Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (903)

Search Parameters:
Keywords = breaking force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 716 KiB  
Article
The Effects of Soy Flour and Resistant Starch on the Quality of Low Glycemic Index Cookie Bars
by Hong-Ting Victor Lin, Guei-Ling Yeh, Jenn-Shou Tsai and Wen-Chieh Sung
Processes 2025, 13(8), 2420; https://doi.org/10.3390/pr13082420 - 30 Jul 2025
Abstract
Low glycemic index (GI) cookie bars were prepared with soft wheat flour substituted with 10–50% soybean flour and 10–50% resistant starch. The effects of increased levels of soybean flour and resistant starch on the quality of low glycemic index cookie bars were investigated [...] Read more.
Low glycemic index (GI) cookie bars were prepared with soft wheat flour substituted with 10–50% soybean flour and 10–50% resistant starch. The effects of increased levels of soybean flour and resistant starch on the quality of low glycemic index cookie bars were investigated (i.e., moisture, cookie spread, texture (breaking force), surface color, and in vitro starch digestibility). It was found that increasing soybean flour substitution increased the breaking force, moisture, protein content, and yellowish color of the low GI cookie bars but decreased the cookie bar spread and the lightness of the cookie bars (p < 0.05). The addition of soybean flour and resistant starch by up to 50% did not significantly change the in vitro starch digestibility of the cookie bars. The overall acceptability of the cookie bars was lower when the soybean flour blend went beyond 10%. When soft wheat flour in the cookie bar formulation was replaced at the following levels (10%, 30%, and 50%) by resistant starch, the cookie spread and lightness of the cookie bars increased but the breaking force was decreased along with the yellowish color (p < 0.05). When resistant starch was combined with soft wheat flour at levels of up to 50%, this significantly increased the content of total dietary fiber and spread ratio of cookie bars. Sensorial analysis showed that resistant starch presence had an acceptable impact on overall acceptability of the low GI cookie bars. Resistant starch represents a viable dietary fiber source when substituted for 50% of soft wheat flour in formulations. While this substitution may result in increased spread ratio and decreased crispness in cookie bars, the addition of 10% soybean flour can mitigate these textural changes. Full article
Show Figures

Figure 1

16 pages, 7993 KiB  
Article
Investigation of the Reinforcement Mechanism and Impact Resistance of Carbon Hollow Microsphere-Reinforced PDMS Composites
by Yingying Yu, Yaxi Zhang, Cheng Yang, Fandong Meng, Fanyi Meng, Tao Wang and Zhenmin Luo
Polymers 2025, 17(15), 2087; https://doi.org/10.3390/polym17152087 - 30 Jul 2025
Viewed by 18
Abstract
For meeting the growing demand for lightweight impact-resistant materials, this study designed and fabricated a carbon hollow microsphere (CHM)-reinforced polydimethylsiloxane (PDMS) composite and systematically investigated the influence of CHM packing structure on its energy absorption performance. Through optimizing the controllable preparation processes of [...] Read more.
For meeting the growing demand for lightweight impact-resistant materials, this study designed and fabricated a carbon hollow microsphere (CHM)-reinforced polydimethylsiloxane (PDMS) composite and systematically investigated the influence of CHM packing structure on its energy absorption performance. Through optimizing the controllable preparation processes of the CHMs, CHMs with low breaking rates and novel structural stability were successfully prepared. A vacuum-assisted mixing–casting method was employed to synthesize the CHM/PDMS composites with varying CHM contents (0~10 wt.%). The results demonstrated that the incorporation of CHMs significantly enhanced the compressive strength, compressive modulus, and energy absorption efficiency of the PDMS matrix. Under quasi-static loading, the composite with 4 wt.% CHM exhibited optimal comprehensive performance, achieving a 124.68% increase in compressive strength compared to pure PDMS. In dynamic impact tests, the compressive strength and energy absorption at a strain rate of 4500 s−1 increased by 1245.09% and 1218.32%, respectively. The improvement of mechanical properties can be mainly attributed to the introduction of CHMs with an appropriate percentage, which can form a dense stacking structure so that the interaction force between the CHMs and PDMS matrix can be improved through the dense stacking effect, and the external force can be effectively dissipated through interface interaction, in addition to the energy dissipated by the deformation of the matrix deformation and crush of the CHMs. Additionally, the introduction of CHMs elevated the onset thermal decomposition temperature of the materials, leading to an enhanced thermal stability of the CHM/PDMS composite compared to that of the pure PDMS. Overall, this study provides theoretical and experimental foundations for designing lightweight impact-resistant materials and demonstrates the potential of CHM/PDMS composites for multifunctional safety protection. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

