Experimental Design, Statistical Analysis, and Modeling of the Reduction in Methane Emissions from Dam Lake Treatment Using Agro-Industrial Biochar: A New Methane Capture Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Production and Adsorption Process
2.2. Estimation and Monitoring of CH4 Emissions
2.3. Development and Validation of Methane Capture Index (MCI)
2.4. Statistical Analysis (Box–Behnken Design Methodology)
2.5. Monte Carlo Simulation (Correlation Test)
3. Results
3.1. Results of CH4 Emission Measurements
3.2. Results of Biochar Analyses and Adsorption
3.3. Results of Statistical Analysis and Correlation Test
3.4. Results and Validation of MCI Based on Biochar Adsorption Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EU European (EU) Commission. A clean planet for all—A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. In European Green Deal; (COM (2018) 773); European Commission: Brussels, Belgium, 2018. [Google Scholar]
- European Union (EU) Commission. Report on GREEN DEAL Framework and Fit for 55 Legislation Package; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- IPCC Sixth Assessment Report. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Cambridge, UK, 2022. [Google Scholar]
- Maksimavičius, E.; Roslev, P. Methane emission and methanotrophic activity in water storage reservoir-fed drinking water treatment plants. Water Supply 2020, 20, 819–827. [Google Scholar] [CrossRef]
- Kulongoski, J.T.; McMahon, P.B.; Land, M.; Wright, M.T.; Johnson, T.A.; Landon, M.K. Origin of methane and sources of high concentrations in Los Angeles water storage reservoir. J. Geophys. Res. Biogeosciences 2018, 123, 818–831. [Google Scholar] [CrossRef]
- Kulongoski, J.T.; Mcmahon, P.B. Methane emissions from water storage reservoir pumping in the USA. npj Clim. Atmos. Sci. 2019, 2, 11. [Google Scholar] [CrossRef]
- Saadabadi, S.A.; van Linden, N.; Heinsbroek, A.; Aravind, P.V. A solid oxide fuel cell fuelled by methane recovered from water storage reservoir. J. Clean. Prod. 2021, 291, 125877. [Google Scholar] [CrossRef]
- European (EU) Commission. Declerations on Blue Deal. In European Blue Deal; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Hedegaard, M.J.; Deliniere, H.; Prasse, C.; Dechesne, A.; Smets, B.F.; Albrechtsen, H.J. Evidence of co-metabolic bentazone transformation by methanotrophic enrichment from awater storage reservoir-fed rapid sand filter. Water Res. 2018, 129, 105–114. [Google Scholar] [CrossRef]
- Lessmann, O.; Encinas Fernández, J.; Martínez-Cruz, K.; Peeters, F. Methane emissions due to reservoir flushing: A significant emission pathway? Biogeosciences 2023, 20, 4057–4068. [Google Scholar] [CrossRef]
- Harrison, J.A.; Prairie, Y.T.; Mercier-Blais, S.; Soued, C. Year-2020 Global Distribution and Pathways of Reservoir Methane and Carbon Dioxide Emissions According to the Greenhouse Gas from Reservoirs (G-res) Model. Glob. Biogeochem. Cycles 2021, 35, e2020GB006888. [Google Scholar] [CrossRef]
- He, Z.; Shen, J.; Zhu, Y.; Gao, J.; Zhang, D.; Pan, X. Active Anaerobic Methane Oxidation in the Water storage reservoir Table Fluctuation Zone of Rice Paddies. Water Res. 2024, 258, 121802. [Google Scholar] [CrossRef]
