Agronomic Performance of Newly Developed Elite Cowpea Mutant Lines in Eswatini
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. The Study Areas
2.3. Experimental Design and Procedures
2.4. Data Collection
2.5. Data Analysis
2.5.1. Estimation of Variance Components
2.5.2. Broad-Sense Heritability (H2) and Genetic Advance
2.5.3. Estimation of Coefficient of Variability
2.5.4. Trait Correlation
2.5.5. Principal Component Analysis (PCA) and Genotype Clustering
3. Results
3.1. Analysis of Variance
3.2. Mean Performance of the Test Genotypes
3.3. Variance Components, Broad-Sense Heritability and Genetic Advance
3.4. Trait Correlations
3.5. Principal Component (PC) and Biplot Analyses
3.6. Cluster Analysis for Agronomic Traits
4. Discussion
4.1. Agronomic Performance of Elite Cowpea Mutants
4.2. Variance Components and Heritability of Quantitative Agronomic Traits
4.3. Correlations, Principal Component (PC), and Biplot Analyses Among Quantitative Traits
4.4. Classfication of Genotypes Based on Agronomic Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coulibaly, S.; Pasquet, R.S.; Papa, R.; Gepts, P. AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theor. Appl. Genet. 2002, 104, 358–366. [Google Scholar] [CrossRef]
- Kouam, E.B.; Pasquet, R.S.; Campagne, P.; Tignegre, J.B.; Thoen, K.; Gaudin, R.; Ouedraogo, J.T.; Salifu, A.B.; Muluvi, G.M.; Gepts, P. Genetic structure and mating system of wild cowpea populations in West Africa. BMC Plant Biol. 2012, 12, 113. [Google Scholar] [CrossRef]
- Singh, B.B.; Ajeigbe, H.A.; Tarawali, S.A.; Fernandez-Rivera, S.; Abubakar, M. Improving the production and utilization of cowpea as food and fodder. Field Crops Res. 2003, 84, 169–177. [Google Scholar] [CrossRef]
- Hu, T.; Xu, P. The Genetic Driving Force for the Grain-Vegetable Cowpea Diversification: A Focus on the Pod Length. J. Cell Signal. 2017, 2, 1–2. [Google Scholar] [CrossRef]
- Boukar, O.; Abberton, M.; Oyatomi, O.; Togola, A.; Tripathi, L.; Fatokun, C. Introgression breeding in cowpea (Vigna unguiculata [L.] Walp.). Front. Plant Sci. 2020, 11, 567425. [Google Scholar] [CrossRef]
- Ajeigbe, H.A.; Muhammad, M.I.; Singh, B.B. Potential of Triple Cropping of Wheat-Cowpea-Rice with Supplemental Irrigation in Sudan Savanna Zone of Nigeria. In Proceedings of the 46th Annual Conference of the Agricultural Society of Nigeria, Kano, Nigeria, 5–9 November 2012. [Google Scholar]
- Ahenkora, K.; Adu Dapaah, H.K.; Agyemang, A. Selected nutritional components and sensory attributes of cowpea (Vigna unguiculata [L.] Walp) leaves. Plant Foods Hum. Nutr. 1998, 52, 221–229. [Google Scholar] [CrossRef]
- Boukar, O.; Massawe, F.; Muranaka, S.; Franco, J.; Maziya-Dixon, B.; Singh, B.; Fatokun, C. Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genet. Resour. 2011, 9, 515–522. [Google Scholar] [CrossRef]