30 pages, 9797 KiB  
Article
Rate-Dependent Tensile Behavior of Glass Fiber Composites Reinforced with Quadriaxial Fabrics, with or Without Coremat Xi3 Interlayer, for Marine Applications
by Lorena Deleanu, George Pelin, Ioana Gabriela Chiracu, Iulian Păduraru, Mario Constandache, George Ghiocel Ojoc and Alexandru Viorel Vasiliu
Polymers 2025, 17(15), 2074; https://doi.org/10.3390/polym17152074 - 29 Jul 2025
Viewed by 210
Abstract
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the [...] Read more.
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the presence or absence of a Coremat Xi3 middle layer. Tensile tests were conducted at four test rates (10 mm/min, 200 mm/min, 500 mm/min, and 1000 mm/min), ranging from quasi-static to moderately dynamic conditions. Tests were conducted using the Instron 5982 universal testing machine (from Laboratory for Advanced Materials and Tribology, INCAS Bucharest, Romania). The specimens have a rectangular cross section, in agreement with SR EN ISO 527-4:2023. For strain measurements, an Instron advanced video extensometer (AVE) was used. Key mechanical parameters, such as maximum force, tensile strength, Young’s modulus, strain at break, and energy absorption, were extracted and analyzed. Results show that the polyester-based composite without a mat interlayer displayed the best overall performance, with the highest ultimate strength (~280 MPa), significant energy absorption (~106 J), and a consistent increase in ductility with increasing test rate. In contrast, the epoxy composite with Coremat Xi3 exhibited lower stiffness and strength, but higher strain and energy absorption at higher test rates, indicating a progressive failure behavior. These findings enhance the understanding of the tensile response of composites made of quadriaxial glass fiber fabric and provide valuable design data for structural components in marine environments, where both strength and energy absorption are essential. These insights support producers and end-users of non-crimp fabrics in making experimentally based selections of a composite, technological strategies, and design optimization. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 100
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

31 pages, 1632 KiB  
Article
Climate Risks and Common Prosperity for Corporate Employees: The Role of Environment Governance in Promoting Social Equity in China
by Yi Zhang, Pan Xia and Xinjie Zheng
Sustainability 2025, 17(15), 6823; https://doi.org/10.3390/su17156823 - 27 Jul 2025
Viewed by 345
Abstract
Promoting social equity is a global issue, and common prosperity is an important goal for human society’s sustainable development. This study is the first to examine climate risks’ impacts on common prosperity from the perspective of corporate employees, providing micro-level evidence for the [...] Read more.
Promoting social equity is a global issue, and common prosperity is an important goal for human society’s sustainable development. This study is the first to examine climate risks’ impacts on common prosperity from the perspective of corporate employees, providing micro-level evidence for the coordinated development of climate governance and social equity. Employing data from companies listed on the Shanghai and Shenzhen stock exchanges from 2016 to 2023, a fixed-effects model analysis was conducted, and the results showed the following: (1) Climate risks are positively associated with the common prosperity of corporate employees in a significant way, and this effect is mainly achieved through employee guarantees, rather than employee remuneration or employment. (2) Climate risk will increase corporate financing constraints, but it will also force companies to improve their ESG performance. (3) The mechanism tests show that climate risks indirectly promote improvements in employee rights and interests by forcing companies to improve the quality of internal controls and audits. (4) The results of the moderating effect analysis show that corporate size and performance have a positive moderating effect on the relationship between climate risk and the common prosperity of corporate employees. This finding may indicate the transmission path of “climate pressure—governance upgrade—social equity” and suggest that climate governance may be transformed into social value through institutional changes in enterprises. This study breaks through the limitations of traditional research on the financial perspective of the economic consequences of climate risks, incorporates employee welfare into the climate governance assessment framework for the first time, expands the micro research dimension of common prosperity, provides a new paradigm for cross-research on ESG and social equity, and offers recommendations and references for different stakeholders. Full article
Show Figures