- Christensen, S.C.; Lopato, L.; Quinzanos, S.; Hedegaard, M.J. Does Methane Contribute to Growth of Invertebrate Communities in Drinking Water? Water 2023, 15, 1044. [Google Scholar] [CrossRef]
- Skinner, J.; Delgado, A.G.; Hyman, M.; Chu, M.Y.J. Implementation of in situ aerobic cometabolism for water storage reservoir treatment: State of the knowledge and important factors for field operation. Sci. Total Environ. 2024, 925, 171667. [Google Scholar] [CrossRef]
- Keithley, A.E.; Ryu, H.; Gomez-Alvarez, V.; Harmon, S.; Bennett-Stamper, C.; Williams, D.; Lytle, D.A. Comprehensive characterization of aerobic water storage reservoir biotreatment media. Water Res. 2023, 230, 119587. [Google Scholar] [CrossRef]
- Ragg, R.B.; Peeters, F.; Ingwersen, J.; Teiber-Siessegger, P.; Hofmann, H. Interannual Variability of Methane Storage and Emission During Autumn Overturn in a Small Lake. J. Geophys. Res. Biogeosciences 2021, 126, e2021JG006388. [Google Scholar] [CrossRef]
- Pearce, J.K.; Hofmann, H.; Baublys, K.; Golding, S.D.; Rodger, I.; Hayes, P. Sources and concentrations of methane, ethane, and CO2 in deep aquifers of the Surat Basin, Great Artesian Basin. Int. J. Coal Geol. 2023, 265, 104162. [Google Scholar] [CrossRef]
- Gruca-Rokosz, R.; Cieśla, M. Sediment methane production within eutrophic reservoirs: The importance of sedimenting organic matter. Sci. Total Environ. 2021, 799, 149219. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.S.; Matthews, E.; Bastviken, D.; Deemer, B.; Du, J.; Genovese, V. Spatiotemporal methane emission from global reservoirs. J. Geophys. Res. Biogeosciences 2021, 126, e2021JG006305. [Google Scholar] [CrossRef]
- Beaulieu, J.J.; McManus, M.G.; Nietch, C.T. Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey. Limnol. Oceanogr. 2016, 61, S27–S40. [Google Scholar] [CrossRef]
- Chen, M.; Lu, Y.; Kang, Y.; You, L.; Chen, Z.; Liu, J.; Li, P. Investigation of enhancing multi-gas transport ability of coalbed methane reservoir by oxidation treatment. Fuel 2020, 278, 118377. [Google Scholar] [CrossRef]
- Ni, Z.; Zhou, L.; Lin, Z.; Kuang, B.; Zhu, G.; Jia, J.; Wang, T. Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. J. Hazard. Mater. 2023, 452, 131314. [Google Scholar] [CrossRef]
- Qambrani, N.A.; Rahman, M.M.; Won, S. Biochar properties and eco-friendly applications for climate change mit-igation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Chiappero, M.; Norouzi, O.; Hu, M.; Demichelis, F.; Berruti, F.; Di Maria, F.; Fiore, S. Review of biochar role as additive in anaerobic digestion processes. Renew. Sustain. Energy Rev. 2020, 131, 110037. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Zhu, S.; Li, S.; Wei, C. Effects of biochar on anaerobic treatment systems: Some perspectives. Bioresour. Technol. 2022, 367, 128226. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, Y.; Liang, M.; Lu, X.; Chen, G.; Zan, F. Insights into the role of biochar on the acidogenic process and microbial pathways in a granular sulfatereducing up-flow sludge bed reactor. Bioresour. Technol. 2022, 355, 127254. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.X.; Guo, M.L.; Xie, J.W.; Chang, Y.F.; Mabruk, A.; Zhang, T.C.; Chen, C.J. COD inhibition alleviation and anammox granular sludge stability improvement by biochar addition. J. Clean. Prod. 2022, 345, 131167. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.; Zhang, M.; Vithanage, M.; Mandal, S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Sadhu, M.; Bhattacharya, P.; Vithanage, M.; Sudhakar, P.P. Adsorptive removal of fluoride using biochar—A potential application in drinking water treatment. Sep. Purif. Technol. 2021, 278, 119106. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA, 1999. [Google Scholar]