- Ddamulira, G.; Santos, C.A.F.; Obuo, P.; Alanyo, M.; Lwanga, C.K. Grain yield and protein content of Brazilian cowpea genotypes under diverse Ugandan environments. Am. J. Plant Sci. 2015, 6, 2074–2084. [Google Scholar] [CrossRef]
- Ehlers, J.D.; Hall, A.E. Cowpea (Vigna unguiculata L. Walp.). Field Crops Res. 1997, 53, 187–204. [Google Scholar] [CrossRef]
- Ewansiha, S.U.; Singh, B.B. Relative drought tolerance of important herbaceous legumes and cereals in the moist and semi-arid regions of West Africa. J. Food Agric. Environ. 2006, 4, 188. [Google Scholar]
- Fatokun, C.A.; Boukar, O.; Muranaka, S. Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought. Plant. Genet. Resour. 2012, 10, 171–176. [Google Scholar] [CrossRef]
- Kyei-Boahen, S.; Savala, C.E.; Chikoye, D.; Abaidoo, R. Growth and yield responses of cowpea to inoculation and phosphorus fertilization in different environments. Front. Plant Sci. 2017, 8, 646. [Google Scholar] [CrossRef]
- Horn, L.; Shimelis, H.; Laing, M. Participatory Appraisal of Production Constraints, Preferred Traits and Farming Systems of Cowpea in Northern Namibia: Implications for Breeding. Legume Res. 2015, 38, 691–700. [Google Scholar] [CrossRef]
- Fatokun, C.; Girma, G.; Abberton, M.; Gedil, M.; Unachukwu, N.; Oyatomi, O.; Yusuf, M.; Rabbi, I.; Boukar, O. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 2018, 8, 16035. [Google Scholar] [CrossRef]
- Omomowo, O.I.; Babalola, O.O. Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security and Environmental Sustainability. Front. Plant Sci. 2021, 12, 751731. [Google Scholar] [CrossRef]
- Gondwe, T.M.; Alamu, E.O.; Mdziniso, P.; Maziya-Dixon, B. Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 2019, 9, 15991. [Google Scholar] [CrossRef]
- Horn, L.N.; Ghebrehiwot, H.M.; Shimelis, H.A. Selection of novel cowpea genotypes derived through gamma irradiation. Front. Plant Sci. 2016, 7, 262. [Google Scholar] [CrossRef]
- Gerrano, A.S.; Adebola, O.P.; Jansen Van Rensburg, W.S.; Laurie, S.M. Genetic variability in cowpea (Vigna unguiculata (L.) Walp) genotypes. S. Afr. J. Plant Soil. 2015, 32, 165–174. [Google Scholar] [CrossRef]
- Atakora, K.; Essilfie, M.E.; Agyarko, K.; Dapaah, H.K.; Santo, K.G. Evaluation of yield and yield components of some cowpea (Vigna unguiculata (L.) Walp) genotypes in forest and transitional zones of Ghana. Agric. Sci. 2023, 14, 878–897. [Google Scholar] [CrossRef]
- Murdoch, G.M. Soils and Land Capability in Swaziland; Swaziland Ministry of Agriculture: Mbabane, Eswatini, 1968.
- Dlamini, W.M. Mapping Forest and woodland loss in Swaziland: 1990–2015. Remote Sens. Appl. Soc. Environ. 2017, 5, 45–53. [Google Scholar] [CrossRef]
- Ngwenya, Z.D.; Mohammed, M.; Dakora, F.D. Monocropping and Intercropping of Maize with Six Food Legumes at Malkerns in Eswatini: Their Effects on Plant Growth, Grain Yield and N2 Fixation, measured using the 15N Natural Abundance and Ureide Techniques. Symbiosis 2024, 92, 257–269. [Google Scholar] [CrossRef]
