Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,220)

Search Parameters:
Keywords = breeding for tolerance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3959 KiB  
Article
Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (Ipomoea batatas L.) via Integrative Transcriptomic and Metabolomic Analyses
by Tao Yin, Chaoyu Song, Huan Li, Shaoxia Wang, Wenliang Wei, Jie Meng and Qing Liu
Plants 2025, 14(15), 2383; https://doi.org/10.3390/plants14152383 (registering DOI) - 2 Aug 2025
Abstract
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar [...] Read more.
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar ‘Luoyu 11’ during the branching and tuber formation stage (DS1) and the storage root expansion stage (DS2) under controlled drought conditions (45 ± 5% field capacity). Transcriptome analysis identified 8292 and 13,509 differentially expressed genes in DS1 and DS2, respectively, compared with the well-watered control (75 ± 5% field capacity). KEGG enrichment analysis revealed the activation of plant hormone signaling, carbon metabolism, and flavonoid biosynthesis pathways, and more pronounced transcriptional changes were observed during the DS2 stage. Metabolomic analysis identified 415 differentially accumulated metabolites across the two growth periods, with flavonoids being the most abundant (accounting for 30.3% in DS1 and 23.7% in DS2), followed by amino acids and organic acids, which highlighted their roles in osmotic regulation and oxidative stress alleviation. Integrated omics analysis revealed stage-specific regulation of flavonoid biosynthesis under drought stress. Genes such as CYP75B1 and IF7MAT were consistently downregulated, whereas flavonol synthase and glycosyltransferases exhibited differential expression patterns, which correlated with the selective accumulation of trifolin and luteoloside. Our findings provide novel insights into the molecular basis of drought tolerance in sweet potato and offer actionable targets for breeding and precision water management in drought-prone regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 1899 KiB  
Article
Heterologous Watermelon HSP17.4 Expression Confers Improved Heat Tolerance to Arabidopsis thaliana
by Yajie Hong, Yurui Li, Jing Chen, Nailin Xing, Wona Ding, Lili Chen, Yunping Huang, Qiuping Li and Kaixing Lu
Curr. Issues Mol. Biol. 2025, 47(8), 606; https://doi.org/10.3390/cimb47080606 (registering DOI) - 1 Aug 2025
Abstract
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce [...] Read more.
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce the pCAMBIA1391b-GFP overexpression vector encoding the heat tolerance-related gene ClaHSP17.4 from watermelon into Arabidopsis thaliana, and we obtained ClaHSP17.4-overexpressing Arabidopsis plants. Under normal conditions, the phenotypes of transgenic and wild-type (WT) Arabidopsis plants were largely similar. Following exposure to heat stress, however, the germination rates (96%) of transgenic Arabidopsis plants at the germination stages were significantly higher than those of wild-type idopsis (17%). Specifically, the malondialdehyde (MDA) content of transgenic Arabidopsis was half that of the control group, while the activities of peroxidase (POD) and superoxide dismutase (SOD) were 1.25 times those of the control group after exposure to high temperatures for 12 h at the seedling stages. The proline content in ClaHSP17.4-overexpressing transgenic Arabidopsis increased by 17% compared to WT plants (* p < 0.05), while the soluble sugar content rose by 37% (* p < 0.05). These results suggest that ClaHSP17.4 overexpression indirectly improves the antioxidant capacity and osmotic regulatory capacity of Arabidopsis seedlings, leading to improved survival and greater heat tolerance. Meanwhile, the results of this study provide a reference for further research on the function of the ClHSP17.4 gene and lay a foundation for breeding heat-tolerant watermelon varieties and advancing our understanding of plant adaptation to environmental stress. Full article
Show Figures

