Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato
Abstract
1. Introduction
2. Materials and Methods
2.1. Vegetal Samples and Experimental Site
2.2. Experimental Design
2.3. Phenotypic Data Collection
2.4. Genotypic Data Collection
2.5. Characterization of Population Genetics, LD Metrics, and Genome-Wide Analysis
3. Results
3.1. Phenotypic Data Analysis
3.2. Population Structure Analysis and Linkage Disequilibrium
3.3. Genome-Wide Association Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meise, P.; Seddig, S.; Uptmoor, R.; Ordon, F.; Schum, A. Assessment of yield and yield components of starch potato cultivars (Solanum tuberosum L.) under nitrogen deficiency and drought stress conditions. Potato Res. 2019, 62, 193–220. [Google Scholar] [CrossRef]
- Guo, H.; Pu, X.; Jia, H.; Zhou, Y.; Ye, G.; Yang, Y.; Na, T.; Wang, J. Transcriptome analysis reveals multiple effects of nitrogen accumulation and metabolism in the roots, shoots, and leaves of potato (Solanum tuberosum L.). BMC Plant Biol. 2022, 22, 282. [Google Scholar] [CrossRef]
- Hashami, S.Z.; Poyesh, T. Effects of Different Rates of Nitrogen and Phosphorus Fertilizers on Growth and Yield of Potato (Solanum tuberosum) under Mechanize and Traditional Cultivation. Int. J. Plant Soil Sci. 2021, 33, 16–26. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Optimizing nitrogen fertilization to improve qualitative performances and physiological and yield responses of potato (Solanum tuberosum L.). Agronomy 2020, 10, 352. [Google Scholar] [CrossRef]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.; Pasyukova, E.G.; Zeng, Z.B.; Hackett, J.B.; Lyman, R.F.; Mackay, T.F. Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics 2000, 154, 213–227. [Google Scholar] [CrossRef]
- Visser, R.G.F.; Bachem, C.W.B.; Borm, T.; de Boer, J.; van Eck, H.J.; Finkers, R.; van der Linden, G.; Maliepaard, C.A.; Uitdewilligen, J.G.A.M.L.; Voorrips, R.; et al. Possibilities and Challenges of the Potato Genome Sequence. Potato Res. 2014, 57, 327–330. [Google Scholar] [CrossRef]
- Baldwin, S.J.; Dodds, K.G.; Auvray, B.; Genet, R.A.; Macknight, R.C.; Jacobs, J.M.E. Association Mapping of Cold-Induced Sweetening in Potato Using Historical Phenotypic Data. Ann. Appl. Biol. 2011, 158, 248–256. [Google Scholar] [CrossRef]
- Zhu, C.; Gore, M.; Buckler, E.S.; Yu, J. Status and Prospects of Association Mapping in Plants. Plant Genome 2008, 1, 5–20. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The Advantages and Limitations of Trait Analysis with GWAS: A Review. Plant Methods 2013, 9, 29. [Google Scholar] [CrossRef]
- Myles, S.; Peiffer, J.; Brown, P.J.; Ersoz, E.S.; Zhang, Z.; Costich, D.E.; Buckler, E. Association Mapping: Critical Considerations Shift from Genotyping to Experimental Design. Plant Cell 2009, 21, 2194–2202. [Google Scholar] [CrossRef]
- Stich, B.; Melchinger, A.E. An introduction to association mapping in plants. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2010, 5, 1–9. [Google Scholar] [CrossRef]
