Improved SBM Model Based on Asymmetric Data—Mathematical Evaluation and Analysis of Green Innovation Efficiency
Abstract
1. Introduction
2. Literature Review
2.1. Research Progress on Green Innovation Efficiency
2.2. Methods for Measuring Green Innovation Efficiency
3. Research Methods
3.1. Improved SBM Model
3.2. Variable Selection and Data Description
- (1)
- Input Indicator System
- (2)
- Output Indicator System
4. Research Findings
4.1. Differentiation Improvement of Efficiency Value
4.2. Ranking Optimization
4.3. Dynamic Analysis of Changes in Enterprises’ Green Innovation Efficiency Values
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Company | Traditional SBM Model | Rank | Improved SBM Model | Rank | Company | Traditional SBM Model | Improved SBM Model | ||
---|---|---|---|---|---|---|---|---|---|
Average | Average | Average | Average | ||||||
Meijin Energy | 1.000 | 1 | 1.629 | 1 | Narada Power Source | 0.798 | 31 | 0.844 | 32 |
Jilin Electric Power | 1.000 | 1 | 1.329 | 2 | Broad-Ocean Motor | 0.819 | 30 | 0.825 | 33 |
Baoshan Iron & Steel | 1.000 | 1 | 1.320 | 3 | Satellite Chemical | 0.761 | 34 | 0.771 | 34 |
Baotailong | 1.000 | 1 | 1.289 | 4 | Weifu High-Technology Group | 0.735 | 36 | 0.766 | 35 |
Weichai Power | 1.000 | 1 | 1.233 | 5 | DEC | 0.734 | 37 | 0.751 | 36 |
Center Power Tech | 1.000 | 1 | 1.229 | 6 | Antai Technology | 0.739 | 35 | 0.750 | 37 |
Tongji Science & Technology | 1.000 | 1 | 1.211 | 7 | Sungrow | 0.710 | 38 | 0.733 | 38 |
Yunnei Power | 1.000 | 1 | 1.190 | 8 | Yangmei Chemical | 0.671 | 39 | 0.702 | 39 |
Lopal Tech | 1.000 | 1 | 1.176 | 9 | Nbtm New Materials Group | 0.558 | 41 | 0.664 | 40 |
Baic Bluepark | 1.000 | 1 | 1.162 | 10 | Dowstone Technolog | 0.569 | 40 | 0.591 | 41 |
Hunan Corun | 1.000 | 1 | 1.157 | 11 | SOPO | 0.435 | 47 | 0.577 | 42 |
Shudao Equipment Technology | 1.000 | 1 | 1.129 | 12 | Hiconics | 0.552 | 42 | 0.556 | 43 |
Longsheng Technology | 1.000 | 1 | 1.118 | 13 | Sinomascience&Technology | 0.534 | 43 | 0.535 | 44 |
Sino-Platinum Metals | 1.000 | 1 | 1.092 | 14 | China Steel Tianyuan | 0.482 | 44 | 0.483 | 45 |
Yolocard | 1.000 | 1 | 1.083 | 15 | Hanma Technology | 0.454 | 45 | 0.461 | 46 |
SEC | 1.000 | 1 | 1.079 | 16 | Jinneng | 0.441 | 46 | 0.451 | 47 |
East Group | 1.000 | 1 | 1.077 | 17 | Camel Group | 0.422 | 48 | 0.424 | 48 |
ENN | 0.793 | 32 | 1.002 | 18 | Times New Material Technology | 0.422 | 48 | 0.422 | 49 |
Dongfeng Automobile | 0.881 | 23 | 0.995 | 19 | Baosi Energy Equipment | 0.410 | 50 | 0.410 | 50 |
Ch Dynamics | 0.899 | 20 | 0.977 | 20 | Lead | 0.400 | 51 | 0.400 | 51 |
FOTON | 0.900 | 18 | 0.953 | 21 | Oxygen Plant | 0.395 | 52 | 0.396 | 52 |
GEM | 0.886 | 21 | 0.952 | 22 | Tenglong Auto Parts | 0.389 | 53 | 0.389 | 53 |
Zhongtai Cryogenic Technology | 0.900 | 18 | 0.932 | 23 | GWM | 0.383 | 54 | 0.383 | 54 |
Dayuan Pumps Industry | 0.879 | 24 | 0.925 | 24 | Hangjin Technology | 0.366 | 55 | 0.368 | 55 |
Kain Corporation | 0.884 | 22 | 0.912 | 25 | Sanhua Intelligent Controls | 0.357 | 56 | 0.361 | 56 |