Figure 1

16 pages, 1258 KiB  
Article
Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato
by Carmen Iribar, Alba Alvarez-Morezuelas, Leire Barandalla and Jose Ignacio Ruiz de Galarreta
Horticulturae 2025, 11(8), 889; https://doi.org/10.3390/horticulturae11080889 (registering DOI) - 1 Aug 2025
Abstract
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and [...] Read more.
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and agronomic parameters. Physiological parameters included chlorophyll content and fluorescence, stomatal conductance, NDVI, leaf area, and perimeter, while agronomic characteristics such as yield, tuber fresh weight, tuber number, starch content, dry matter, and reducing sugars were evaluated. To genotype the population, the GGP V3 Potato array was used, generating 18,259 high-quality SNP markers. Marker–trait association analysis was conducted using the GWASpoly package in R, applying Q + K linear mixed models to enhance precision. This methodology enabled the identification of 18 SNP markers that exhibited statistically significant associations with the traits analyzed in both trials and periods, relating them to genes whose functional implication has already been described. Genetic loci associated with chlorophyll content and tuber number were detected across non-stress and stress treatments, while markers linked to leaf area and leaf perimeter were identified specifically under nitrogen deficiency stress. The genomic distribution of these markers revealed that genetic markers or single-nucleotide polymorphisms (SNPs) correlated with phenotypic traits under non-stress conditions were predominantly located on chromosome 11, whereas SNPs linked to stress responses were mainly identified on chromosomes 2 and 3. These findings contribute to understanding the genetic mechanisms underlying potato tolerance to nitrogen deficiency stress, offering valuable insights for the development of future marker-assisted selection programs aimed at improving nitrogen use efficiency and stress resilience in potato breeding. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Vegetable Crops)
Show Figures

Figure 1

16 pages, 591 KiB  
Review
Research Progress on Responses and Regulatory Mechanisms of Plants Under High Temperature
by Jinling Wang, Yaling Wang, Hetian Jin, Yingzi Yu, Kai Mu and Yongxiang Kang
Curr. Issues Mol. Biol. 2025, 47(8), 601; https://doi.org/10.3390/cimb47080601 (registering DOI) - 1 Aug 2025
Abstract
Global warming has resulted in an increase in the frequency of extreme high-temperature events. High temperatures can increase cell membrane permeability, elevate levels of osmotic adjustment substances, reduce photosynthetic capacity, impair plant growth and development, and even result in plant death. Under high-temperature [...] Read more.
Global warming has resulted in an increase in the frequency of extreme high-temperature events. High temperatures can increase cell membrane permeability, elevate levels of osmotic adjustment substances, reduce photosynthetic capacity, impair plant growth and development, and even result in plant death. Under high-temperature stress, plants mitigate damage through physiological and biochemical adjustments, heat signal transduction, the regulation of transcription factors, and the synthesis of heat shock proteins. However, different plants exhibit varying regulatory abilities and temperature tolerances. Investigating the heat-resistance and regulatory mechanisms of plants can facilitate the development of heat-resistant varieties for plant genetic breeding and landscaping applications. This paper presents a systematic review of plant physiological and biochemical responses, regulatory substances, signal transduction pathways, molecular mechanisms—including the regulation of heat shock transcription factors and heat shock proteins—and the role of plant hormones under high-temperature stress. The study constructed a molecular regulatory network encompassing Ca2+ signaling, plant hormone pathways, and heat shock transcription factors, and it systematically elucidated the mechanisms underlying the enhancement of plant thermotolerance, thereby providing a scientific foundation for the development of heat-resistant plant varieties. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 4065 KiB  
Article
Characteristics of Lodging Resistance of Wheat Cultivars from Different Breeding Decades as Affected by the Application of Paclobutrazol Under Shading Stress
by Dianliang Peng, Haicheng Xu, Zhen Guo, Wenchao Cao, Jingmin Zhang, Mei Liu, Xingcui Wang, Yuhai Tang and Tie Cai
Agronomy 2025, 15(8), 1848; https://doi.org/10.3390/agronomy15081848 - 31 Jul 2025
Viewed by 62
Abstract
Low solar radiation, caused by climate change or dense planting patterns, now limits wheat production. Although wheat breeding has increased lodging resistance and yield potential through the introduction of dwarfing genes, it still reduces wheat yields. Few studies have been conducted to clarify [...] Read more.
Low solar radiation, caused by climate change or dense planting patterns, now limits wheat production. Although wheat breeding has increased lodging resistance and yield potential through the introduction of dwarfing genes, it still reduces wheat yields. Few studies have been conducted to clarify the lodging sensitivity to shading of different-era wheat cultivars in China’s Huang-Huai-Hai region, as well as the characteristics of lodging resistance as affected by paclobutrazol under shading stress. To address this gap, the experiment included two wheat cultivars released in different decades, grown under shade and treated with or without paclobutrazol. The results showed that reductions in filling degree and lignin content, together with increases in length of the basal internode and gravity center height, markedly reduced the section modulus and breaking strength of shaded wheat culms. These changes impaired lodging resistance and raised lodging risk. However, paclobutrazol application effectively reduced lodging incidence and increased wheat yield under shading stress. Furthermore, these responses were more pronounced in the old cultivar (YZM) than in the modern cultivar (S28). This indicates that the culm mechanical parameters of the old cultivar were more shade-sensitive than those of the modern cultivar. Moreover, shading downregulated the relative expression levels of key genes associated with lignin biosynthesis to decrease the activities of key enzymes, thereby inhibiting the biosynthesis and deposition of lignin in culms to increase the risk of wheat lodging. Paclobutrazol application alleviated the inhibitory effects of shading on lignin biosynthesis, thereby strengthening culms and enhancing lodging resistance. These findings may provide a basis for exploring cultivation regulation methods to enhance wheat lodging resistance under overcast and low-sunshine conditions, and to offer guidance for the breeding of wheat cultivars with lodging resistance and shade tolerance. Full article
Show Figures

