrial wastes, giving them new life and new directions of use, is a good first step in this direction, and, in global food production, vegetables and fruits account for a significant percentage. In this paper, brewery waste, cocoa bean shells, banana and citrus peels and pineapple wastes are examined. These are sources of bioactive molecules such as polyphenols, whose regular intake in the human diet is related to the prevention of various diseases linked to oxidative stress. In order to recover such bioactive compounds using more sustainable methods than conventional extraction, innovative solutions have been evaluated in the past decades. Of particular interest is the use of deep eutectic solvents (DESs) and compressed solvents, associated with green techniques such as microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), pressurized liquid extraction (PLE) and pulsed-electric-field-assisted extraction (PEF). These novel techniques are gaining importance because, in most cases, they allow for optimizing the extraction yield, quality, costs and time. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

24 pages, 851 KiB  
Article
Innovative Applications of Tenebrio molitor Larvae in the Production of Sustainable Meat Sausages: Quality and Safety Aspects
by Agnė Jankauskienė, Sandra Kiseliovienė, Dominykas Aleknavičius, Ieva Miliūnaitė, Sigita Kerzienė, Žydrūnė Gaižauskaitė, Ignė Juknienė, Paulina Zaviztanavičiūtė and Aistė Kabašinskienė
Foods 2024, 13(10), 1451; https://doi.org/10.3390/foods13101451 - 8 May 2024
Cited by 7 | Viewed by 2434 | Correction
Abstract
With the world’s population continuing to grow, ensuring sustainable protein sources for everyone is becoming increasingly challenging. Despite meat being considered unsustainable, people find it challenging to abstain from consuming it. However, one solution to this dilemma could be the incorporation of mealworms [...] Read more.
With the world’s population continuing to grow, ensuring sustainable protein sources for everyone is becoming increasingly challenging. Despite meat being considered unsustainable, people find it challenging to abstain from consuming it. However, one solution to this dilemma could be the incorporation of mealworms into conventional meat products, i.e., sausages. The incorporation of mealworms into sausage formulations appears to shift the fatty acid profile towards higher levels of monounsaturated fats and polyunsaturated fatty acids (PUFAs), particularly omega-3s, potentially enhancing the nutritional value and offering health benefits. Therefore, our study aimed to improve the nutritional value and safety parameters of traditional sausages by enriching them with the flour of mealworm larvae. For this purpose, the larvae were reared on a sustainable substrate with brewery by-products, brewer’s yeast, and carrots. They were used frozen and freeze-dried in sausage recipes, replacing pork in different proportions. The analysis of the product’s chemical safety parameters (biogenic amines, nitrates and nitrites, volatile fatty acids (FA), and peroxide) and nutritional value (including collagen, cholesterol, amino acids, FA, and hydroxyproline) was carried out in an accredited laboratory. The results of our study have demonstrated that the incorporation of mealworms into sausages, particularly through freeze-drying, increased fat content and enhanced the profile of FA, including omega-3s while reducing protein and cholesterol levels, and altering collagen content, suggesting improved nutritional value and potential health benefits without compromising the safety of the product. Therefore, we are highlighting that the addition of mealworms influences the quality of amino acids positively and maintains biogenic amine levels within safe limits, alongside a negligible impact on nitrates and nitrites and a reduction in peroxide values. These findings indicate an overall improvement in sausage quality and safety without compromising safety. Full article
(This article belongs to the Special Issue Trends and Prospects in Novel Meat Products with Healthier Properties)
Show Figures

Figure 1

14 pages, 5937 KiB  
Article
Enhancing Xylanase Production from Aspergillus tamarii Kita and Its Application in the Bioconversion of Agro-Industrial Residues into Fermentable Sugars Using Factorial Design
by Jose Carlos Santos Salgado, Paulo Ricardo Heinen, Josana Maria Messias, Lummy Maria Oliveira-Monteiro, Mariana Cereia, Carem Gledes Vargas Rechia, Alexandre Maller, Marina Kimiko Kadowaki, Richard John Ward and Maria de Lourdes Teixeira de Moraes Polizeli
Fermentation 2024, 10(5), 241; https://doi.org/10.3390/fermentation10050241 - 30 Apr 2024
Viewed by 2076
Abstract
The endo-1,4-β-xylanases (EC 3.2.1.8) are the largest group of hydrolytic enzymes that degrade xylan, the major component of hemicelluloses, by catalyzing the hydrolysis of glycosidic bonds β-1,4 in this polymer, releasing xylooligosaccharides of different sizes. Xylanases have considerable potential in producing bread, animal [...] Read more.
The endo-1,4-β-xylanases (EC 3.2.1.8) are the largest group of hydrolytic enzymes that degrade xylan, the major component of hemicelluloses, by catalyzing the hydrolysis of glycosidic bonds β-1,4 in this polymer, releasing xylooligosaccharides of different sizes. Xylanases have considerable potential in producing bread, animal feed, food, beverages, xylitol, and bioethanol. The fungus Aspergillus tamarii Kita produced xylanases in Adams’ media supplemented with barley bagasse (brewer’s spent grains), a by-product from brewery industries. The culture extract exhibited two xylanase activities in the zymogram, identified by mass spectrometry as glycosyl hydrolase (GH) families 10 and 11 (GH 10 and GH 11). The central composite design (CCD) showed excellent predictive capacity for xylanase production (23.083 U mL−1). Additionally, other enzyme activities took place during the submerged fermentation. Moreover, enzymatic saccharification based on a mixture design (MD) of three different lignocellulosic residues was helpful in the production of fermentable sugars by the A. tamarii Kita crude extract. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

Back to TopTop