- IBPGR. Descriptors for Cowpea; International Board for Plant Genetic Resources: Rome, Italy, 1983. [Google Scholar]
- Parker, A.; Namuth-Covert, D. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability; International Union for the Protection of New Varieties of Plants (UPOV): Geneva, Switzerland, 2017. [Google Scholar]
- SAS Institute Inc. The GLM Procedure—SAS/STAT User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2019. [Google Scholar]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics; Olkin, I., Ed.; Stanford University Press: Redwood City, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Rahimi, M.; Hernandez, M.V. A SAS code to estimate phenotypic-genotypic covariance and correlation matrices based on expected value of statistical designs to use in plant breeding. An. Acad. Bras. Ciênc. 2022, 94, e20200001. [Google Scholar] [CrossRef]
- Alvarado, G.; Rodríguez, F.M.; Pacheco, A.; Burgueño, J.; Crossa, J.; Vargas, M.; Prez-Rodríguez, P.; Lopez-Cruz, M.A. META-R: A software to analyze data from multi-environment plant breeding trials. Crop J. 2020, 8, 745–756. [Google Scholar] [CrossRef]
- Robinson, H.F.; Comstock, R.E.; Harvey, P.H. Estimates of heritability and the degree of dominance in corn. Agron. J. 1949, 41, 353–359. [Google Scholar] [CrossRef]
- Johnson, H.W.; Robinson, R.E. Comstock. Estimates of genetic and environmental variability in Soybeans. Agron. J. 1955, 47, 314. [Google Scholar] [CrossRef]
- Allard, R.W. Principles of Plant Breeding, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalyani Publishers: New Delhi, India, 1985. [Google Scholar]
- Pallant, J. SPSS Survival Manual: A Step-by-Step Guide to Data Analysis Using IBM SPSS, 7th ed.; Routledge; Open University Press: London, UK, 2020. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2023; Available online: http://www.rstudio.com/ (accessed on 23 July 2025).
- SAS Institute Inc. JMP®, version 17; Computer software; SAS Institute Incorporated: Cary, NC, USA, 2021. [Google Scholar]
- FAO. FAOSTAT: Food and Agriculture Organization Statistical Databases; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000; Available online: https://www.fao.org/faostat/ (accessed on 2 June 2025).
- Mekonnen, T.W.; Mekbib, F.; Amsalu, B.; Gedil, M.; Labuschagne, M. Breeding implications of nodulation performance and root structure under natural inoculation for soil fertility enhancement and sustainable cowpea production. Front. Sustain. Food Syst. 2022, 6, 1076760. [Google Scholar] [CrossRef]