Figure 1

18 pages, 2037 KiB  
Article
A Study on the Correlation Between Stress Tolerance Traits and Yield in Various Barley (Hordeum vulgare L.) Genotypes Under Low Nitrogen and Phosphorus Stress
by Xiaoning Liu, Bingqin Teng, Feng Zhao and Qijun Bao
Agronomy 2025, 15(8), 1846; https://doi.org/10.3390/agronomy15081846 - 30 Jul 2025
Viewed by 90
Abstract
This study investigates the effects of low nitrogen (N) and phosphorus (P) stress on the growth and yield of nine barley (Hordeum vulgare L.) genotypes (1267-2, 1749-1, 1149-3, 2017Y-2, 2017Y-16, 2017Y-17, 2017Y-18, 2017Y-19, and XBZ17-1-61), all of which are spring two-rowed hulled [...] Read more.
This study investigates the effects of low nitrogen (N) and phosphorus (P) stress on the growth and yield of nine barley (Hordeum vulgare L.) genotypes (1267-2, 1749-1, 1149-3, 2017Y-2, 2017Y-16, 2017Y-17, 2017Y-18, 2017Y-19, and XBZ17-1-61), all of which are spring two-rowed hulled barley types from the Economic Crops and Beer Material Institute, Gansu Academy of Agricultural Sciences. Data were collected over two consecutive growing seasons (2021–2022) at Huangyang Town (altitude 1766 m, irrigated desert soil with 1.71% organic matter, 1.00 g·kg−1 total N, 0.87 g·kg−1 total P in 0–20 cm plough layer) to elucidate the correlation between stress tolerance traits and yield performance. Field experiments were conducted under two treatment conditions: no fertilization (NP0) and normal fertilization (180 kg·hm−2 N and P, NP180). Growth indicators (plant height, spike length, spikelets per unit area, etc.) and quality indicators (proportion of plump/shrunken grains, 1000-grain weight, protein, starch content) were measured, and data were analyzed using correlation analysis, principal component analysis, and structural equation modeling. The results revealed that low N and P stress significantly impacted quality indicators, such as the proportion of plump and shrunken grains, while having a minimal effect on growth indicators like plant height and spike length. Notably, the number of spikelets per unit area emerged as a critical factor positively influencing yield. Among the tested genotypes, 1749-1, 1267-2, 1149-3, 2017Y-16, 2017Y-18, 2017Y-19, and XBZ17-1-61 exhibited superior yield performance under low N and P stress conditions, indicating their potential for breeding programs focused on stress resilience. Included among these, the 1749-1 line showed the best overall performance and consistent results across both years. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

