Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,222)

Search Parameters:
Keywords = brake system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 (registering DOI) - 3 Aug 2025
Viewed by 42
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

25 pages, 2567 KiB  
Article
Development of Improved Empirical Take-Off Equations
by Timothy T. Takahashi
Aerospace 2025, 12(8), 695; https://doi.org/10.3390/aerospace12080695 - 2 Aug 2025
Viewed by 166
Abstract
This paper develops empirical relationships to estimate FAA/EASA and MIL-3013B rules-compliant take-off field performance for single and multi-engine aircraft. Recent experience with modern aircraft flight manuals revealed that popular empirical legacy methods are no longer accurate; improvements in tires and brakes lead to [...] Read more.
This paper develops empirical relationships to estimate FAA/EASA and MIL-3013B rules-compliant take-off field performance for single and multi-engine aircraft. Recent experience with modern aircraft flight manuals revealed that popular empirical legacy methods are no longer accurate; improvements in tires and brakes lead to significantly shorter certified distances. This work relies upon a survey of current operational aircraft and extensive numerical simulations of generic configurations to support the development of a collection of new equations to estimate take-off performance for single and multi-engine aircraft under dry and wet conditions. These relationships are individually tailored for civilian and U.S. Military rules; they account for the superior capability of modern braking systems and the implications of minimum-control speed on the certified distance. Full article
(This article belongs to the Special Issue Aircraft Conceptual Design: Tools, Processes and Examples)
Show Figures

Figure 1

21 pages, 4415 KiB  
Article
Friction and Regenerative Braking Shares Under Various Laboratory and On-Road Driving Conditions of a Plug-In Hybrid Passenger Car
by Dimitrios Komnos, Alessandro Tansini, Germana Trentadue, Georgios Fontaras, Theodoros Grigoratos and Barouch Giechaskiel
Energies 2025, 18(15), 4104; https://doi.org/10.3390/en18154104 - 2 Aug 2025
Viewed by 194
Abstract
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative [...] Read more.
Although particulate matter (PM) pollution from vehicles’ exhaust has decreased significantly over the years, the contribution from non-exhaust sources (brakes, tyres) has remained at the same levels. In the European Union (EU), Euro 7 regulation introduced PM limits for vehicles’ brake systems. Regenerative braking, i.e., recuperation of the deceleration kinetic and potential energy to the vehicle battery, is one of the strategies to reduce the brake emission levels and improve vehicle efficiency. According to the regulation, the shares of friction and regenerative braking can be determined with actual testing of the vehicle on a chassis dynamometer. In this study we tested the regenerative capabilities of a plug-in hybrid vehicle, both in the laboratory and on the road, under different protocols (including both smooth and aggressive braking) and covering a wide range of driving conditions (urban, rural, motorway) over 10,000 km of driving. Good agreement was obtained between laboratory and on-road tests, with the use of the friction brakes being on average 7% and 5.3%, respectively. However, at the same time it was demonstrated that the friction braking share can vary over a wide range (up to around 30%), depending on the driver’s behaviour. Full article
Show Figures

Figure 1

29 pages, 1289 KiB  
Article
An Analysis of Hybrid Management Strategies for Addressing Passenger Injuries and Equipment Failures in the Taipei Metro System: Enhancing Operational Quality and Resilience
by Sung-Neng Peng, Chien-Yi Huang, Hwa-Dong Liu and Ping-Jui Lin
Mathematics 2025, 13(15), 2470; https://doi.org/10.3390/math13152470 - 31 Jul 2025
Viewed by 253
Abstract
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates [...] Read more.
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates strong novelty and practical contributions. In the passenger injury analysis, a dataset of 3331 cases was examined, from which two highly explanatory rules were extracted: (i) elderly passengers (aged > 61) involved in station incidents are more likely to suffer moderate to severe injuries; and (ii) younger passengers (aged ≤ 61) involved in escalator incidents during off-peak hours are also at higher risk of severe injury. This is the first study to quantitatively reveal the interactive effect of age and time of use on injury severity. In the train malfunction analysis, 1157 incidents with delays exceeding five minutes were analyzed. The study identified high-risk condition combinations—such as those involving rolling stock, power supply, communication, and signaling systems—associated with specific seasons and time periods (e.g., a lift value of 4.0 for power system failures during clear mornings from 06:00–12:00, and 3.27 for communication failures during summer evenings from 18:00–24:00). These findings were further cross-validated with maintenance records to uncover underlying causes, including brake system failures, cable aging, and automatic train operation (ATO) module malfunctions. Targeted preventive maintenance recommendations were proposed. Additionally, the study highlighted existing gaps in the completeness and consistency of maintenance records, recommending improvements in documentation standards and data auditing mechanisms. Overall, this research presents a new paradigm for intelligent metro system maintenance and safety prediction, offering substantial potential for broader adoption and practical application. Full article
Show Figures