Figure 1

25 pages, 14579 KiB  
Article
A Hybrid Path Planning Framework Integrating Deep Reinforcement Learning and Variable-Direction Potential Fields
by Yunfei Bi and Xi Fang
Mathematics 2025, 13(14), 2312; https://doi.org/10.3390/math13142312 - 20 Jul 2025
Viewed by 382
Abstract
To address the local optimality in path planning for logistics robots using APF (artificial potential field) and the stagnation problem when encountering trap obstacles, this paper proposes VDPF (variable-direction potential field) combined with RL (reinforcement learning) to effectively solve these problems. First, based [...] Read more.
To address the local optimality in path planning for logistics robots using APF (artificial potential field) and the stagnation problem when encountering trap obstacles, this paper proposes VDPF (variable-direction potential field) combined with RL (reinforcement learning) to effectively solve these problems. First, based on obstacle distribution, an obstacle classification algorithm is designed, enabling the robot to select appropriate obstacle avoidance strategies according to obstacle types. Second, the attractive force and repulsive force in APF are separated, and the direction of the repulsive force is modified to break the local optimum, allowing the robot to focus on handling current obstacle avoidance tasks. Finally, the improved APF is integrated with the TD3 (Twin Delayed Deep Deterministic Policy Gradient) algorithm, and a weight factor is introduced to adjust the robot’s acting forces. By sacrificing a certain level of safety for a larger exploration space, the robot is guided to escape from local optima and trap regions. Experimental results show that the improved algorithm effectively mitigates the trajectory oscillation of the robot and can efficiently solve the problems of local optimum and trap obstacles in the APF method. Compared with the algorithm APF-TD3 in scenarios with five obstacles, the proposed algorithm reduces the GS (Global Safety) by 8.6% and shortens the length by 8.3%. In 10 obstacle scenarios, the proposed algorithm reduces the GS by 29.8% and shortens the length by 9.7%. Full article
Show Figures

Figure 1

15 pages, 1650 KiB  
Article
Physico-Chemical and Resistance Characteristics of Rosehip Seeds
by Alina-Daiana Ionescu, Gheorghe Voicu, Elena-Madalina Stefan, Gabriel-Alexandru Constantin, Paula Tudor and Gheorghe Militaru
Agriculture 2025, 15(14), 1539; https://doi.org/10.3390/agriculture15141539 - 17 Jul 2025
Viewed by 237
Abstract
Both the pulp and the seeds of rosehip are important for human health. Rosehip seeds are rich in polyunsaturated fats, which support a healthy skin membrane and protect it from inflammatory factors. In order to be used, the seeds require initial processing, mainly [...] Read more.
Both the pulp and the seeds of rosehip are important for human health. Rosehip seeds are rich in polyunsaturated fats, which support a healthy skin membrane and protect it from inflammatory factors. In order to be used, the seeds require initial processing, mainly by grinding. This paper first presents a brief review of the physicochemical properties and the content of bioactive compounds in rosehip (Rosa canina) and its seeds. Original research results on the compression behavior of rosehip seeds are presented below, together with the key values of the most important parameters derived from the analysis. For seeds with a thickness ranging from 1.80 to 3.55 mm, the compressive force at the onset of fracture was recorded to be between 94.4 and 156.0 N, while the force required for complete fracture ranged from 114.0 to 495.0 N (with about 12.5% of values considered outside a normal distribution). Additionally, for these forces, the deformation of the seeds ranged between 0.142 and 0.916 mm at the onset of fracture and between 0.248 and 1.878 mm at complete fracture. For these characteristics, the energy consumed ranged between 0.012 and 0.041 J at the onset of fracture and between 0.017 and 0.322 J at complete breaking. The elasticity of the seeds also ranged between 159.9 and 789.1 N/mm, considering the forces and deformations at the onset of fracture. The results of our study contribute to expanding the database on the mechanical characteristics of rosehip seeds, knowledge of which is essential for the initial processing operations used in the pharmaceutical industry aimed at oil extraction. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