Dongfang Precision | 0.875 | 25 | 0.909 | 26 | Furui Special Equipment | 0.325 | 57 | 0.325 | 57 |
Jingcheng Stock | 0.845 | 28 | 0.882 | 27 | Lanpec Technologies Limited | 0.307 | 58 | 0.307 | 58 |
Lifan Technology | 0.791 | 33 | 0.875 | 28 | Great Power | 0.297 | 59 | 0.297 | 59 |
Qingdao Hanhe Cable | 0.856 | 27 | 0.873 | 29 | Invt Technology | 0.280 | 60 | 0.248 | 60 |
Kanhoo Industry | 0.857 | 26 | 0.863 | 30 | Houpu Clean Energy Group | 0.242 | 61 | 0.242 | 61 |
SLAC | 0.822 | 29 | 0.847 | 31 | Everwin Precision Technology | 0.124 | 62 | 0.124 | 62 |
References
- Baldini, M.; Maso, L.D.; Liberatore, G.; Mazzi, F.; Terzani, S. Role of country- and firm-level determinants in environmental, social, and governance disclosure. J. Bus. Ethics 2018, 150, 79–98. [Google Scholar] [CrossRef]
- Qiao, J. Hydrogen Energy Industry in Henan Province: Industrial Transition and Innovation Path under the Green Energy Revolution. J. North. Econ. 2024, 10, 36–39. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Am. Econ. Rev. 1978, 68, 39–41. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stutz, J. Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J. Econ. 1985, 30, 91–107. [Google Scholar] [CrossRef]
- Cooper, W.W. Encyclopedia of operations research and management science. In Data Envelopment Analysis; Springer: Boston, MA, USA, 2013; pp. 349–358. [Google Scholar]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale efficiency in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1099. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Chen, X.; Gao, Y.; An, Q.; Wang, Z.; Neralić, L. Energy efficiency measurement of Chinese Yangtze River Delta’s cities transportation: A DEA window analysis approach. Energy Effic. 2018, 11, 1941–1953. [Google Scholar] [CrossRef]
- Zheng, Z. Energy efficiency evaluation model based on DEA-SBM-Malmquist index. Energy Rep. 2021, 7, 397–409. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, T.; Li, R. Leveraging Economic Efficiency for CO2 Reduction and Energy Transition: The Role of Climate Vulnerability, GVC Integration, Digitalization and Energy Intensity. Sustain. Dev. 2025. [Google Scholar] [CrossRef]
- Gao, X.; Guo, Z.; Zhao, M.; Li, G.; Wang, Q. The spatiotemporal evolution, differences, and spatial convergence of green development efficiency in Chinese cities. Chin. J. Ecol. 2025, 45, 3790–3805. [Google Scholar]
- Lyu, Y.; Zhang, L.; Wang, D. The impact of digital transformation on low-carbon development of manufacturing. Front. Environ. Sci. 2023, 11, 1134882. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Peng, N.; Wei, X.; Lin, C.; Pelozo, E.I. Evaluation of the Green Innovation Efficiency of Chinese Industrial Enterprises: Research Based on the Three-Stage Chain Network SBM Model. Math. Probl. Eng. 2020, 2020, 3143651. [Google Scholar] [CrossRef]