- Viswanatha, K.P.; Yogeesh, L.N. Genetic variation and morphological diversity in cowpea (Vigna unguiculata L. Walp). Arch. Agric. Environ. Sci. 2017, 2, 176–180. [Google Scholar]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Kessel, C. Productivity Limits and Potentials of the Principles of Conservation Agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the Growth and Development of Maize and Rice: A Review. Glob. Change Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Nkhoma, N.; Shimelis, H.; Laing, M.D.; Shayanowako, A.; Mathew, I. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. BMC Genet. 2020, 21, 110. [Google Scholar] [CrossRef]
- Khadhem, F.; Baktash, F. AMMI Analysis of Adaptability and Yield Stability of Promising Lines of Bread Wheat (Triticum aestavum L.). Iraqi J. Agric. Sci. 2016, 47, 35–43. [Google Scholar]
- Darai, R.; Sarker, A.; Sah, R.P.; Pokhrel, K.; Chaudhary, R. AMMI Biplot Analysis for Genotype x Environment Interaction on Yield Trait of High Fe Content Lentil Genotypes in Terai and Mid-hill Environment of Nepal. Ann. Agric. Crop Sci. 2017, 2, 1028–1032. [Google Scholar]
- Angelova, S.; Stoilova, T. Maintenance, enrichment and utilization of grain legume collections in Bulgaria. In Proceedings of the IV Balkan Symposium on Vegetables and Potatoes, Plovdiv, Bulgaria, 9–12 September 2008; Volume 830, pp. 695–700. [Google Scholar]
- Hall, A. Phenotyping cowpeas for adaptation to drought. Front. Physiol. 2012, 3, 155. [Google Scholar] [CrossRef]
- Dugje, I.Y.; Omoigui, L.O.; Ekeleme, F.; Kamara, A.Y.; Ajeigbe, H. Farmers’ guide to cowpea production in West Africa. IITA Ib. Niger. 2009, 20, 12–14. [Google Scholar]
- Nkoana, D.K.; Gerrano, A.S.; Gwata, E.T. Agronomic Performance and Genetic Variability of Cowpea (Vigna unguiculata (L.) Walp) Accessions. Legume Res. 2019, 42, 757–762. [Google Scholar]
- Vidya, C.; Oommen, S.K.; Vijayaraghava, K. Genetic variability and heritability of yield and related characters in yard-long bean. J. Trop. Agric. 2002, 40, 11–13. [Google Scholar]
- Narayanankutty, C.; Mili, R.; Jaikumaran, U. Variability and genetic divergence in vegetable cowpea. J. Maharashtra Agric.Uni. 2003, 28, 26–29. [Google Scholar]
- Pal, A.K.; Maurya, A.N.; Singh, B.; Ram, D.; Kumar, S. Genetic variability, heritability and genetic advance in cowpea [Vigna unguiculata (L.) Walp]. Orissa J. Hortic. 2003, 31, 94–97. [Google Scholar]
- Girish, G.; Viswanatha, K.P.; Manjunath, A.; Yogeesh, L.N. Genetic variability, heritability and genetic advance analysis in cowpea [Vigna unguiculata L. (Walp.)]. Environ. Ecol. 2006, 24, 1172–1174. [Google Scholar]
- Owusu, E.Y.; Karikari, B.; Kusi, F.; Haruna, M.; Amoah, R.A.; Attamah, P.; Adazebra, G.; Sie, E.K.; Issahaku, M. Genetic variability, heritability and correlation analysis among maturity and yield traits in cowpea (Vigna unguiculata (L.) Walp) in Northern Ghana. Heliyon 2021, 7, e07890. [Google Scholar] [CrossRef]
- Mbuma, N.W.; Gerrano, A.S.; Lebaka, N.A.; Mofokeng, A.; Labuschagne, M. The evaluation of a southern African cowpea germplasm collection for seed yield and yield components. Crop Sci. 2021, 61, 466–489. [Google Scholar] [CrossRef]