- Oraguzie, N.C.; Wilcox, P.L.; Rikkerink, E.H.; de Silva, H.N. Linkage disequilibrium. In Association Mapping in Plants; Oraguzie, N.C., Rikkerink, E.H.A., Gardiner, S.E., de Silva, H.N., Eds.; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Xu, X.; Pan, S.; Cheng, S.; Zhang, B.; Mu, D.; Ni, P.; Zhang, G.; Yang, S.; Li, R.; Wang, J.; et al. Genome Sequence and Analysis of the Tuber Crop Potato. Nature 2011, 475, 189–195. [Google Scholar] [CrossRef]
- Felcher, K.J.; Coombs, J.J.; Massa, A.N.; Hansey, C.N.; Hamilton, J.P.; Veilleux, R.E.; Buell, C.R.; Douches, D.S. Integration of Two Diploid Potato Linkage Maps with the Potato Genome Sequence. PLoS ONE 2012, 7, e36347. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Rustgi, S.; Kulwal, P.L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol. Biol. 2005, 57, 461–485. [Google Scholar] [CrossRef] [PubMed]
- Rosyara, U.R.; De Jong, W.S.; Douches, D.S.; Endelman, J.B. Software for Genome-Wide Association Studies in Autopolyploids and Its Application to Potato. Plant Genome 2016, 9, 1–10. [Google Scholar] [CrossRef]
- Sharma, S.K.; MacKenzie, K.; McLean, K.; Dale, F.; Daniels, S.; Bryan, G.J. Linkage Disequilibrium and Evaluation of Genome-Wide Association Mapping Models in Tetraploid Potato. G3 Genes Genomes Genet. 2018, 8, 3185–3202. [Google Scholar] [CrossRef]
- Yuan, J.; Cheng, L.; Wang, Y.; Zhang, F. Genome-Wide Association Studies for Key Agronomic and Quality Traits in Potato (Solanum tuberosum L.). Agronomy 2024, 14, 2214. [Google Scholar] [CrossRef]
- Mccord, P.; Sosinski, B.; Hayness, K.; Clough, M.; Yencho, C. Linkage Mapping and QTL Analysis of Agronomic Traits in Tetraploid Potato (Solanum tuberosum subsp. tuberosum). Crop Sci. 2011, 51, 771–785. [Google Scholar] [CrossRef]
- Bradshaw, J.E.; Hackett, C.A.; Pande, B.; Waugh, R.; Bryan, G.J. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor. Appl. Genet. 2008, 116, 193–211. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, J.H.; Ewing, E.E.; Plaisted, R.L. QTL analysis of potato tuber dormancy. Theor. Appl. Genet. 1996, 93, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, C.; Schäfer-Pregl, R.; Ritter, E.; Concilio, L.; Hesselbach, J.; Lovatti, L.; Walkemeier, B.; Thelen, H.; Salamini, F. Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theor. Appl. Genet. 1998, 97, 834–846. [Google Scholar] [CrossRef]
- Van Eck, H.J.; Jacobs, J.M.; Stam, P.; Ton, J.; Stiekema, W.J.; Jacobsen, E. Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics 1994, 137, 303–309. [Google Scholar] [CrossRef]
- Anithakumari, A.M.; Nataraja, K.N.; Visser, R.G.F.; van der Linden, C.G. Genetic Dissection of Drought Tolerance and Recovery Potential by Quantitative Trait Locus Mapping of a Diploid Potato Population. Mol. Breed. 2012, 30, 1413–1429. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Saravia, D.; Munive, S.; Lozano, F.; Farfan, E.; Eyzaguirre, R.; Bonierbale, M. Multiple QTLs Linked to AgroMorphological and Physiological Traits Related to Drought Tolerance in Potato. Plant Mol. Biol. Rep. 2015, 33, 1286–1298. [Google Scholar] [CrossRef]
- Alvarez-Morezuelas, A.; Barandalla, L.; Ritter, E.; Ruiz de Galarreta, J.I. Genome-Wide Association Study of Agronomic and Physiological Traits Related to Drought Tolerance in Potato. Plants 2023, 12, 734. [Google Scholar] [CrossRef]