- Rennings, K. Redefining Innovation—Eco-Innovation Research and the Contribution from Ecological Economics. Ecol. Econ. 2000, 32, 319–322. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lai, S.B.; Wen, C.T. The Influence of Green Innovation Performance on Corporate Advantage in Taiwan. J. Bus. Ethics 2006, 67, 331–339. [Google Scholar] [CrossRef]
- Brawn, E.; Wield, D. Regulation as a Means for the Social Control of Technology. Technol. Anal. Strateg. Manag. 1994, 3, 498–504. [Google Scholar] [CrossRef]
- Krabbe, J.J.; Willem, H. National Income and Nature: Externalities, Growth and Steady State: Externalities, Growth, and Steady State; Springer: Dordrecht, The Netherlands, 1992; Volume 5. [Google Scholar]
- Sun, Y.; Luo, B.; Wang, S.; Fang, W. What You See Is Meaningful: Does Green Advertising Change the Intentions of Consumers to Purchase Eco-Labeled Products? Bus. Strat. Environ. 2021, 30, 694–704. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, X.; Pan, C.; Wang, C. The Performance of Green Innovation: From an Efficiency Perspective. Socio-Econ. Plan. Sci. 2021, 78, 101062. [Google Scholar] [CrossRef]
- Costantini, V.; Crespi, F.; Palma, D. Characterizing the Policy Mix and Its Impact on Eco-Innovation: A Patent Analysis of Energy-Efficient Technologies. Res. Policy 2017, 46, 799–819. [Google Scholar] [CrossRef]
- Gao, P.; Wang, X.H. Fiscal Investment, Environmental Regulation and Green Technology Innovation Efficiency—Empirical Analysis Based on Data from Industrial Enterprises Above Designated Size from 2008 to 2015. Ecol. Econ. 2018, 34, 93–99. [Google Scholar]
- Lv, C.C.; Shao, C.H.; Cui, Y. Spatiotemporal Evolution and Influencing Factors of Green Innovation Efficiency in China. Res. Financ. Econ. Issues 2020, 12, 50–57. [Google Scholar]
- Zhang, C.J.; Hou, M.X.; Chen, Y.Q. Spatiotemporal Evolution Trends of Green Innovation Efficiency in the Yangtze River Economic Belt. Sci. Technol. Manag. Res. 2022, 42, 51–58. [Google Scholar]
- Wang, R.; Duan, Y.C.; Liu, L.Q. Green Innovation Effect of Financial Agglomeration: Spatial Correlation Characteristics and Urban Heterogeneity. Stat. Inf. Forum 2024, 39, 58–73. [Google Scholar]
- Cheng, S.X.; Liu, S.J. Intellectual Property Protection and Urban Green Technology Innovation Efficiency in the Yangtze River Economic Belt—Spatial Effect Analysis Based on the Innovation Value Chain Perspective. China Univ. Geosci. Soc. Sci. Ed. 2024, 24, 41–56. [Google Scholar]
- Wu, C.; Yang, S.W.; Tang, P.C.; Wu, T.; Fu, S.K. Construction of Green Innovation Efficiency Improvement Model for China’s Heavy Pollution Industries. China Popul. Resour. Environ. 2018, 28, 40–48. [Google Scholar]
- Li, X.X.; Tang, X.H. Research on the Mechanism of Digital Transformation on Green Innovation Efficiency of Manufacturing Enterprises. Financ. Econ. 2024, 4, 85–94. [Google Scholar]
- Zailani, S.; Iranmanesh, M.; Nikbin, D.; Foroughi, B. Environmental Outcome of Green Technology Innovation Adoption in the Transportation Industry in Malaysia. Asian J. Technol. Innov. 2014, 22, 286–301. [Google Scholar] [CrossRef]