- Owusu, E.Y.; Mohammed, H.; Manigben, K.A.; Adjebeng-Danquah, J.; Kusi, F.; Karikari, B.; Sie, E.K. Diallel Analysis and Heritability of Grain Yield, Yield Components, and Maturity Traits in Cowpea (Vigna unguiculata (L.) Walp.). Sci. World J. 2020, 2020, 9390287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ajayi, A.T.; Gbadamosi, A.E. Genetic variability, character association and yield potentials of twenty-five accessions of cowpea (Vigna unguiculata L. Walp). J. Pure Appl. Agric. 2019, 5, 1–16. [Google Scholar]
- Manju Devi, S.; Jayamani, P. Genetic variability, heritability and genetic advance studies in cowpea (Vigna unguiculata [L.] Walp.) germplasm. Electron. J. Plant Breed. 2018, 9, 476–481. [Google Scholar] [CrossRef]
- Zaki, A.E.H.; Radwan, O. Estimates of genetic parameters and heterosis for horticultural traits in cowpea (Vigna unguiculata L. Walp). Front. Plant Sci. 2022, 13, 987985. [Google Scholar] [CrossRef]
- Meenatchi, T.; Thangaraj, K.; Gnanamalar, R.P.; Pushpam, K. Genetic variability and heritability study on yield and its component traits in segregating population of cowpea (Vigna unguiculata L. Walp). Electron. J. Plant Breed. 2019, 10, 736–741. [Google Scholar] [CrossRef]
- Bhasker, K.D.; Shashibhushan, K.; Murali Krishna, M. Genetic variability, heritability and genetic advance of grain yield in pearl millet [Pennisetum glaucum (L.) R. Br]. Int. J. Pure Appl. Biosci. 2017, 5, 1228–1231. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Tefera, H.; Ewansiha, S.U.; Ajeigbe, H.A.; Okechukwu, R.; Boukar, O.; Omoigui, L.O. Genetic gain in yield and agronomic characteristics of cowpea cultivars developed in the Sudan Savannas of Nigeria over the past three decades. Crop Sci. 2011, 51, 1877–1886. [Google Scholar] [CrossRef]
- Arora, R.N.; Kumar, K.; Manav, K. Principal Component Analysis in Kabuli Chickpea (Cicer arietinum L.). Int. J. Chem. Stud. 2018, 6, 2767–2768. [Google Scholar]
- Walle, T.; Mekbib, F.; Amsalu, B.; Gedil, M. Genetic Diversity of Ethiopian Cowpea (Vigna unguiculata L. Walp) Genotypes using Multivariate Analysis. Ethiop. J. Agric. Sci. 2019, 29, 89–104. [Google Scholar]
- Mwadzingeni, L.; Shimelis, H.; Tesfay, S.; Tsilo, T.J. Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front. Plant Sci. 2016, 7, 1276. [Google Scholar] [CrossRef]
- Mbuma, N.W.; Gerrano, A.S.; Lebaka, N.; Labuschagne, M. Interrelationship between grain yield components and nutritional quality traits in cowpea genotypes. S. Afr. J. Bot. 2022, 150, 34–43. [Google Scholar] [CrossRef]
- Kutu, F.R. Agronomic evaluation and identification of potential cowpea (Vigna unguiculata L. Walp) genotypes in South Africa. Acta. Agric. Scand. B Soil Plant Sci. 2019, 69, 295–303. [Google Scholar]