- Getahun, B.B.; Kassie, M.M.; Visser, R.G.F.; van der Linden, C.G. Genetic Diversity of Potato Cultivars for Nitrogen Use Efficiency Under Contrasting Nitrogen Regimes. Potato Res. 2020, 63, 267–290. [Google Scholar] [CrossRef]
- Getahun, B.B.; Visser, R.G.F.; van der Linden, C.G. Identification of QTLs associated with nitrogen use efficiency and related traits in a diploid potato population. Am. J. Potato Res. 2020, 97, 185–201. [Google Scholar] [CrossRef]
- Ospina, C.A.; Lammerts van Bueren, E.T.; Allefs, S.; Vos, P.G.; van der Linden, C.G.; Maliepaard, C.A.; Struik, P.C. Association mapping of physiological and morphological traits related to crop development under contrasting nitrogen inputs in a diverse set of potato cultivars. Plants 2021, 10, 1727. [Google Scholar] [CrossRef]
- Horváth, M.K.; Hoffmann, B.; Cernák, I.; Baráth, S.; Polgár, Z.; Taller, J. Nitrogen utilization of potato genotypes and expression analysis of genes controlling nitrogen assimilation. Biol. Futur. 2019, 70, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.K.; Devi, S.; Ali, N.; Buckseth, T.; Moudgil, V.; Singh, R.K.; Chakrabarti, S.K.; Dua, V.K.; Kumar, D.; Kumar, M. Genomics approaches for improving nitrogen use efficiency in potato. In Potato Genome; Springer: Cham, Switzerland, 2017; pp. 171–193. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Buckseth, T.; Devi, S.; Varshney, S.; Sahu, S.; Patil, V.U.; Zinta, R.; Ali, N.; Moudgil, V.; Singh, R.K.; et al. Physiological and genome-wide RNA-sequencing analyses identify candidate genes in a nitrogen-use efficient potato cv. Kufri Gaurav. Plant Physiol. Biochem. 2020, 154, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 2021, 19, 128. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Review and analysis of limitations in ways to improve conventional potato breeding. Potato Res. 2017, 60, 171–193. [Google Scholar] [CrossRef]
- Müller, K.; Cervenkova, I. Die Ermittlung des Stärke-und Trockensubstanzgehaltes in Kartoffelknollen Nach Bestimmung des Unterwassergewichtes an Hand Modifizierter Tabellenwerte. Starch Stärke 1978, 30, 12–20. [Google Scholar] [CrossRef]
- Lindsay, H.A. Colorimetric Estimation of Reducing Sugars in Potatoes with 3,5-Dinitrosalicylic Acid. Potato Res. 1973, 16, 176–179. [Google Scholar] [CrossRef]
- Pritchard, J.K. Documentation for Structure Software: Version 2.2; Department of Human Genetics University of Chicago: Chicago, IL, USA, 2007. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; vonHoldt, B.M. Structure Harvester: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Remington, D.L.; Thornsberry, J.M.; Matsuoka, Y.; Wilson, L.M.; Whitt, S.R.; Doebley, J.; Kresovich, S.; Goodman, M.M.; Buckler, E.S., IV. Structure of Linkage Disequilibrium and Phenotypic Associations in the Maize Genome. Proc. Natl. Acad. Sci. USA 2001, 98, 11479–11484. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Kulwal, P.L.; Jaiswal, V. Association Mapping in Crop Plants: Opportunities and Challenges; Elsevier: Amsterdam, The Netherlands, 2014; Volume 85, pp. 109–147. [Google Scholar] [CrossRef]