- Borsatto, J.; Amui, L.B.L. Green Innovation: Unfolding the Relation with Environmental Regulations and Competitiveness. Resour. Conserv. Recycl. 2019, 149, 445–454. [Google Scholar] [CrossRef]
- Li, C.S. Evaluation of Green Innovation Efficiency in China’s Industrial Enterprises—Analysis Based on a Panel Time-Varying Stochastic Frontier Model. Technol. Econ. 2020, 39, 119–125. [Google Scholar]
- Bai, M.G.; Zhang, Y.; Fu, Y.L.; Lu, Y.; Lu, K. Research on Green Technology Innovation Efficiency of Iron and Steel Enterprises from the Perspective of Innovation Value Chain. Anhui Univ. Technol. Soc. Sci. 2019, 36, 13–16. [Google Scholar]
- Liu, W.; Yan, H. The evaluation of ESG strategy implementation effect based on performance prism: Evidence from the industrial and commercial bank of China. Humanit. Soc. Sci. 2025, 12, 395. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measurement of Productive Efficiency. J. Ser. A Gen. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Aigner, D.J.; Lovell, C.A.K.; Schmidt, P. Formulation and Estimation of Stochastic Frontiers Production Function Models. J. Econ. 1977, 1, 21–37. [Google Scholar] [CrossRef]
- Tovar, B. Technical Efficiency and Productivity Changes in Spanish Airports: A Parametric Distance Functions Approach. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 249–260. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H.; Dang, D.; Guan, J.; He, Y.; Chen, Y. Fiscal Decentralization, Local Government Environmental Protection Preference, and Regional Green Innovation Efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 85466–85481. [Google Scholar] [CrossRef]
- Wang, M.; Wong, M.C.S. International R&D Transfer and Technical Efficiency: Evidence from Panel Study Using Stochastic Frontier Analysis. World Dev. 2012, 40, 1982–1998. [Google Scholar]
- Bowlin, W.F. Measuring Performance: An Introduction to Data Envelopment Analysis (DEA). J. Cost Anal. 1998, 15, 3–27. [Google Scholar] [CrossRef]
- Chen, L.; Gozgor, G.; Mahalik, M.K.; Pal, S.; Rather, K.N. How does geopolitical risk affect CO2 emissions? The role of natural resource rents. Resour. Policy 2023, 87, 104321. [Google Scholar] [CrossRef]
- Yang, G.L.; Liu, W.B.; Zheng, H.J. A Review of Data Envelopment Analysis (DEA). Syst. Eng. 2013, 28, 840–860. [Google Scholar]
- Chen, L.; Xie, X.; Yao, Y.; Huang, W.; Luo, G. A Hybrid Data Envelopment Analysis–Random Forest Methodology for Evaluating Green Innovation Efficiency in an Asymmetric Environment. Symmetry 2024, 16, 960. [Google Scholar] [CrossRef]
- Wu, J.; Lu, X.; Guo, D.; Kao, C. Slacks-Based Efficiency Measurements with Undesirable Outputs in Data Envelopment Analysis. Int. J. Inf. Technol. Decis. Mak. 2017, 16, 1005–1021. [Google Scholar] [CrossRef]
- Li, Y.; Shi, X.; Emrouznejad, A.; Yang, F. Environmental Performance Evaluation of Chinese Industrial Systems: A Network SBM Approach. J. Oper. Res. Soc. 2018, 69, 825–839. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity Changes in Swedish Pharmacies 1980–1989. J. Prod. Anal. 1992, 3, 85–101. [Google Scholar] [CrossRef]