- Gerrano, A.S.; van Rensburg, W.S.J.; Adebola, P. Nutritional Composition of Immature Pods in Selected Cowpea [Vigna unguiculata (L.) Walp.] Genotypes. South. Africa. Aust. J. Crop Sci. 2017, 11, 134–141. [Google Scholar] [CrossRef]
- Craufurd, P.Q.; Wheeler, T.R.; Ellis, R.H.; Summerfield, R.J.; Prasad, P.V. Escape and tolerance to high temperature at flowering in groundnut (Arachis hypogaea L.). J. Agric. Sci. 2000, 135, 371–378. [Google Scholar] [CrossRef]
- Pandey, I. Genetic diversity in grain cowpea (Vigna unguiculata [L.] Walp.). Legume Res. 2007, 30, 92–97. [Google Scholar]
- Chen, H.; Chen, H.; Hu, L.; Wang, L.; Wang, S.; Wang, M.; Chang, X. Genetic Diversity and Population Structure Analysis of Accessions in the Chinese Cowpea (Vigna unguiculata (L.) Walp) Germplasm Collection. Crop J. 2017, 5, 363–372. [Google Scholar] [CrossRef]
Code | Genotype Name/Designation | Source | Pedigree |
---|---|---|---|
1 | NAKARE (IT81D-985) | IITA | Parental line |
2 | NKL9P7 | MAWLR | Mutant |
3 | NKL9P7-2 | MAWLR | Mutant |
4 | NKR10P5 | MAWLR | Mutant |
5 | NKR193 | MAWLR | Mutant |
6 | NKR1P12 | MAWLR | Mutant |
7 | NKR2P9 | MAWLR | Mutant |
8 | NKR4P5 | MAWLR | Mutant |
9 | NKR8P9 | MAWLR | Mutant |
10 | NKR9P9 | MAWLR | Mutant |
11 | BIRA (IT87D-453-2) | IITA | Parental line |
12 | BRR11P11 | MAWLR | Mutant |
13 | BRR11P2 | MAWLR | Mutant |
14 | BRR4P11 | MAWLR | Mutant |
15 | SHINDIMBA (IT89KD-245-1) | IITA | Parental line |
16 | SHL2P4 | MAWLR | Mutant |
17 | SHL2P7 | MAWLR | Mutant |
18 | SHL3P7-2 | MAWLR | Mutant |
19 | SHL7P1 | MAWLR | Mutant |
20 | SHR10P10 | MAWLR | Mutant |
21 | SHR10P12 | MAWLR | Mutant |
22 | SHR2P11 | MAWLR | Mutant |
23 | SHR3P4 | MAWLR | Mutant |
24 | SHR3P4-4 | MAWLR | Mutant |
25 | SHR4P1 | MAWLR | Mutant |
26 | SHR9P5 | MAWLR | Mutant |
27 | SHR9P5-2 | MAWLR | Mutant |
28 | Accession 792 | NPGRC Genebank/Eswatini | Landrace (Check) |
29 | Black eye | NPGRC Genebank/Eswatini | Released variety (Check) |
30 | Mtilane | NPGRC Genebank/Eswatini | Landrace (Check) |
Traits with Abbreviation | Description | Unit |
---|---|---|
Days to 50% germination (DG %) | The number of days when 50% of the seeds germinated. | Days |
Days to 50% flowering (DTF) | The number of days from sowing to 50% of the plants in a plot have reached flowering. | Days |
Days to 75% maturity (DMT) | Days from the sowing to 75% of the pods in a plot turned yellow-brown. | Days |
Number of pods per plant (NPP) | The average number of mature pods from 5 randomly selected and tagged plants in a plot. | Pods/plant |
Pod length (PDL) | Average length of 5 mature pods from randomly selected and tagged plants. | cm |
Number of seeds per pod (NSP) | Average seed weight from mature pods of 5 randomly selected and tagged plants. | Seeds/pod |
Hundred seed weight (HSW) | The weight of one hundred randomly selected seeds of a genotype, measured in grams. | Grams/100 seed |
Grain yield (GYD) | The average grain yield per plot is converted into kg ha−1. | kg ha−1 |