24 pages, 1508 KiB  
Article
Genomic Prediction of Adaptation in Common Bean (Phaseolus vulgaris L.) × Tepary Bean (P. acutifolius A. Gray) Hybrids
by Felipe López-Hernández, Diego F. Villanueva-Mejía, Adriana Patricia Tofiño-Rivera and Andrés J. Cortés
Int. J. Mol. Sci. 2025, 26(15), 7370; https://doi.org/10.3390/ijms26157370 - 30 Jul 2025
Viewed by 193
Abstract
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, [...] Read more.
Climate change is jeopardizing global food security, with at least 713 million people facing hunger. To face this challenge, legumes as common beans could offer a nature-based solution, sourcing nutrients and dietary fiber, especially for rural communities in Latin America and Africa. However, since common beans are generally heat and drought susceptible, it is imperative to speed up their molecular introgressive adaptive breeding so that they can be cultivated in regions affected by extreme weather. Therefore, this study aimed to couple an advanced panel of common bean (Phaseolus vulgaris L.) × tolerant Tepary bean (P. acutifolius A. Gray) interspecific lines with Bayesian regression algorithms to forecast adaptation to the humid and dry sub-regions at the Caribbean coast of Colombia, where the common bean typically exhibits maladaptation to extreme heat waves. A total of 87 advanced lines with hybrid ancestries were successfully bred, surpassing the interspecific incompatibilities. This hybrid panel was genotyped by sequencing (GBS), leading to the discovery of 15,645 single-nucleotide polymorphism (SNP) markers. Three yield components (yield per plant, and number of seeds and pods) and two biomass variables (vegetative and seed biomass) were recorded for each genotype and inputted in several Bayesian regression models to identify the top genotypes with the best genetic breeding values across three localities on the Colombian coast. We comparatively analyzed several regression approaches, and the model with the best performance for all traits and localities was BayesC. Also, we compared the utilization of all markers and only those determined as associated by a priori genome-wide association studies (GWAS) models. Better prediction ability with the complete SNP set was indicative of missing heritability as part of GWAS reconstructions. Furthermore, optimal SNP sets per trait and locality were determined as per the top 500 most explicative markers according to their β regression effects. These 500 SNPs, on average, overlapped in 5.24% across localities, which reinforced the locality-dependent nature of polygenic adaptation. Finally, we retrieved the genomic estimated breeding values (GEBVs) and selected the top 10 genotypes for each trait and locality as part of a recommendation scheme targeting narrow adaption in the Caribbean. After validation in field conditions and for screening stability, candidate genotypes and SNPs may be used in further introgressive breeding cycles for adaptation. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

16 pages, 8060 KiB  
Article
Transcriptomic Reprogramming and Key Molecular Pathways Underlying Huanglongbing Tolerance and Susceptibility in Six Citrus Cultivars
by Xiaohong Chen, Fang Fang, Tingting Chen, Jinghua Wu, Zheng Zheng and Xiaoling Deng
Int. J. Mol. Sci. 2025, 26(15), 7359; https://doi.org/10.3390/ijms26157359 - 30 Jul 2025
Viewed by 151
Abstract
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars [...] Read more.
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is the most devastating disease threatening global citrus production. Although no commercial citrus varieties exhibit complete HLB resistance, genotype-specific tolerance variations remain underexplored. This study conducted a comparative transcriptomic profiling of six commercially citrus cultivars in South China, four susceptible cultivars (C. reticulata cv. Tankan, Gongkan, Shatangju, and C. sinensis Osbeck cv. Newhall), and two tolerant cultivars (C. limon cv. Eureka; C. maxima cv Guanxi Yu) to dissect molecular mechanisms underlying HLB responses. Comparative transcriptomic analyses revealed extensive transcriptional reprogramming, with tolerant cultivars exhibiting fewer differentially expressed genes (DEGs) and targeted defense activation compared to susceptible genotypes. The key findings highlighted the genotype-specific regulation of starch metabolism, where β-amylase 3 (BAM3) was uniquely upregulated in tolerant varieties, potentially mitigating starch accumulation. Immune signaling diverged significantly: tolerant cultivars activated pattern-triggered immunity (PTI) via receptor-like kinases (FLS2) and suppressed ROS-associated RBOH genes, while susceptible genotypes showed the hyperactivation of ethylene signaling and oxidative stress pathways. Cell wall remodeling in susceptible cultivars involved upregulated xyloglucan endotransglucosylases (XTH), contrasting with pectin methylesterase induction in tolerant Eureka lemon for structural reinforcement. Phytohormonal dynamics revealed SA-mediated defense and NPR3/4 suppression in Eureka lemon, whereas susceptible cultivars prioritized ethylene/JA pathways. These findings delineate genotype-specific strategies in citrus–CLas interactions, identifying BAM3, FLS2, and cell wall modifiers as critical targets for breeding HLB-resistant cultivars through molecular-assisted selection. This study provides a foundational framework for understanding host–pathogen dynamics and advancing citrus immunity engineering. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction: Current Status and Future Directions)
Show Figures