- Malmquist, S. Index Numbers and Indifference Surfaces. Trabajos Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Yao, K.; Zhang, Q. Impact of Scientific Innovation Climate on the Sustainable Effectiveness of Talent Introduction—Based on the DPSIR-DEA-Malmquist Model and Threshold Effect Analysis. Technol. Econ. 2025, 44, 63–79. [Google Scholar]
- Bai, X. Research on Performance Evaluation of Company S Based on ESG Perspective. Bachelor’s Thesis, Hebei University, Baoding, China, 2024. [Google Scholar]
- Pan, S.N. Research on the Impact of Corporate ESG Performance on Green Technology Innovation from the Perspective of R&D Expenditure. Commer. Exhib. Econ. 2024, 15, 186–192. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y.Y. Construction of Performance Evaluation System for Metallurgical Industry Based on ESG Concept—A Case Study of Enterprise. Financ. Manag. Res. 2024, 8, 70–75. [Google Scholar]
- Wang, S.G.; Wang, B. Independent Director System, Corporate Governance, and Governance Culture of State-Owned Enterprises. Soc. Sci. Front. 2022, 9, 101–112. [Google Scholar]
- Wang, Q.L.; Wang, Z.Y. Measurement of Green Technology Innovation Efficiency in China’s Manufacturing Industry Based on DEA-Malmquist. Sci. Technol. Sq. 2023, 2, 65–78. [Google Scholar] [CrossRef]
- Liu, C.; Pan, H.F.; Li, P.; Zhang, X.Y. The Impact and Mechanism of Digital Transformation on Green Innovation Efficiency in Manufacturing Enterprises. China Soft Sci. 2023, 4, 121–129. [Google Scholar]
- Wang, D.F. Research on ESG Information Disclosure of New Energy Vehicle Enterprises—A Case Study of BYD. Mod. Bus. 2024, 11, 167–170. [Google Scholar] [CrossRef]
Base Layer | Indicator Layer | Data Source | |
---|---|---|---|
Input Variables | Environmental (E) | Environmental Tax | CSMAR database |
Social (S) | Number of R&D Personnel | Annual report | |
R&D Expenditure | |||
Staff Compensation | |||
Governance (G) | Proportion of Independent Directors | CSMAR database | |
R&D Investment Ratio | |||
Output Variables | Environmental (E) | Number of Green Invention Applications | CNRDS database |
Air Pollution Logarithm | Corporate Social Responsibility Report | ||
Social (S) | Supply Chain Concentration | CSMAR database | |
Corporate Social Responsibility | Corporate Social Responsibility Report | ||
Governance (G) | Intangible Assets | Annual report | |
Operating Income |
Company | Improved SBM Model | Traditional SBM Model | ||||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | Average | Average | ||
1 | Weichai Power | 1.168 | 1.308 | 1.202 | 1.275 | 1.214 | 1.233 | 1.000 |
2 | Weifu High-Technology Group | 1.027 | 0.502 | 1.013 | 1.115 | 0.173 | 0.766 | 0.735 |
3 | Meijin Energy | 1.895 | 1.629 | 1.590 | 1.652 | 1.381 | 1.629 | 1.000 |
4 | Hangjin Technology | 1.011 | 0.463 | 0.209 | 0.096 | 0.061 | 0.368 | 0.366 |
5 | Jilin Electric Power | 1.339 | 1.224 | 1.325 | 1.350 | 1.407 | 1.329 | 1.000 |