- Khlestkin, V.K.; Rozanova, I.V.; Efimov, V.M.; Khlestkina, E.K. Starch Phosphorylation Associated SNPs Found by Genome-Wide Association Studies in the Potato (Solanum tuberosum L.). BMC Genet. 2019, 20, 29. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. Analysing Biological Pathways in Genome-Wide Association Studies. Nat. Rev. Genet. 2010, 11, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Wani, S.H.; Suprasanna, P.; Tran, L.S.P. Salinity Responses and Tolerance in Plants. In Salinity Responses and Tolerance in Plants; Springer: Berlin/Heidelberg, Germany, 2018; Volume 2, pp. 1–326. [Google Scholar] [CrossRef]
- Jung, B.; Hoffmann, C.; Möhlmann, T. Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines. Plant J. 2011, 65, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Macovei, A.; Vaid, N.; Tula, S.; Tuteja, N. A New DEAD-Box Helicase ATP-Binding Protein (OsABP) from Rice Is Responsive to Abiotic Stress. Plant Signal. Behav. 2012, 7, 1138–1143. [Google Scholar] [CrossRef]
- Dubey, N.; Singh, K. Role of NBS-LRR Proteins in Plant Defense. In Molecular Aspects of Plant-Pathogen Interaction; Singh, A., Singh, I., Eds.; Springer: Singapore, 2018; pp. 115–138. [Google Scholar] [CrossRef]
- Sharp, D.J.; Rogers, G.C.; Scholey, J.M. Microtubule motors in mitosis. Nature 2000, 407, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Trigo, S.; Grand, T.M.; Voigt, C.A.; Smith, L.M. A malectin domain kinesin functions in pollen and seed development in Arabidopsis. J. Exp. Bot. 2020, 71, 1828–1841. [Google Scholar] [CrossRef]
- Barkan, A.; Klipcan, L.; Ostersetzer, O.; Kawamura, T.; Asakura, Y.; Watkins, K.P. The CRM domain: An RNA binding module derived from an ancient ribosome-associated protein. RNA 2007, 13, 55–64. [Google Scholar] [CrossRef]
- Keegstra, K.; Raikhel, N. Plant glycosyltransferases. Curr. Opin. Plant Biol. 2001, 4, 219–224. [Google Scholar] [CrossRef]
- Li, C.; Li, K.; Zheng, M.; Liu, X.; Ding, X.; Gai, J.; Yang, S. Gm6PGDH1, a Cytosolic 6-Phosphogluconate Dehydrogenase, Enhanced Tolerance to Phosphate Starvation by Improving Root System Development and Modifying the Antioxidant System in Soybean. Front. Plant Sci. 2021, 12, 704983. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, P.; Kong, N.; Lu, R.; Pei, Y.; Huang, C.; Ma, H.; Chen, Q. Genome-Wide Identification and Characterization of the Potato bHLH Transcription Factor Family. Genes 2018, 9, 54. [Google Scholar] [CrossRef]
- Heim, M.A.; Jakoby, M.; Werber, M.; Martin, C.; Weisshaar, B.; Bailey, P.C. The Basic Helix–Loop–Helix Transcription Factor Family in Plants: A Genome-Wide Study of Protein Structure and Functional Diversity. Mol. Biol. Evol. 2003, 20, 735–747. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Wang, H.; Guo, Z. WRKY transcription factors: Evolution, binding, and action. Phytopathol. Res. 2019, 1, 13. [Google Scholar] [CrossRef]
- Filiz, E.; Kurt, F. Expression and Co-expression Analyses of WRKY, MYB, bHLH and bZIP Transcription Factor Genes in Potato (Solanum tuberosum) Under Abiotic Stress Conditions: RNA-seq Data Analysis. Potato Res. 2021, 64, 721–741. [Google Scholar] [CrossRef]
- Osmani, Z.; Sabet, M.S.; Nakahara, K.S. Aspartic protease inhibitor enhances resistance to potato virus Y and A in transgenic potato plants. BMC Plant Biol. 2022, 22, 241. [Google Scholar] [CrossRef]
- Mukherjee, A. Functional Analysis of Mitochondrial Acyl Carrier Proteins. Plant Physiol. 2020, 183, 421–422. [Google Scholar] [CrossRef]