Figure 1

20 pages, 3810 KiB  
Article
Exploring Drought Response: Machine-Learning-Based Classification of Rice Tolerance Using Root and Physiological Traits
by Wuttichai Gunnula, Nantawan Kanawapee, Hathairat Chokthaweepanich and Piyaporn Phansak
Agronomy 2025, 15(8), 1840; https://doi.org/10.3390/agronomy15081840 - 29 Jul 2025
Viewed by 297
Abstract
Drought is a key limitation for rice productivity. While oxidative stress markers like hydrogen peroxide (H2O2) are important for drought adaptation, the predictive value of combining root anatomical and physiological traits is underexplored. We assessed 20 rice cultivars under [...] Read more.
Drought is a key limitation for rice productivity. While oxidative stress markers like hydrogen peroxide (H2O2) are important for drought adaptation, the predictive value of combining root anatomical and physiological traits is underexplored. We assessed 20 rice cultivars under drought and control conditions using a random forest, a multi-layer perceptron, and a SHAP-optimized stacking ensemble. The stacking ensemble achieved the highest classification accuracy (81.8%) and identified hydrogen peroxide, relative water content, and endodermis inner circumference as key predictors. SHAP analysis revealed important interactions between root anatomical and physiological traits, providing new biological insights into drought tolerance. Our integrative approach, supported by robust cross-validation, improves predictive power and transparency for breeding drought-resilient rice cultivars. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

14 pages, 1365 KiB  
Article
Molecular Genetic Basis of Reproductive Fitness in Tibetan Sheep on the Qinghai-Tibet Plateau
by Wangshan Zheng, Siyu Ge, Zehui Zhang, Ying Li, Yuxing Li, Yan Leng, Yiming Wang, Xiaohu Kang and Xinrong Wang
Genes 2025, 16(8), 909; https://doi.org/10.3390/genes16080909 - 29 Jul 2025
Viewed by 116
Abstract
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. [...] Read more.
Background: Complete environmental adaptation requires both survival and reproductive success. The hypoxic Qinghai-Tibet Plateau (>3000 m) challenges reproduction in indigenous species. Tibetan sheep, a key plateau-adapted breed, possess remarkable hypoxic tolerance, yet the genetic basis of their reproductive success remains poorly understood. Methods: We integrated transcriptomic and genomic data from Tibetan sheep and two lowland breeds (Small-tailed Han sheep and Hu sheep) to identify Tibetan sheep reproduction-associated genes (TSRGs). Results: We identified 165 TSRGs: four genes were differentially expressed (DEGs) versus Small-tailed Han sheep, 77 DEGs versus Hu sheep were found, and 73 genes were annotated in reproductive pathways. Functional analyses revealed enrichment for spermatogenesis, embryonic development, and transcriptional regulation. Notably, three top-ranked selection signals (VEPH1, HBB, and MEIKIN) showed differential expression. Murine Gene Informatics (MGI) confirmed that knockout orthologs exhibit significant phenotypes including male infertility, abnormal meiosis (male/female), oligozoospermia, and reduced neonatal weight. Conclusions: Tibetan sheep utilize an evolved suite of genes underpinning gametogenesis and embryogenesis under chronic hypoxia, ensuring high reproductive fitness—a vital component of their adaptation to plateaus. These genes provide valuable genetic markers for the selection, breeding, and conservation of Tibetan sheep as a critical genetic resource. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