6 | Yunnei Power | 1.157 | 1.270 | 1.228 | 1.163 | 1.134 | 1.190 | 1.000 |
7 | Antai Technology | 1.037 | 0.296 | 0.399 | 1.003 | 1.015 | 0.750 | 0.739 |
8 | Kain Corporation | 1.040 | 0.418 | 1.034 | 1.021 | 1.047 | 0.912 | 0.884 |
9 | Sanhua Intelligent Controls | 0.401 | 0.141 | 1.021 | 0.074 | 0.167 | 0.361 | 0.357 |
10 | China Steel Tianyuan | 0.392 | 0.219 | 0.587 | 0.214 | 1.004 | 0.483 | 0.482 |
11 | Sinomascience&Technology | 1.002 | 0.369 | 1.001 | 0.164 | 0.137 | 0.535 | 0.534 |
12 | Broad-Ocean Motor | 1.012 | 1.011 | 1.001 | 1.007 | 0.093 | 0.825 | 0.819 |
13 | Invt Technology | 0.283 | 0.235 | 0.366 | 0.151 | 0.203 | 0.248 | 0.28 |
14 | GEM | 1.116 | 1.090 | 1.113 | 1.011 | 0.429 | 0.952 | 0.886 |
15 | Oxygen Plant | 0.296 | 1.004 | 0.306 | 0.201 | 0.174 | 0.396 | 0.395 |
16 | Qingdao Hanhe Cable | 1.004 | 1.016 | 1.065 | 0.281 | 1.002 | 0.873 | 0.856 |
17 | Dongfang Precision | 1.013 | 1.120 | 1.008 | 0.374 | 1.028 | 0.909 | 0.875 |
18 | Satellite Chemical | 1.017 | 1.010 | 0.700 | 0.107 | 1.020 | 0.771 | 0.761 |
19 | Center Power Tech | 1.146 | 1.352 | 1.344 | 1.217 | 1.088 | 1.229 | 1.000 |
20 | Hiconics | 1.017 | 0.273 | 0.566 | 0.366 | 0.555 | 0.556 | 0.552 |
21 | Narada Power Source | 1.174 | 0.504 | 1.050 | 1.006 | 0.488 | 0.844 | 0.798 |
22 | Yolocard | 1.069 | 1.108 | 1.191 | 1.015 | 1.034 | 1.083 | 1.000 |
23 | Shenzhen Everwin Precision Technology | 0.189 | 0.041 | 0.197 | 0.081 | 0.114 | 0.124 | 0.124 |
24 | Furui Special Equipment | 0.402 | 0.202 | 0.493 | 0.380 | 0.147 | 0.325 | 0.325 |
25 | Sungrow | 1.010 | 1.051 | 0.230 | 0.320 | 1.053 | 0.733 | 0.710 |
26 | Kanhoo Industry | 1.010 | 1.008 | 1.008 | 0.287 | 1.003 | 0.863 | 0.857 |
27 | East Group | 1.221 | 1.000 | 1.149 | 1.016 | 1.002 | 1.077 | 1.000 |
28 | SLAC | 0.516 | 1.010 | 1.048 | 0.594 | 1.064 | 0.847 | 0.822 |
29 | Dowstone Technolog | 1.005 | 1.104 | 0.332 | 0.326 | 0.189 | 0.591 | 0.569 |
30 | Zhongtai Cryogenic Technology | 1.024 | 0.498 | 1.065 | 1.043 | 1.031 | 0.932 | 0.900 |
31 | Great Power | 0.217 | 0.256 | 0.696 | 0.224 | 0.091 | 0.297 | 0.297 |
32 | Baosi Energy Equipment | 0.467 | 1.000 | 0.320 | 0.143 | 0.120 | 0.410 | 0.410 |
33 | Lead | 0.468 | 0.195 | 1.001 | 0.113 | 0.222 | 0.400 | 0.400 |
34 | Houpu Clean Energy Group | 0.132 | 0.144 | 0.200 | 0.323 | 0.410 | 0.242 | 0.242 |
35 | Shudao Equipment Technology | 1.009 | 1.084 | 1.084 | 1.230 | 1.238 | 1.129 | 1.000 |
36 | Longsheng Technology | 1.172 | 1.156 | 1.079 | 1.066 | 1.116 | 1.118 | 1.000 |
37 | Dongfeng Automobile | 0.403 | 1.016 | 1.157 | 1.188 | 1.212 | 0.995 | 0.881 |
38 | Baoshan Iron & Steel | 1.441 | 1.382 | 1.306 | 1.268 | 1.203 | 1.320 | 1.000 |
39 | Nbtm New Materials Group | 1.521 | 1.013 | 0.468 | 0.280 | 0.040 | 0.664 | 0.558 |
40 | FOTON | 1.107 | 1.127 | 1.020 | 0.499 | 1.010 | 0.953 | 0.900 |
41 | Hanma Technology | 0.299 | 0.258 | 1.034 | 0.368 | 0.348 | 0.461 | 0.454 |
42 | Times New Material Technology | 0.497 | 0.472 | 0.500 | 0.219 | 0.422 | 0.422 | 0.422 |