19 pages, 865 KiB  
Article
Improved SBM Model Based on Asymmetric Data—Mathematical Evaluation and Analysis of Green Innovation Efficiency
by Limei Chen, Yao Yao and Can Yang
Symmetry 2025, 17(7), 1132; https://doi.org/10.3390/sym17071132 - 15 Jul 2025
Viewed by 271
Abstract
Green innovation has become a core driving force for promoting sustainable development, making the accurate evaluation of enterprises’ green innovation efficiency an important research topic. Based on the Environmental, Social, and Governance (ESG) framework, this paper improves the SBM model to overcome shortcomings [...] Read more.
Green innovation has become a core driving force for promoting sustainable development, making the accurate evaluation of enterprises’ green innovation efficiency an important research topic. Based on the Environmental, Social, and Governance (ESG) framework, this paper improves the SBM model to overcome shortcomings such as homogeneity in traditional SBM models during efficiency evaluation. By introducing an asymmetric slack measure, it breaks through the limitation of efficiency value ceilings, enabling gradient ranking of decision-making units and precisely distinguishing between efficient and inefficient enterprises, thereby better assessing the green innovation efficiency of hydrogen energy companies. The study shows that the improved SBM model significantly enhances the accuracy of enterprise efficiency evaluation. The contribution of this paper lies in constructing an improved SBM model integrated within the ESG framework, compensating for the lack of environmental dimensions in traditional evaluation methods, addressing issues of efficiency homogeneity and the static nature of the frontier, and achieving optimized ranking of frontier-efficient enterprises. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

18 pages, 2268 KiB  
Article
Effects of a Novel Mechanical Vibration Technology on the Internal Stress Distribution and Macrostructure of Continuously Cast Billets
by Shuai Liu, Jianliang Zhang, Hui Zhang and Minglin Wang
Metals 2025, 15(7), 794; https://doi.org/10.3390/met15070794 - 14 Jul 2025
Viewed by 246
Abstract
In this paper, a new mechanical vibration technology applied to continuous casting production is studied, which is used to break the dendrite at the solidification front, expand the equiaxed dendrite zone, and improve the center quality of the billet. The exciting force of [...] Read more.
In this paper, a new mechanical vibration technology applied to continuous casting production is studied, which is used to break the dendrite at the solidification front, expand the equiaxed dendrite zone, and improve the center quality of the billet. The exciting force of this vibration technology is provided by a new type of vibration equipment (Vibration roll) independently developed and designed. Firstly, an investigation is conducted into the impacts of vibration acceleration, vibration frequency, and the contact area between the Vibration roll (VR) and the billet surface on the internal stress distribution within the billet shell, respectively. Secondly, the billet with and without vibration treatment was sampled and analyzed through industrial tests. The results show that the area ratio of equiaxed dendrites in transverse specimens treated with vibration technology was 11.96%, compared to 6.55% in untreated specimens. Similarly, for longitudinal samples, the linear ratio of equiaxed dendrites was observed to be 34.56% in treated samples and 22.95% in untreated samples. Compared to the specimens without mechanical vibration, the billet treated with mechanical vibration exhibits an increase in the area ratio and linear ratio of equiaxed dendrite ratio by 5.41% and 11.61%, respectively. Moreover, the probability of bridging at the end of solidification of the billet treated by vibration technology was significantly reduced, and the central porosity and shrinkage cavities of the billet were significantly improved. This study provides the first definitive evidence that the novel mechanical vibration technology can enhance the quality of the billet during the continuous casting process. Full article
Show Figures