28 pages, 5315 KiB  
Article
Integrated Transcriptome and Metabolome Analysis Provides Insights into the Low-Temperature Response in Sweet Potato (Ipomoea batatas L.)
by Zhenlei Liu, Jiaquan Pan, Sitong Liu, Zitong Yang, Huan Zhang, Tao Yu and Shaozhen He
Genes 2025, 16(8), 899; https://doi.org/10.3390/genes16080899 - 28 Jul 2025
Viewed by 264
Abstract
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed [...] Read more.
Background/Objectives: Sweet potato is a tropical and subtropical crop and its growth and yield are susceptible to low-temperature stress. However, the molecular mechanisms underlying the low temperature stress of sweetpotato are unknown. Methods: In this work, combined transcriptome and metabolism analysis was employed to investigate the low-temperature responses of two sweet potato cultivars, namely, the low-temperature-resistant cultivar “X33” and the low-temperature-sensitive cultivar “W7”. Results: The differentially expressed metabolites (DEMs) of X33 at different time stages clustered in five profiles, while they clustered in four profiles of W7 with significant differences. Differentially expressed genes (DEGs) in X33 and W7 at different time points clustered in five profiles. More DEGs exhibited continuous or persistent positive responses to low-temperature stress in X33 than in W7. There were 1918 continuously upregulated genes and 6410 persistent upregulated genes in X33, whereas 1781 and 5804 were found in W7, respectively. Core genes involved in Ca2+ signaling, MAPK cascades, the reactive oxygen species (ROS) signaling pathway, and transcription factor families (including bHLH, NAC, and WRKY) may play significant roles in response to low temperature in sweet potato. Thirty-one common differentially expressed metabolites (DEMs) were identified in the two cultivars in response to low temperature. The KEGG analysis of these common DEMs mainly belonged to isoquinoline alkaloid biosynthesis, phosphonate and phosphinate metabolism, flavonoid biosynthesis, cysteine and methionine metabolism, glycine, serine, and threonine metabolism, ABC transporters, and glycerophospholipid metabolism. Five DEMs with identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected for correlation analysis. KEGG enrichment analysis showed that the carbohydrate metabolism, phenylpropanoid metabolism, and glutathione metabolism pathways were significantly enriched and played vital roles in low-temperature resistance in sweet potato. Conclusions: These findings contribute to a deeper understanding of the molecular mechanisms underlying plant cold tolerance and offer targets for molecular breeding efforts to enhance low-temperature resistance. Full article
Show Figures

Figure 1

16 pages, 11910 KiB  
Article
Characterization and Expression Analysis of β-Glucosidase Gene Under Abiotic Stresses in Pepper (Capsicum annuum L.)
by Jing Wang, Jiaxin Huang, Xu Jia, Zhenxin Hao, Yuancai Yang, Ruxia Tian and Yanping Liang
Genes 2025, 16(8), 889; https://doi.org/10.3390/genes16080889 - 27 Jul 2025
Viewed by 299
Abstract
Background: Pepper (Capsicum annuum L.) is highly susceptible to various abiotic stresses during their growth and development, leading to severe reductions in both yield and quality. β-Glucosidase (BGLU) is widely involved in plant growth and development, as well as in the [...] Read more.
Background: Pepper (Capsicum annuum L.) is highly susceptible to various abiotic stresses during their growth and development, leading to severe reductions in both yield and quality. β-Glucosidase (BGLU) is widely involved in plant growth and development, as well as in the response to abiotic stress. Methods: We performed a genome-wide identification of pepper BGLU (CaBGLU) genes. Phylogenetic analysis included BGLU proteins from Arabidopsis, tomato, and pepper. Gene structures, conserved motifs, and promoter cis-elements were analyzed bioinformatically. Synteny within the pepper genome was assessed. Protein-protein interaction potential was predicted. Gene expression patterns were analyzed across tissues and under abiotic stresses using transcriptomic data and qRT-PCR. Subcellular localization of a key candidate protein CaBGLU21 was confirmed experimentally. Results: We identified 32 CaBGLU genes unevenly distributed across eight chromosomes. Phylogenetic classification of 99 BGLU proteins into 12 subfamilies revealed an uneven distribution of CaBGLUs across six subfamilies. Proteins within subfamilies shared conserved motifs and gene structures. CaBGLU promoters harbored abundant light-, hormone- (MeJA, ABA, SA, GA), and stress-responsive elements (including low temperature). A duplicated gene pair (CaBGLU19/CaBGLU24) was identified. 27 CaBGLU proteins showed potential for interactions. Expression analysis indicated CaBGLU5 and CaBGLU30 were mesophyll-specific, while CaBGLU21 was constitutively high in non-leaf tissues. CaBGLU21 was consistently upregulated by cold, heat, and ABA. Subcellular localization confirmed CaBGLU21 resides in the tonoplast. Conclusions: This comprehensive analysis characterizes the pepper BGLU gene family. CaBGLU21, exhibiting constitutive expression in non-leaf tissues, strong upregulation under multiple stresses, and tonoplast localization, emerges as a prime candidate gene for further investigation into abiotic stress tolerance mechanisms in pepper. The findings provide a foundation for future functional studies and stress-resistant pepper breeding. Full article
(This article belongs to the Special Issue Molecular Adaptation and Evolutionary Genetics in Plants)
Show Figures