Figure 1

23 pages, 5974 KiB  
Article
Gas–Liquid Two-Phase Flow in a Hydraulic Braking Pipeline: Flow Pattern and Bubble Characteristics
by Xiaolu Li, Yiyu Ke, Cangsu Xu, Jia Sun and Mingxuan Liang
Fluids 2025, 10(8), 196; https://doi.org/10.3390/fluids10080196 - 29 Jul 2025
Viewed by 237
Abstract
An in-depth analysis of the two-phase flow in a hydraulic braking pipeline can reveal its evolution process pertinent for designing and maintaining the hydraulic system. In this study, a high-speed camera examined the two-phase flow pattern and bubble characteristics in a hydraulic braking [...] Read more.
An in-depth analysis of the two-phase flow in a hydraulic braking pipeline can reveal its evolution process pertinent for designing and maintaining the hydraulic system. In this study, a high-speed camera examined the two-phase flow pattern and bubble characteristics in a hydraulic braking pipeline. Bubble flow pattern recognition, bubble segmentation, and bubble tracking were performed to analyze the bubble movement, including its behavior, distribution, velocity, and acceleration. The results indicate that the gas–liquid two-phase flow patterns in the hydraulic braking pipeline include bubbly, slug, plug, annular, and transient flows. Experiments reveal that bubbly flow is the most frequent, followed by slug, plug, and transient flows. However, plug and transient flows are unstable, while annular flow occurs at a wheel speed of 200 r/min. Bubbles predominantly appear in the upper section of the pipeline. Furthermore, large bubbles travel faster than small bubbles, whereas slug flow bubbles exhibit higher velocities than those in plug or transient flows. Full article
(This article belongs to the Special Issue Hydraulic Flow in Pipelines)
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 270
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

26 pages, 12786 KiB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 329
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

26 pages, 3405 KiB  
Article
Digital Twins for Intelligent Vehicle-to-Grid Systems: A Multi-Physics EV Model for AI-Based Energy Management
by Michela Costa and Gianluca Del Papa
Appl. Sci. 2025, 15(15), 8214; https://doi.org/10.3390/app15158214 - 23 Jul 2025
Viewed by 274
Abstract
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including [...] Read more.
This paper presents a high-fidelity multi-physics dynamic model for electric vehicles, serving as a fundamental building block for intelligent vehicle-to-grid (V2G) integration systems. The model accurately captures complex vehicle dynamics of the powertrain, battery, and regenerative braking, enabling precise energy consumption evaluation, including in AI-driven V2G scenarios. Validated using real-world data from a Citroën Ami operating on urban routes in Naples, Italy, it achieved exceptional accuracy with a root mean square error (RMSE) of 1.28% for dynamic state of charge prediction. This robust framework provides an essential foundation for AI-driven digital twin technologies in V2G applications, significantly advancing sustainable transportation and smart grid integration through predictive simulation. Its versatility supports diverse fleet applications, from residential energy management and coordinated charging optimization to commercial car sharing operations, leveraging backup power during peak demand or grid outages, so to maximize distributed battery storage utilization. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in the Novel Power System)
Show Figures

Figure 1

16 pages, 2084 KiB  
Article
Accelerometer Measurements: A Learning Tool to Help Older Adults Understand the Importance of Soft-Landing Techniques in a Community Walking Class
by Tatsuo Doi, Ryosuke Haruna, Naoyo Kamioka, Shuzo Bonkohara and Nobuko Hongu
Sensors 2025, 25(15), 4546; https://doi.org/10.3390/s25154546 - 22 Jul 2025
Viewed by 214
Abstract
When people overextend their step length, it leads to an increase in vertical movement and braking force. The overextension elevates landing impacts, which may increase pain in the knees or lower back. The objective of this study was to examine the effects of [...] Read more.
When people overextend their step length, it leads to an increase in vertical movement and braking force. The overextension elevates landing impacts, which may increase pain in the knees or lower back. The objective of this study was to examine the effects of soft-landing walking techniques in a 90 min, instructor-led group class for older adults. To evaluate a landing impact, an accelerometer measurement system (Descente LTD., Tokyo, Japan) was used to measure a participant 10 meter (m) of walking. Assessment outcomes included the average number of steps, step length, upward acceleration which reflects the landing impact, and survey questions. A total of 223 older adults (31 men, 192 women, mean age 74.4 ± 5.7 years) completed the walking lesson. Following the lesson, participants decreased their step lengths and reduced upward acceleration, along with an increased step count. The number of steps increased, and a positive correlation (r = 0.73, p < 0.01) was observed between the rate of change in step length and upward acceleration. Over 95% of participants gave high marks for practicality and understanding the accelerometer measurements. The information derived from this study will provide valuable insight into the effectiveness of soft-landing techniques as a promotion of a healthy walking program for older adults. Full article
(This article belongs to the Special Issue Advanced Sensors for Health Monitoring in Older Adults)
Show Figures