Figure 1

15 pages, 217 KiB  
Article
The Institutional Evolution of Chinese University Data Governance: An Analytical Framework Based on Historical Institutionalism
by Duanhong Zhang, Bowen Song, Hongwei Geng, Yiming Chen and Hong Liu
Educ. Sci. 2025, 15(7), 891; https://doi.org/10.3390/educsci15070891 - 12 Jul 2025
Viewed by 279
Abstract
This article examines the institutional evolution of university data governance in China through the lens of historical institutionalism, offering a novel perspective on this critical topic. This framework provides a structured approach to analyzing the role of institutional factors, power dynamics, and path [...] Read more.
This article examines the institutional evolution of university data governance in China through the lens of historical institutionalism, offering a novel perspective on this critical topic. This framework provides a structured approach to analyzing the role of institutional factors, power dynamics, and path dependence in shaping university data governance. Since the onset of the information age, Chinese university data governance has evolved through three distinct phases: functional departmentalism, cross-departmental collaborative governance with hierarchical structures, and governance focused on data openness and application. At a deeper level, shifts in governmental data governance serve as key indicators of transformations in university data governance, demonstrating the interplay between institutional frameworks and power structures. Path dependence is evident, with rational choices made by both the government and universities driving the persistence of existing governance models. Legitimacy emerges as the core driving force behind these institutional changes, while efficiency acts as an accelerator, contingent on legitimacy. To advance data governance, Chinese universities must break free from path dependence, reform institutional frameworks, and adapt data power structures to meet the evolving demands of data openness and effective application. Full article
(This article belongs to the Special Issue Higher Education Governance and Leadership in the Digital Era)
20 pages, 3310 KiB  
Article
Design and Experimental Investigation of a Non-Contact Tomato Pollination Device Based on Pulse Airflow
by Siyao Liu, Subo Tian, Zhen Zhang, Lingfei Liu and Tianlai Li
Agriculture 2025, 15(13), 1436; https://doi.org/10.3390/agriculture15131436 - 3 Jul 2025
Viewed by 311
Abstract
Planting tomatoes in enclosed facilities requires manual pollination assistance. Chemically-assisted pollination poses environmental pollution and food safety hazards. Contact vibration pollination is inefficient, ineffective, and prone to plant damage. This study developed a non-contact tomato pollination device based on pulse airflow, and conducted [...] Read more.
Planting tomatoes in enclosed facilities requires manual pollination assistance. Chemically-assisted pollination poses environmental pollution and food safety hazards. Contact vibration pollination is inefficient, ineffective, and prone to plant damage. This study developed a non-contact tomato pollination device based on pulse airflow, and conducted an experimental investigation on it. Firstly, a non-contact tomato pollination device based on pulse airflow was designed, based on the reciprocating motion of tomato flowers under the action of pulse airflow. Subsequently, this study took the coverage rate of pollen on the stigma as an indicator, and the optimal pulse airflow parameters were determined, which were a velocity of 1.22 m·s−1, airflow angle of −19.69°, and pulse frequency of 25.64 Hz. Finally, comparative experiments were conducted between the pollination effect of tomatoes based on pulse airflow and other assisted pollination methods. The results show that tomato flowers produce a composite reciprocating vibration under the coupling effect of the inflorescence elastic force and the pulse airflow force, and the coverage of pollen on the stigma is 11.2% higher than assisted pollination using stable airflow. The use of a pulse airflow pollination method can increase the fruit setting rate by 13.21%, increase the weight per fruit by 11.46%, and increase the weight of fruits per bunch by 33.33%. Compared with chemically-assisted fruit setting, no chemical agents were used to ensure a fruit setting rate similar to chemical methods, and the number of seeds per fruit increased by 74.8. Compared with vibration pollination, it eliminated plant damage and increased the fruit setting rate by 4.45%, and improved efficiency by 18.6%. The results indicated that the pollination method based on pulse airflow is environmentally friendly, high-quality, and efficient. This study breaks through the theoretical and parameter limitations of traditional airflow pollination devices, and provides a theoretical base for the development of clean pollination equipment in facility agriculture. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