- Agarwal, P.; Reddy, M.K.; Sopory, S.K. Plant Rabs: Characterization, Functional Diversity, and Role in Stress Tolerance. Plant Mol. Biol. Rep. 2009, 27, 417–430. [Google Scholar] [CrossRef]
- Liu, Z.; Xuanyuan, G.; Yang, S.; Du, M.; Zhang, X.; Bao, T.; Zhang, Z.; Zhang, W.; Zhao, J. Genome-wide identification and analysis of Rop GTPase family members reveal their potential functions in biotic stress in potato (Solanum tuberosum L.). BMC Plant Biol. 2025, 25, 457. [Google Scholar] [CrossRef]
- Sato, K.; Mase, K.; Nakano, Y.; Nishikubo, N.; Sugita, R.; Tsuboi, Y.; Kajita, S.; Zhou, J.; Kitano, H.; Katayama, Y. 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase is regulated for the accumulation of polysaccharide-linked hydroxycinnamoyl esters in rice (Oryza sativa L.) internode cell walls. Plant Cell Rep. 2006, 25, 676–688. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Hou, X.; Sun, Z.; Ma, B.; Wu, X.; Feng, T.; Ai, H.; Huang, X.; Li, R. Characterization of FBA genes in potato (Solanum tuberosum L.) and expression patterns in response to light spectrum and abiotic stress. Front. Genet. 2024, 15, 1364944. [Google Scholar] [CrossRef] [PubMed]
- Theologis, A.; Ecker, J.R.; Palm, C.J.; Federspiel, N.A.; Kaul, S.; White, O.; Alonso, J.; Altafi, H.; Araujo, R.; Bowman, C.L.; et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 2000, 408, 816–820. [Google Scholar] [CrossRef]
- Wei, Q.; Yin, Y.; Deng, B.; Song, X.; Gong, Z.; Shi, Y. Transcriptome Analysis of Nitrogen-Deficiency-Responsive Genes in Two Potato Cultivars. Agronomy 2023, 13, 2164. [Google Scholar] [CrossRef]
SPAD70 | NDVI70 | SC70 | FLUOR70 | Yield | TubNum | TubWeight | DM | RS | Starch | NUE | |
---|---|---|---|---|---|---|---|---|---|---|---|
YEAR | 5307.97 ** | 0.2628 ** | 13,285.38 ns | 0.2878 ** | 202.84 ** | 24,733.92 ** | 1280.07 ns | 1163.12 ** | 0.08 ** | 1227.07 ** | 0.16 ** |
VAR | 133.67 * | 0.0091 ** | 104,986.25 ** | 0.0085 ** | 22.00 ** | 2369.87 ** | 6824.98 ** | 8676.68 ** | 12.70 ** | 9160.06 ** | 1.82 ** |
STRESS | 577.13 ** | 0.0108 ns | 274,893.98 * | 0.3528 ** | 27.71 ** | 1786.08 * | 3957.53 * | 74.53 ** | 0.06 * | 78.61 ** | 28.07 ** |
REP YEAR | 4.04 ns | 0.0015 ns | 6841.68 ns | 0.0028 ns | 6.35 * | 224.72 ns | 2576.15 ns | 7.50 ns | 0.07 * | 7.50 ns | 0.00 ns |
YEAR * VAR | 26.74 ** | 0.0037 ** | 90,423.26 ** | 0.0035 ** | 5.53 ** | 410.09 ** | 1963.76 ** | 2497.69 ** | 2.59 ** | 2636.43 ** | 0.60 ** |
STRESS * VAR | 15.93 * | 0.0026 ns | 42,024.97 * | 0.0019 ** | 1.71 ** | 191.12 ** | 691.64 * | 2781.60 ** | 3.01 ** | 2935.46 ** | 1.09 ** |
YEAR * STRESS | 52.22 * | 0.0162 ** | 533,012.04 ** | 0.0003 ns | 10.45 ** | 1130.72 * | 0.144 ns | 55.68 ** | 0.14 ** | 58.95 ** | 0.03 ** |
YEAR * STRESS * VAR | 15.91 ** | 0.0029 ** | 56,095.79 ** | 0.0013 ns | 1.23 * | 169.16 ** | 578.93 ns | 17.38 ** | 0.02 ** | 18.35 ** | 0.01 ** |
Trait | Marker | Chrom | Position | Ref | Alt | Effect | R2 | p-Value | FDR | Biological Function |
---|---|---|---|---|---|---|---|---|---|---|
SPAD70_C | solcap_snp_c2_15287 | 11 | 41743380 | A | G | −4.11 | 0.0075 | 2.26 × 1010 | 0.0472 | P-loop containing nucleoside triphosphate hydrolases superfamily protein |