Figure 1

20 pages, 4503 KiB  
Article
Comparative Validation of the fBrake Method with the Conventional Brake Efficiency Test Under UNE 26110 Using Roller Brake Tester Data
by Víctor Romero-Gómez and José Luis San Román
Sensors 2025, 25(14), 4522; https://doi.org/10.3390/s25144522 - 21 Jul 2025
Viewed by 229
Abstract
In periodic technical inspections (PTIs), evaluating the braking efficiency of light passenger vehicles at their Maximum Authorized Mass (MAM) presents a practical challenge, as bringing laden vehicles to inspection is often unfeasible due to logistical and infrastructure limitations. The fBrake method is proposed [...] Read more.
In periodic technical inspections (PTIs), evaluating the braking efficiency of light passenger vehicles at their Maximum Authorized Mass (MAM) presents a practical challenge, as bringing laden vehicles to inspection is often unfeasible due to logistical and infrastructure limitations. The fBrake method is proposed to overcome this issue by estimating braking efficiency at MAM based on measurements taken from vehicles in more accessible loading conditions. In this study, the fBrake method is validated by demonstrating the equivalence of its efficiency estimates extrapolated from two distinct configurations: an unladen state near the curb weight and a partially laden condition closer to MAM. Following the UNE 26110 standard (Road vehicles. Criteria for the assessment of the equivalence of braking efficiency test methods in relation to the methods defined in ISO 21069), roller brake tester measurements were used to obtain force data under both conditions. The analysis showed that the extrapolated efficiencies agree within combined uncertainty limits, with normalized errors below 1 in all segments tested. Confidence intervals were reduced by up to 74% after electronics update. These results confirm the reliability of the fBrake method for M1 and N1 vehicles and support its adoption as an equivalent procedure in compliance with UNE 26110, particularly when fully laden testing is impractical. Full article
(This article belongs to the Special Issue Advanced Sensing and Analysis Technology in Transportation Safety)
Show Figures

Figure 1

15 pages, 3342 KiB  
Article
Fault-Tolerant Control of the Electro-Mechanical Compound Transmission System of Tracked Vehicles Based on the Anti-Windup PID Algorithm
by Qingkun Xing, Ziao Zhang, Xueliang Li, Datong Qin and Zengxiong Peng
Machines 2025, 13(7), 622; https://doi.org/10.3390/machines13070622 - 18 Jul 2025
Viewed by 223
Abstract
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper [...] Read more.
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper proposes three fault-tolerant control methods for three typical fault scenarios of the electromechanical composite transmission system (ECTS) to ensure the normal operation of tracked vehicles. Firstly, an ECTS and the electromechanical coupling dynamics model of the tracked vehicle are established. Moreover, a double-layer anti-windup PID control for motors and an instantaneous optimal control strategy for the engine are proposed in the fault-free case. Secondly, an anti-windup PID control law for motors and an engine control strategy considering the state of charge (SOC) and driving demands are developed in the case of single-side drive motor failure. Thirdly, a B4 clutch control strategy during starting and a steering brake control strategy are proposed in the case of electric drive system failure. Finally, in the straight-driving condition of the tracked vehicle, the throttle opening is set as 0.6, and the motor failure is triggered at 15 s during the acceleration process. Numerical simulations verify the fault-tolerant control strategies’ feasibility, using the tracked vehicle’s maximum speed and acceleration at 30 s as indicators for dynamic performance evaluation. The simulation results show that under single-motor fault, its straight-line driving power drops by 33.37%; with electric drive failure, the drop reaches 43.86%. The vehicle can still maintain normal straight-line driving and steering under fault conditions. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

23 pages, 5983 KiB  
Article
Fuzzy Logic Control for Adaptive Braking Systems in Proximity Sensor Applications
by Adnan Shaout and Luis Castaneda-Trejo
Electronics 2025, 14(14), 2858; https://doi.org/10.3390/electronics14142858 - 17 Jul 2025
Viewed by 312
Abstract
This paper details the design and implementation of a fuzzy logic control system for an advanced driver-assistance system (ADAS) that adjusts brake force based on proximity sensing, vehicle speed, and road conditions. By employing a cost-effective ultrasonic sensor (HC-SR04) and an STM32 microcontroller, [...] Read more.
This paper details the design and implementation of a fuzzy logic control system for an advanced driver-assistance system (ADAS) that adjusts brake force based on proximity sensing, vehicle speed, and road conditions. By employing a cost-effective ultrasonic sensor (HC-SR04) and an STM32 microcontroller, the system facilitates real-time adjustments to braking force, enhancing both vehicle safety and driver comfort. The fuzzy logic controller processes three inputs to deliver a smooth and adaptive brake response, thus addressing the shortcomings of traditional binary systems that can lead to abrupt and unsafe braking actions. The effectiveness of the system is validated through several test cases, demonstrating improved responsiveness and safety across various driving scenarios. This paper presents a cost-effective model for a straightforward braking system using fuzzy logic, laying the groundwork for the development of more advanced systems in emerging technologies. Full article
Show Figures