41 pages, 1393 KiB  
Article
The Tropical Peatlands in Indonesia and Global Environmental Change: A Multi-Dimensional System-Based Analysis and Policy Implications
by Yee Keong Choy and Ayumi Onuma
Reg. Sci. Environ. Econ. 2025, 2(3), 17; https://doi.org/10.3390/rsee2030017 - 1 Jul 2025
Viewed by 569
Abstract
Tropical peatlands store approximately 105 gigatons of carbon (GtC), serving as vital long-term carbon sinks, yet remain critically underrepresented in climate policy. Indonesia peatlands contain 57GtC—the largest tropical peatland carbon stock in the Asia–Pacific. However, decades of drainage, fires, and lax enforcement practices [...] Read more.
Tropical peatlands store approximately 105 gigatons of carbon (GtC), serving as vital long-term carbon sinks, yet remain critically underrepresented in climate policy. Indonesia peatlands contain 57GtC—the largest tropical peatland carbon stock in the Asia–Pacific. However, decades of drainage, fires, and lax enforcement practices have degraded vast peatland areas, turning them from carbon sinks into emission sources—as evidenced by the 1997 and 2015 peatland fires which emitted 2.57 Gt CO2eq and 1.75 Gt CO2eq, respectively. Using system theory validated against historical data (1997–2023), we develop a causal loop model revealing three interconnected feedback loops driving irreversible collapse: (1) drainage–desiccation–oxidation, where water table below −40 cm triggers peat oxidation (2–5 cm subsistence) and fires; (2) fire–climate–permafrost, wherein emissions intensify radiative forcing, destabilizing monsoons and accelerating Arctic permafrost thaw (+15% since 2000); and (2) economy–governance failure, perpetuated by palm oil’s economic dominance and slack regulatory oversight. To break these vicious cycles, we propose a precautionary framework featuring IoT-enforced water table (≤40 cm), reducing emissions by 34%, legally protected “Global Climate Stabilization Zones” for peat domes (>3 m depth), safeguarding 57 GtC, and ASEAN transboundary enforcement funded by a 1–3% palm oil levy. Without intervention, annual emissions may reach 2.869 GtCO2e by 2030 (Nationally Determined Contribution’s business-as-usual scenario). Conversely, rewetting 590 km2/year aligns with Indonesia’s FOLU Net Sink 2030 target (−140 Mt CO2e) and mitigates 1.4–1.6 MtCO2 annually. We conclude that integrating peatlands as irreplaceable climate infrastructure into global policy is essential for achieving Paris Agreement goals and SDGs 13–15. Full article
Show Figures

Figure 1

24 pages, 6540 KiB  
Article
A Hybrid Control Approach Integrating Model-Predictive Control and Fractional-Order Admittance Control for Automatic Internal Limiting Membrane Peeling Surgery
by Hongcheng Liu, Xiaodong Zhang, Yachun Wang, Zirui Zhao and Ning Wang
Actuators 2025, 14(7), 328; https://doi.org/10.3390/act14070328 - 1 Jul 2025
Viewed by 205
Abstract
As the prevalence of related diseases continues to rise, a corresponding increase in the demand for internal limiting membrane (ILM) peeling surgery has been observed. However, significant challenges are encountered in ILM peeling surgery, including limited force feedback, inadequate depth perception, and surgeon [...] Read more.
As the prevalence of related diseases continues to rise, a corresponding increase in the demand for internal limiting membrane (ILM) peeling surgery has been observed. However, significant challenges are encountered in ILM peeling surgery, including limited force feedback, inadequate depth perception, and surgeon hand tremors. Research on fully autonomous ILM peeling surgical robots has been conducted to address the imbalance between medical resource availability and patient demand while enhancing surgical safety. An automatic control framework for break initiation in ILM peeling is proposed in this study, which integrates model-predictive control with fractional-order admittance control. Additionally, a multi-vision task surgical scene perception method is introduced based on target detection, key point recognition, and sparse binocular matching. A surgical trajectory planning strategy for break initiation in ILM peeling aligned with operative specifications is proposed. Finally, validation experiments for automatic break initiation in ILM peeling were performed using eye phantoms. The results indicated that the positional error of the micro-forceps tip remained within 40 μm. At the same time, the contact force overshoot was limited to under 6%, thereby ensuring both the effectiveness and safety of break initiation during ILM peeling. Full article
(This article belongs to the Special Issue Motion Planning, Trajectory Prediction, and Control for Robotics)
Show Figures