Source of Variation | DF | DG % | DTF | DMT | PDL | NPP | NSP | HSW | GYD |
---|---|---|---|---|---|---|---|---|---|
Genotype | 29 | 1069.44 * | 51.94 * | 123.99 * | 65.25 * | 112.88 * | 47.51 * | 214.27 ns | 2,803,130 * |
Location (Loc) | 1 | 48,183.47 * | 29.60 ns | 888.89 * | 0.32 ns | 29.44 * | 77.35 * | 293.88 ns | 482,258 * |
Loc × Genotype | 29 | 841.67 * | 53.86 * | 24.14 ns | 2.14 ns | 11.70 ns | 7.61 * | 179.64 ns | 1,120,777 ns |
Replication (Rep) (Loc) | 4 | 409.90 * | 58.67 * | 363.45 * | 8.36 * | 85.64 * | 2.55 | 149.75 | 777,688 * |
Incomplete blocks (Loc × Rep) | 24 | 250.47 * | 64.81 | 25.19 | 3.54 | 30.42 * | 4.34 | 163.59 * | 538,901 * |
Residue | 92 | 229.27 | 33.324 | 28.324 | 3.9919 | 22.27 | 4.1967 | 143.61 | 405,307.5 |
Trial statistics | |||||||||
Mean | 51.639 | 49.394 | 67.644 | 16.948 | 20.24 | 12.777 | 19.849 | 1485.583 | |
CV % | 29.32 | 11.67 | 7.87 | 11.78 | 23.31 | 16.03 | 60.37 | 42.85 | |
LSD (5%) | 4.49 | 1.71 | 1.58 | 0.59 | 1.39 | 0.61 | 3.55 | 188.66 | |
R2 % | 86.55 | 62.31 | 77.73 | 88.05 | 75.54 | 84.68 | 59.74 | 81.25 |
Genotype | DG % | DTF | DTM | PDL (cm) | NPP | NSP | HSW | GYD |
---|---|---|---|---|---|---|---|---|
NKL 9P7 | 75.8 | 45 | 67.1 | 18.0 | 25.4 | 15.6 | 16.0 | 3158.8 |
BRR4P11 | 62.5 | 48 | 61.1 | 18.9 | 26.8 | 14.6 | 19.9 | 2651.6 |
SHR 9P5 | 69.2 | 47 | 67 | 20.6 | 25.2 | 14.4 | 21.3 | 2627.5 |
NKL 9P7-2 | 75.8 | 48.2 | 69.3 | 17.2 | 17.4 | 15.6 | 15.7 | 2255.8 |
Mtilan | 65.8 | 42.3 | 59.2 | 15.5 | 21.8 | 12.8 | 16.6 | 2225.7 |
Bira | 60 | 46.2 | 65.7 | 15.9 | 18.0 | 12.5 | 17.4 | 2178.8 |
Black eye | 53.3 | 46.8 | 66.7 | 16.7 | 21.4 | 15.2 | 17.6 | 1942.7 |
SHR 3P4 | 65.8 | 48.7 | 73.5 | 17.0 | 23.3 | 12.3 | 22.9 | 1928.3 |
SHL 2P7 | 37.5 | 51.7 | 67.8 | 19.3 | 21.8 | 13.1 | 22.1 | 1904.8 |
NKR 1P12 | 54.2 | 49.2 | 64.8 | 17.3 | 24.7 | 14.2 | 19.6 | 1886.5 |
NKR4P5 | 60.0 | 48.3 | 59.5 | 18.8 | 28.2 | 13.7 | 18.2 | 1837.0 |
SHR2P11 | 33.3 | 50.5 | 65.0 | 17.4 | 20.1 | 12.9 | 23.2 | 1751.3 |
Acc 792 | 75.0 | 48.2 | 64.2 | 17.9 | 23.3 | 14.6 | 18.9 | 1706.0 |
BRR11P2 | 65.8 | 46.8 | 65.2 | 18.3 | 22.5 | 16.2 | 16.4 | 1606.2 |
NKR10P5 | 49.2 | 50.3 | 70.7 | 17.7 | 19.7 | 11.9 | 24.8 | 1514.5 |
BRR11P11 | 59.2 | 48.5 | 69.7 | 18.0 | 21.1 | 14.4 | 17.2 | 1413.3 |
NKR9P9 | 64.2 | 49.3 | 65.7 | 17.3 | 20.6 | 13.8 | 24.7 | 1326.0 |
SHR10P12 | 70.0 | 48.3 | 64.8 | 16.4 | 19.1 | 12.4 | 18.2 | 1263.5 |
NKR193 | 44.2 | 49.8 | 67.0 | 19.2 | 18.4 | 14.9 | 18.5 | 1245.0 |
Shindimba | 33.3 | 51.3 | 73.8 | 15.8 | 21.8 | 9.0 | 23.0 | 1202.2 |
SHR 10P10 | 35.8 | 52.0 | 73.3 | 17.9 | 18.6 | 12.6 | 23.6 | 1125.8 |
NKR8P9 | 39.2 | 51.8 | 70.5 | 19.1 | 17.4 | 11.9 | 25.5 | 1058.8 |
SHR3P4-4 | 46.7 | 48.8 | 65.3 | 21.6 | 17.4 | 14.2 | 22.0 | 1053.5 |
SHR4P1 | 49.2 | 49.2 | 65.2 | 18.0 | 21.0 | 14.5 | 12.0 | 988.3 |