Figure 1

29 pages, 4633 KiB  
Article
Failure Detection of Laser Welding Seam for Electric Automotive Brake Joints Based on Image Feature Extraction
by Diqing Fan, Chenjiang Yu, Ling Sha, Haifeng Zhang and Xintian Liu
Machines 2025, 13(7), 616; https://doi.org/10.3390/machines13070616 - 17 Jul 2025
Viewed by 254
Abstract
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the [...] Read more.
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the welding material and welding process, the weld seam is prone to various defects such as cracks, pores, undercutting, and incomplete fusion, which can weaken the joint and even lead to product failure. Traditional weld seam detection methods include destructive testing and non-destructive testing; however, destructive testing has high costs and long cycles, and non-destructive testing, such as radiographic testing and ultrasonic testing, also have problems such as high consumable costs, slow detection speed, or high requirements for operator experience. In response to these challenges, this article proposes a defect detection and classification method for laser welding seams of automotive brake joints based on machine vision inspection technology. Laser-welded automotive brake joints are subjected to weld defect detection and classification, and image processing algorithms are optimized to improve the accuracy of detection and failure analysis by utilizing the high efficiency, low cost, flexibility, and automation advantages of machine vision technology. This article first analyzes the common types of weld defects in laser welding of automotive brake joints, including craters, holes, and nibbling, and explores the causes and characteristics of these defects. Then, an image processing algorithm suitable for laser welding of automotive brake joints was studied, including pre-processing steps such as image smoothing, image enhancement, threshold segmentation, and morphological processing, to extract feature parameters of weld defects. On this basis, a welding seam defect detection and classification system based on the cascade classifier and AdaBoost algorithm was designed, and efficient recognition and classification of welding seam defects were achieved by training the cascade classifier. The results show that the system can accurately identify and distinguish pits, holes, and undercutting defects in welds, with an average classification accuracy of over 90%. The detection and recognition rate of pit defects reaches 100%, and the detection accuracy of undercutting defects is 92.6%. And the overall missed detection rate is less than 3%, with both the missed detection rate and false detection rate for pit defects being 0%. The average detection time for each image is 0.24 s, meeting the real-time requirements of industrial automation. Compared with infrared and ultrasonic detection methods, the proposed machine-vision-based detection system has significant advantages in detection speed, surface defect recognition accuracy, and industrial adaptability. This provides an efficient and accurate solution for laser welding defect detection of automotive brake joints. Full article
Show Figures

Figure 1

34 pages, 17167 KiB  
Article
An Enhanced ABS Braking Control System with Autonomous Vehicle Stopping
by Mohammed Fadhl Abdullah, Gehad Ali Qasem and Mazen Farid
World Electr. Veh. J. 2025, 16(7), 400; https://doi.org/10.3390/wevj16070400 - 16 Jul 2025
Viewed by 352
Abstract
This study explores the design and implementation of a control system integrating the anti-lock braking system (ABS) with frequency-modulated continuous wave (FMCW) radar technology to enhance safety and performance in autonomous vehicles. The proposed system employs a hybrid fuzzy logic controller (FLC) and [...] Read more.
This study explores the design and implementation of a control system integrating the anti-lock braking system (ABS) with frequency-modulated continuous wave (FMCW) radar technology to enhance safety and performance in autonomous vehicles. The proposed system employs a hybrid fuzzy logic controller (FLC) and proportional-integral-derivative (PID) controller to improve braking efficiency and vehicle stability under diverse driving conditions. Simulation results showed significant enhancements in stopping performance across various road conditions. The integrated system exhibited a marked improvement in braking performance, achieving significantly shorter stopping distances across all evaluated surface conditions—including dry concrete, wet asphalt, snowy roads, and icy roads—compared with scenarios without ABS. These results highlight the system’s ability to dynamically adapt braking forces to different conditions, significantly improving safety and stability for autonomous vehicles. The limitations are acknowledged, and directions for real-world validation are outlined to ensure system robustness under diverse environmental conditions. Full article
Show Figures

Figure 1

34 pages, 1638 KiB  
Review
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 - 14 Jul 2025
Viewed by 659
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy [...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

Back to TopTop