Figure 1

22 pages, 4058 KiB  
Article
Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
by Francesca Aliberti, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno and Marialuigia Raimondo
Nanomaterials 2025, 15(13), 994; https://doi.org/10.3390/nano15130994 - 26 Jun 2025
Viewed by 353
Abstract
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) [...] Read more.
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) were added to the EMAA thermoplastic matrix, and the relative electrical percolation thresholds (EPTs) were determined. The effect of filler concentration on thermo-oxidative degradation and the EMAA crystallinity was investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Dynamic mechanical analysis (DMA) demonstrated that both fillers enhance the Young’s and storage moduli, as well as the glass transition temperature, with a greater improvement for the bidimensional nanofiller, most likely due to the cumulative effect of more extensive EG-matrix interactions. In tensile tests, a very relevant difference was detected in the Gauge Factor (G.F.) and the elongation at break of the two typologies of nanocomposites. The G.F. of EMAA 10% CNT and EMAA 15% EG were found to be 0.5 ± 0.08 and 165 ± 14, respectively, while elongation at break was about 68% for EMAA 10% CNT and 8% for EMAA 15% EG. Emission Scanning Electron Microscopy (FESEM) and Tunneling Atomic Force Microscopy (TUNA) have contributed to explaining the differences between EG- and CNT-based nanocomposites from a morphological point of view, underlying the pivotal role of the filler aspect ratio and its structural features in determining different mechanical and piezoresistive performance. The comprehensive analysis of EMAA-EG and EMAA-CNT nanocomposites provides a guide for selecting the best self-sensing system for the specific application. More specifically, EMAA-CNT nanocomposites with high elongation at break and lower sensitivity to small strains are suitable for movement sensors in the soft robotic field, where high deformation has to be detected. On the other hand, the high sensitivity at a low strain of EMAA-EG systems makes them suitable for integrated sensors in more rigid composite structures, such as aeronautical and automotive components or wind turbines. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Graphical abstract

24 pages, 7747 KiB  
Article
Study on Cutting Performance and Wear Resistance of Biomimetic Micro-Textured Composite Cutting Tools
by Youzheng Cui, Dongyang Wang, Minli Zheng, Qingwei Li, Haijing Mu, Chengxin Liu, Yujia Xia, Hui Jiang, Fengjuan Wang and Qingming Hu
Metals 2025, 15(7), 697; https://doi.org/10.3390/met15070697 - 23 Jun 2025
Viewed by 348
Abstract
During the dry machining of 6061 aluminum alloy, cemented carbide tools often suffer from severe wear and built-up edge (BUE) formation, which significantly shortens tool life. Inspired by the non-smooth surface structure of dung beetles, this study proposes an elliptical dimple–groove composite bionic [...] Read more.
During the dry machining of 6061 aluminum alloy, cemented carbide tools often suffer from severe wear and built-up edge (BUE) formation, which significantly shortens tool life. Inspired by the non-smooth surface structure of dung beetles, this study proposes an elliptical dimple–groove composite bionic micro-texture, applied to the rake face of cemented carbide tools to enhance their cutting performance. Four types of tools with different surface textures were designed: non-textured (NT), single-groove texture (PT), circular dimple–groove composite texture (AKGC), and elliptical dimple–groove composite texture (TYGC). The cutting performance of these tools was analyzed through three-dimensional finite element simulations using the Deform-3D (version 11.0, Scientific Forming Technologies Corporation, Columbus, OH, USA) software program. The results showed that, compared to the NT tool, the TYGC tool exhibited the best performance, with a reduction in the main cutting force of approximately 30%, decreased tool wear, and significantly improved chip-breaking behavior. Based on the simulation results, a response surface model was constructed to optimize key texture parameters, and the optimal texture configuration was obtained. In addition, a theoretical model was developed to reveal the mechanism by which the micro-texture reduces interfacial friction and temperature rises by shortening the effective contact length. To verify the accuracy of the simulation and theoretical analysis, cutting experiments were further conducted. The experimental results were consistent with the simulation trends, and the TYGC tool demonstrated superior performance in terms of cutting force reduction, smaller adhesion area, and more stable cutting behavior, validating both the simulation model and the proposed texture design. This study provides a theoretical foundation for the structural optimization of bionic micro-textured cutting tools and offers an in-depth exploration of their friction-reducing and wear-resistant mechanisms, showing promising potential for practical engineering applications. Full article
Show Figures

Figure 1

Back to TopTop