SHR9P5-2 | 57.5 | 53.0 | 68.7 | 19.3 | 19.4 | 12.7 | 22.0 | 684.3 |
NKR 2P9 | 34.1 | 54.2 | 71.7 | 14.9 | 16.2 | 10.0 | 21.8 | 679.8 |
SHL 3P7-2 | 36.7 | 50.3 | 63.7 | 14.7 | 19.9 | 9.8 | 22.4 | 644.0 |
SHL 2P4 | 32.5 | 54.7 | 72.2 | 13.1 | 20.5 | 12.8 | 23.4 | 536.2 |
SHL7P1 | 48.3 | 53.3 | 66.7 | 16.5 | 15.9 | 11.1 | 12.5 | 171.6 |
Nakare | 22.5 | 59.3 | 84.3 | - | - | - | - | - |
Mean | 51.6 | 49.7 | 67.6 | 16.9 | 20.2 | 12.8 | 19.8 | 1485.6 |
SD | 28.6 | 6.5 | 7.8 | 4.0 | 6.6 | 3.6 | 13.1 | 1019.3 |
SE | 2.13 | 0.48 | 0.58 | 0.29 | 0.49 | 0.27 | 0.97 | 75.97 |
LSD0.05 | 4.49 | 1.71 | 1.58 | 0.59 | 1.39 | 0.61 | 3.55 | 188.66 |
Skewness | 2.13 | −2.26 | −0.55 | −2.59 | −0.52 | −1.55 | 9.12 | 0.92 |
Kurtosis | −1.05 | 17.44 | 1.19 | 8.65 | 1.46 | 3.21 | 108.26 | 0.70 |
Parameter | DG % | DTF | DMT | PDL | NPP | NSP | HSW | GYD |
---|---|---|---|---|---|---|---|---|
Genotype (G) | 56.94 | 0.48 | 24.96 | 15.78 | 25.30 | 9.98 | 8.66 | 420,588.25 |
Location (L) | 48,183.50 | 29.60 | 888.89 | 0.32 | 29.44 | 77.35 | 293.88 | 482,258.00 |
G × L | 153.09 | 5.13 | 1.05 | 0.46 | 2.64 | 0.85 | 9.01 | 178,867.38 |
Phenotypic variance | 48,393.51 | 34.25 | 912.80 | 15.63 | 52.09 | 88.18 | 311.54 | 10,181,713.62 |
Heritability (%) | 0.00 | 1.40 | 2.70 | 100 | 48.55 | 11.31 | 2.78 | 38.88 |
GCV (%) | 14.61 | 1.40 | 7.38 | 23.44 | 24.85 | 24.72 | 14.82 | 43.65 |
PCV (%) | 426.00 | 11.85 | 44.66 | 23.33 | 35.66 | 73.49 | 88.93 | 70.01 |
GAM | 0.53 | 0.17 | 1.70 | 8.22 | 7.21 | 2.19 | 1.01 | 833 |
GA (%) | 1.03 | 0.34 | 2.51 | 48.50 | 35.67 | 17.13 | 5.09 | 56.08 |
Parameters | PC1 | PC2 | PC3 |
---|---|---|---|
Eigen values | 3.89 | 1.51 | 1.12 |
Proportion variance (%) | 48.6 | 18.9 | 14.0 |
Cumulative variance (%) | 48.6 | 67.5 | 81.5 |
DG % | 0.71 | −0.47 | 0.01 |
DTF | −0.43 | 0.66 | 0.52 |
DMT | −0.60 | −0.17 | 0.73 |
PDL | 0.73 | 0.56 | −0.08 |
NPP | 0.91 | 0.06 | 0.19 |
NSP | 0.83 | −0.10 | 0.31 |
HSW | 0.58 | 0.63 | −0.02 |
GYL | 0.68 | −0.34 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkhonta, K.A.K.; Shimelis, H.; Abady, S.; Ngidi, A. Agronomic Performance of Newly Developed Elite Cowpea Mutant Lines in Eswatini. Agriculture 2025, 15, 1631. https://doi.org/10.3390/agriculture15151631
Mkhonta KAK, Shimelis H, Abady S, Ngidi A. Agronomic Performance of Newly Developed Elite Cowpea Mutant Lines in Eswatini. Agriculture. 2025; 15(15):1631. https://doi.org/10.3390/agriculture15151631
Chicago/Turabian StyleMkhonta, Kwazi A. K., Hussein Shimelis, Seltene Abady, and Asande Ngidi. 2025. "Agronomic Performance of Newly Developed Elite Cowpea Mutant Lines in Eswatini" Agriculture 15, no. 15: 1631. https://doi.org/10.3390/agriculture15151631
APA StyleMkhonta, K. A. K., Shimelis, H., Abady, S., & Ngidi, A. (2025). Agronomic Performance of Newly Developed Elite Cowpea Mutant Lines in Eswatini. Agriculture, 15(15), 1631. https://doi.org/10.3390/agriculture15151631