- Metcalf, E. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill: Boston, MA, USA, 2014. [Google Scholar]
- Chaudhary, P.P.; Rulik, M.; Blaser, M. Is the methanogenic community reflecting the methane emissions of river sediments?—Comparison of two study sites. Microbiol. Open 2017, 6, e454. [Google Scholar] [CrossRef] [PubMed]
- Berberich, M.E.; Beaulieu, J.J.; Hamilton, T.L.; Waldo, S.; Buffam, I. Spatial variability of sediment methane production and methanogen communities within a eutrophic reservoir: Importance of organic matter source and quantity. Limnol. Oceanogr. 2019, 65, 1336–1358. [Google Scholar] [CrossRef]
- Lim, E.Y.; Tian, H.; Chen, Y.; Ni, K.; Zhang, J.; Tong, Y.W. Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar. Bioresour. Technol. 2020, 314, 123751. [Google Scholar] [CrossRef]
- Ballio, F.; Guadagnini, A. Convergence assessment of numerical Monte Carlo simulations in groundwater hydrology. Water Resour. Res. 2004, 40, W04603. [Google Scholar] [CrossRef]
- Schiavo, M. Numerical impact of variable volumes of Monte Carlo simulations of heterogeneous conductivity fields in groundwater flow models. J. Hydrol. 2024, 634, 131072. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, C.; Liu, R.; Yellezuome, D.; Zhu, X.; Bai, R.; Liu, M.; Sun, M. Anaerobic co-digestion of corn stover and chicken manure using continuous stirred tank reactor: The effect of biochar addition and urea pretreatment. Bioresour. Technol. 2021, 319, 124197. [Google Scholar] [CrossRef] [PubMed]
Parameters | Adsorbents | ||
---|---|---|---|
CH4 Adsorption | M1 | M2 | M3 |
Langmuir isotherm model | |||
qm (mmol/g) | 5.74 | 5.62 | 5.49 |
KL (1/atm) | 13.69 | 12.56 | 10.99 |
R2 | 0.989 | 0.986 | 0.984 |
Freundlich isotherm model | |||
KF (mmol/g atm 1/n) | 0.67 | 0.654 | 0.614 |
n | 3.21 | 2.98 | 2.55 |
R2 | 0.913 | 0.901 | 0.899 |
Dubinin–Radushkevich isotherm model | |||
qm (mmol/g) | 5.81 | 5.71 | 5.55 |
K (mmol2/kJ2) | 0.69 | 0.68 | 0.675 |
E (kJ/mmol) | 48.50 | 47.5 | 47.1 |
R2 | 0.993 | 0.991 | 0.99 |
Adsorbents | |||||
---|---|---|---|---|---|
CH4 removal (%) | M1 | M2 | M3 | ||
Winter | 17.3 | 16.0 | 14.8 | ||
Spring | 19.4 | 18.87 | 18.1 | ||
Summer | 18.5 | 17 | 16.28 | ||
Autumn | 19 | 18.5 | 18.06 | ||
CH4 emission (kgCO2e/d) | Before Treatment (control) | M1 | M2 | M3 | |
Winter | 295.74 | 244.57 | 248.42 | 251.97 | |
Spring | 415.71 | 335.06 | 337.26 | 340.47 | |
Summer | 468.72 | 382.00 | 389.04 | 392.41 | |
Autumn | 376.65 | 305.09 | 306.97 | 308.63 | |
Water Quality Parameters (sampling point) | T (°C) | DO (mg/L) | ORP (mV) | EC (µS/cm) | pH |
Winter | 14.8 | 3.6 | +5 | 290 | 7.8 |
Spring | 20 | 2 | −100 | 187 | 7.67 |
Summer | 41 | 1.4 | −250 | 154 | 7.1 |
Autumn | 29 | 2.85 | −55 | 200 | 7.43 |
Adsorbents | |||