43 | Sino-Platinum Metals | 1.033 | 1.115 | 1.123 | 1.167 | 1.023 | 1.092 | 1.000 |
44 | Hunan Corun | 1.144 | 1.192 | 1.107 | 1.027 | 1.316 | 1.157 | 1.000 |
45 | Ch Dynamics | 1.074 | 1.076 | 1.001 | 0.496 | 1.240 | 0.977 | 0.899 |
46 | Yangmei Chemical | 1.037 | 1.041 | 1.077 | 0.288 | 0.067 | 0.702 | 0.671 |
47 | Baic Bluepark | 1.151 | 1.275 | 1.226 | 1.048 | 1.108 | 1.162 | 1.000 |
48 | SOPO | 1.714 | 0.520 | 0.248 | 0.225 | 0.181 | 0.577 | 0.435 |
49 | ENN | 0.438 | 0.529 | 1.368 | 1.362 | 1.313 | 1.002 | 0.793 |
50 | Tongji Science & Technology | 1.156 | 1.296 | 1.246 | 1.220 | 1.139 | 1.211 | 1.000 |
51 | Jingcheng Stock | 1.072 | 1.103 | 0.660 | 0.567 | 1.007 | 0.882 | 0.845 |
52 | DEC | 0.309 | 0.363 | 1.026 | 1.013 | 1.046 | 0.751 | 0.734 |
53 | Baotailong | 1.218 | 1.297 | 1.220 | 1.282 | 1.429 | 1.289 | 1.000 |
54 | Camel Group | 0.285 | 1.013 | 0.338 | 0.224 | 0.262 | 0.424 | 0.422 |
55 | GWM | 0.375 | 0.352 | 0.424 | 0.382 | 0.380 | 0.383 | 0.383 |
56 | SEC | 1.091 | 1.076 | 1.078 | 1.028 | 1.122 | 1.079 | 1.000 |
57 | Lifan Technology | 1.229 | 1.181 | 0.675 | 0.279 | 1.009 | 0.875 | 0.791 |
58 | Lanpec Technologies Limited | 0.351 | 0.426 | 0.243 | 0.226 | 0.287 | 0.307 | 0.307 |
59 | Jinneng | 1.052 | 0.545 | 0.430 | 0.178 | 0.050 | 0.451 | 0.441 |
60 | Tenglong Auto Parts | 0.460 | 0.488 | 0.402 | 0.276 | 0.318 | 0.389 | 0.389 |
61 | Dayuan Pumps Industry | 1.075 | 1.055 | 1.085 | 0.397 | 1.014 | 0.925 | 0.879 |
62 | Lopal Tech | 1.019 | 1.009 | 1.076 | 1.386 | 1.386 | 1.176 | 1.000 |
Technological Innovation Efficiency (Average) | Scale of Returns Status per Firm | |||
---|---|---|---|---|
Year | TE (Average) | PTE (Average) | SE (Average) | |
2018 | 0.888 | 1.032 | 0.873 | Increasing:42 Decreasing:16 Unchanged:4 |
2019 | 0.811 | 0.938 | 0.855 | Increasing:47 Decreasing:14 Unchanged:1 |
2020 | 0.862 | 0.929 | 0.922 | Increasing:51 Decreasing:11 Unchanged:0 |
2021 | 0.674 | 0.793 | 0.853 | Increasing:45 Decreasing:12 Unchanged:5 |
2022 | 0.752 | 0.902 | 0.827 | Increasing:51 Decreasing:9 Unchanged:2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Yao, Y.; Yang, C. Improved SBM Model Based on Asymmetric Data—Mathematical Evaluation and Analysis of Green Innovation Efficiency. Symmetry 2025, 17, 1132. https://doi.org/10.3390/sym17071132
Chen L, Yao Y, Yang C. Improved SBM Model Based on Asymmetric Data—Mathematical Evaluation and Analysis of Green Innovation Efficiency. Symmetry. 2025; 17(7):1132. https://doi.org/10.3390/sym17071132
Chicago/Turabian StyleChen, Limei, Yao Yao, and Can Yang. 2025. "Improved SBM Model Based on Asymmetric Data—Mathematical Evaluation and Analysis of Green Innovation Efficiency" Symmetry 17, no. 7: 1132. https://doi.org/10.3390/sym17071132
APA StyleChen, L., Yao, Y., & Yang, C. (2025). Improved SBM Model Based on Asymmetric Data—Mathematical Evaluation and Analysis of Green Innovation Efficiency. Symmetry, 17(7), 1132. https://doi.org/10.3390/sym17071132