Figure 1

18 pages, 932 KiB  
Article
Agronomic Performance of Newly Developed Elite Cowpea Mutant Lines in Eswatini
by Kwazi A. K. Mkhonta, Hussein Shimelis, Seltene Abady and Asande Ngidi
Agriculture 2025, 15(15), 1631; https://doi.org/10.3390/agriculture15151631 - 27 Jul 2025
Viewed by 321
Abstract
Cowpea (Vigna unguiculata [L.] Walp) is a vital food security crop in sub-Saharan Africa, including Eswatini. The productivity of the crop is low (<600 kg/ha) in the country due to a lack of improved, locally adapted, and farmer-preferred varieties with biotic and [...] Read more.
Cowpea (Vigna unguiculata [L.] Walp) is a vital food security crop in sub-Saharan Africa, including Eswatini. The productivity of the crop is low (<600 kg/ha) in the country due to a lack of improved, locally adapted, and farmer-preferred varieties with biotic and abiotic stress tolerance. The objective of the study was to assess the agronomic performance of newly developed elite cowpea mutants to select best-yielding and adapted pure lines for production and genetic improvement in Eswatini. A total of 30 cowpea genotypes, including 24 newly developed advanced mutant lines, their 3 founder parents and 3 local checks, were profiled for major agronomic traits in two selected sites (Lowveld Experiment and Malkerns Research Stations) using a 6 × 5 alpha lattice design with three replications. A combined analysis of variance revealed that the genotype x location interaction effects were significant (p < 0.05) for germination percentage (DG %), days to flowering (DTF), days to maturity (DMT), number of pods per plant (NPP), pod length (PDL), number of seeds per pod (NSP), hundred seed weight (HSW), and grain yield (GYD). Elite mutant genotypes, including NKL9P7, BRR4P11, SHR9P5, and NKL9P7-2 exhibited higher grain yields at 3158.8 kg/ha, 2651.6 kg/ha, 2627.5 kg/ha, and 2255.8 kg/ha in that order. The highest-yielding mutant, NKL9P7, produced 70%, 61%, and 54% more grain yield than the check varieties Mtilane, Black Eye, and Accession 792, respectively. Furthermore, the selected genotypes displayed promising yield components such as better PDL (varying from 13.1 to 26.3 cm), NPP (15.9 to 26.8), and NSP (9.8 to 16.2). Grain yield had significant positive correlations (p < 0.05) with DG %, NSP, and NPP. The principal component analysis (PCA) revealed that 81.5% of the total genotypic variation was attributable to the assessed quantitative traits. Principal component (PC) 1 accounted for 48.6%, while PC 2 and PC 3 contributed 18.9% and 14% of the overall variation, respectively. Key traits correlated with PC1 were NPP with a loading score of 0.91, NSP (0.83), PDL (0.73), GYD (0.68), HSW (0.58), DMT (−0.60), and DTF (−0.43) in a desirable direction. In conclusion, genotypes NKL9P7, BRR4P11, SHR9P5, NKL9P7-2, Bira, SHR3P4, and SHR2P7 were identified as complementary parents with relatively best yields and local adaptation, making them ideal selections for direct production or breeding. The following traits, NPP, NSP, PDL, GYD, and HSW, offered unique opportunities for genotype selection in the cowpea breeding program in Eswatini. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

13 pages, 25093 KiB  
Article
Sunflower HaGLK Enhances Photosynthesis, Grain Yields, and Stress Tolerance of Rice
by Jie Luo, Mengyi Zheng, Jiacheng He, Yangyang Lou, Qianwen Ge, Bojun Ma and Xifeng Chen
Biology 2025, 14(8), 946; https://doi.org/10.3390/biology14080946 - 27 Jul 2025
Viewed by 267
Abstract
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. [...] Read more.
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. To analyze the bio-function of HaGLK, transgenic rice plants overexpressing HaGLK (HaGLK-OE) were constructed and characterized via phenotype. Compared to the wild-type control rice variety Zhonghua 11 (ZH11), the HaGLK-OE lines exhibited increased photosynthetic pigment contents, higher net photosynthetic rates, and enlarged chloroplast area; meanwhile, genes involved in both photosynthesis and chlorophyll biosynthesis were also significantly up-regulated. Significantly, the HaGLK-OE plants showed a 12–13% increase in yield per plant. Additionally, the HaGLK-OE plants were demonstrated to have improved salt and drought tolerance compared to the control ZH11. Our results indicated that the HaGLK gene could play multiple roles in photosynthesis and stress response in rice, underscoring its potential value for improving crop productivity and environmental adaptability in breeding. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 815
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

Back to TopTop