---|---|---|---|
Dubinin–Radushkevich isotherm (CH4 adsorption) | M1 | M2 | M3 |
qe (mmol/g) | 5.85 | 5.79 | 5.61 |
CH4 Adsorption | M1 | M2 | M3 | |
---|---|---|---|---|
Pseudo-first-order kinetic model | k1 (1/s) | 0.057 | 0.051 | 0.049 |
qe (mmol/g) | 5.85 | 5.79 | 5.61 | |
R2 | 0.996 | 0.991 | 0.99 | |
Error % | 1.9 | 1.91 | 1.915 | |
qt (mmol/g) | 5.845 | 5.789 | 5.60 | |
Pseudo-second-order kinetic model | k2 (g/mmol s) | 0.077 | 0.073 | 0.066 |
qe (mmol/g) | 5.885 | 5.86 | 5.80 | |
R2 | 0.96 | 0.951 | 0.949 | |
Error % | 4.44 | 4.49 | 4.53 | |
qt (mmol/g) | 5.89 | 5.875 | 5.83 |
Biochar | BET Surface Area (m2/g) | Surface Area (m2/g) | Total Pore Volume (cm3/g) |
---|---|---|---|
M1 | 14.995 | 26.099 | 0.359 |
M2 | 13.999 | 24.28 | 0.29 |
M3 | 12.999 | 22.95 | 0.219 |
Run Order | x1 (DO, mg/L) | x2 (ORP, mV) | x3 (pH) | R2 (Correlation Coefficient) | Standard Deviation (STD) |
---|---|---|---|---|---|
1 | 0.9 | −345 | 6.9 | 0.65 | 0.009 |
2 | 2.8 | −324 | 7.1 | 0.73 | 0.0087 |
3 | 0.6 | −319 | 7.8 | 0.74 | 0.0083 |
4 | 1.5 | −312 | 7.25 | 0.69 | 0.0086 |
5 | 1.65 | −315 | 7.0 | 0.85 | 0.008 |
6 | 1.3 | −320 | 7.2 | 0.83 | 0.0072 |
7 | 1.2 | −300 | 7.3 | 0.69 | 0.0075 |
8 | 4 | −359 | 7.5 | 0.997 | 0.0055 |
9 | 2.15 | −328 | 7.45 | 0.90 | 0.0064 |
10 | 2.25 | −311 | 7.29 | 0.78 | 0.0092 |
Resource | Degree of Freedom | Adj DO | Adj ORP | Adj pH | f-Value | p-Value |
---|---|---|---|---|---|---|
Model | 5 | 0.5 | −370 | 6.99 | 3.44 | 0.015 |
Linear | 2 | 1.16 | −317 | 7.00 | 1.79 | 0.200 |
x1 | 1 | 3.90 | −226 | 7.15 | 1.51 | 0.100 |
x2 | 1 | 3.15 | −353 | 7.35 | 3.26 | 0.150 |
x3 | 1 | 0.45 | −320 | 7.49 | 3.07 | 0.140 |
Square | 1 | 0.8 | −325 | 7.45 | 4.01 | 0.010 |
x12 | 1 | 2.4 | −367 | 7.22 | 3.51 | 0.01 |
Error | 10 | 1.1 | −325 | 6.95 | ||
Total | 22 | 1.2 | −323 | 7.15 |
Iteration | Simulation | Inputs | Desirable Output | R2 |
---|---|---|---|---|
1000 | 1 | DO | minGHG | 0.99 |
1000 | 1 | ORP | minGHG | 0.987 |
1000 | 1 | pH | minGHG | 0.879 |
1000 | 1 | M | minGHG | 0.88 |
1000 | 1 | T | minGHG | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yapıcıoğlu, P.S.; Yeşilnacar, M.İ. Experimental Design, Statistical Analysis, and Modeling of the Reduction in Methane Emissions from Dam Lake Treatment Using Agro-Industrial Biochar: A New Methane Capture Index. Water 2024, 16, 2792. https://doi.org/10.3390/w16192792
Yapıcıoğlu PS, Yeşilnacar Mİ. Experimental Design, Statistical Analysis, and Modeling of the Reduction in Methane Emissions from Dam Lake Treatment Using Agro-Industrial Biochar: A New Methane Capture Index. Water. 2024; 16(19):2792. https://doi.org/10.3390/w16192792
Chicago/Turabian StyleYapıcıoğlu, Pelin Soyertaş, and Mehmet İrfan Yeşilnacar. 2024. "Experimental Design, Statistical Analysis, and Modeling of the Reduction in Methane Emissions from Dam Lake Treatment Using Agro-Industrial Biochar: A New Methane Capture Index" Water 16, no. 19: 2792. https://doi.org/10.3390/w16192792
APA StyleYapıcıoğlu, P. S., & Yeşilnacar, M. İ. (2024). Experimental Design, Statistical Analysis, and Modeling of the Reduction in Methane Emissions from Dam Lake Treatment Using Agro-Industrial Biochar: A New Methane Capture Index. Water, 16(19), 2792. https://doi.org/10.3390/w16192792