TubNum_C | solcap_snp_c2_37217 | 11 | 1818959 | A | G | 39.96 | 6.00 × 1011 | 0.6786 | 0.0361 | Disease resistance protein (NBS-LRR class) family |
TubNum_C | ST4.03ch11_2070850 | 11 | 2070850 | A | T | −24.22 | 0.0153 | 0.0355 | 0.0222 | Di-glucose binding protein with Kinesin motor domain |
TubNum_C | solcap_snp_c2_15676 | 5 | 18718517 | G | T | −32.25 | 0.0438 | 3.44 × 1011 | 0.05 | RNA-binding CRS1/YhbY (CRM) domain-containing protein |
SPAD70_N | ST4.03ch01_72837229 | 1 | 72837229 | A | G | 5.88 | 0.0228 | 0.0101 | 0.0083 | Glycosyl transferase family 1 protein |
SPAD70_N | solcap_snp_c2_20505 | 1 | 67223465 | C | T | −16.22 | 0.0227 | 0.0103 | 0.0111 | 6-phosphogluconate dehydrogenase family protein |
SPAD70_N | solcap_snp_c2_32462 | 2 | 22381719 | G | T | 17.13 | 0.00087 | 0.1122 | 0.0277 | Beta HLH protein |
SPAD70_N | ST4.03ch02_48054928 | 2 | 48054928 | A | G | 5.44 | 0.0013 | 0.5315 | 0.0305 | Hypothetical protein |
SPAD70_N | ST4.03ch02_48088436 | 2 | 48088436 | A | G | 20.31 | 1.79 × 1012 | 0.8208 | 0.3888 | YELLOW STRIPE like |
SPAD70_N | PotVar0075324 | 4 | 67822196 | G | T | −18.33 | 0.0184 | 0.0210 | 0.0194 | WRKY DNA-binding protein |
SPAD70_N | ST4.03ch05_51888861 | 5 | 51888861 | A | T | 15.04 | 0.0209 | 0.0138 | 0.0138 | Eukaryotic aspartyl protease family protein |
SPAD70_N | ST4.03ch05_51733937 | 5 | 51733937 | C | T | 18.13 | 0.0010 | 0.5753 | 0.0333 | Mitochondrial acyl carrier protein |
SPAD70_N | solcap_snp_c2_35078 | 7 | 49839630 | A | G | 17.74 | 0.0130 | 0.0524 | 0.0250 | RAB GTPase homolog A1F |
SPAD70_N | ST4.03ch11_2770569 | 11 | 2770569 | C | T | 14.77 | 0.0272 | 0.0049 | 0.0027 | 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase |
TubNum_N | solcap_snp_c2_15676 | 5 | 18718517 | G | T | 2.2 | 0.0963 | 7.33 × 107 | 0.0416 | RNA-binding CRS1/YhbY (CRM) domain-containing protein |
Area_N | PotVar0055568 | 3 | 51605633 | C | T | 2.48 | 0.0259 | 0.0061 | 0.0055 | Aldolase-type TIM barrel family protein |
Area_N | ST4.03ch03_51965651 | 3 | 51965651 | A | G | −24.6 | 0.0195 | 0.0174 | 0.0166 | Calcineurin-like metallo-phosphoesterase superfamily protein |
Perim_N | ST4.03ch03_51965651 | 3 | 51965651 | A | G | 1.34 | 0.0750 | 2.31 × 108 | 0.0444 | Calcineurin-like metallo-phosphoesterase superfamily protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iribar, C.; Alvarez-Morezuelas, A.; Barandalla, L.; Ruiz de Galarreta, J.I. Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato. Horticulturae 2025, 11, 889. https://doi.org/10.3390/horticulturae11080889
Iribar C, Alvarez-Morezuelas A, Barandalla L, Ruiz de Galarreta JI. Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato. Horticulturae. 2025; 11(8):889. https://doi.org/10.3390/horticulturae11080889
Chicago/Turabian StyleIribar, Carmen, Alba Alvarez-Morezuelas, Leire Barandalla, and Jose Ignacio Ruiz de Galarreta. 2025. "Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato" Horticulturae 11, no. 8: 889. https://doi.org/10.3390/horticulturae11080889
APA StyleIribar, C., Alvarez-Morezuelas, A., Barandalla, L., & Ruiz de Galarreta, J. I. (2025). Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato. Horticulturae, 11(8), 889. https://doi.org/10.3390/horticulturae11080889