Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = bottom friction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3870 KiB  
Article
The Impact of Drilling Parameters on Drilling Temperature in High-Strength Steel Thin-Walled Parts
by Yupu Zhang, Ruyu Li, Yihan Liu, Chengwei Liu, Shutao Huang, Lifu Xu and Haicheng Shi
Appl. Sci. 2025, 15(15), 8568; https://doi.org/10.3390/app15158568 (registering DOI) - 1 Aug 2025
Abstract
High-strength steel has high strength and low thermal conductivity, and its thin-walled parts are very susceptible to residual stress and deformation caused by cutting heat during the drilling process, which affects the machining accuracy and quality. High-strength steel thin-walled components are widely used [...] Read more.
High-strength steel has high strength and low thermal conductivity, and its thin-walled parts are very susceptible to residual stress and deformation caused by cutting heat during the drilling process, which affects the machining accuracy and quality. High-strength steel thin-walled components are widely used in aerospace and other high-end sectors; however, systematic investigations into their temperature fields during drilling remain scarce, particularly regarding the evolution characteristics of the temperature field in thin-wall drilling and the quantitative relationship between drilling parameters and these temperature variations. This paper takes the thin-walled parts of AF1410 high-strength steel as the research object, designs a special fixture, and applies infrared thermography to measure the bottom surface temperature in the thin-walled drilling process in real time; this is carried out in order to study the characteristics of the temperature field during the thin-walled drilling process of high-strength steel, as well as the influence of the drilling dosage on the temperature field of the bottom surface. The experimental findings are as follows: in the process of thin-wall drilling of high-strength steel, the temperature field of the bottom surface of the workpiece shows an obvious temperature gradient distribution; before the formation of the drill cap, the highest temperature of the bottom surface of the workpiece is distributed in the central circular area corresponding to the extrusion of the transverse edge during the drilling process, and the highest temperature of the bottom surface can be approximated as the temperature of the extrusion friction zone between the top edge of the drill and the workpiece when the top edge of the drill bit drills to a position close to the bottom surface of the workpiece and increases with the increase in the drilling speed and the feed volume; during the process of drilling, the highest temperature of the bottom surface of the workpiece is approximated as the temperature of the top edge of the drill bit and the workpiece. The maximum temperature of the bottom surface of the workpiece in the drilling process increases nearly linearly with the drilling of the drill, and the slope of the maximum temperature increases nearly linearly with the increase in the drilling speed and feed, in which the influence of the feed on the slope of the maximum temperature increases is larger than that of the drilling speed. Full article
(This article belongs to the Special Issue Machine Automation: System Design, Analysis and Control)
18 pages, 5286 KiB  
Article
The Influence of Sheet Layer Combination Modes on Mechanical Property of Self-Piercing Riveting Joint in Three-Layer Sheets
by Zhaohui Hu, Shuai Mo and Yuxuan Wang
Appl. Mech. 2025, 6(3), 51; https://doi.org/10.3390/applmech6030051 - 3 Jul 2025
Viewed by 226
Abstract
Unlike previous studies focusing on two-layer structures or single-parameter effects, this work systematically investigates the influence of sheet layer combination modes on the mechanical properties of three-layer AA6063-T6 self-piercing riveting (SPR) joints through a combination of experimental testing and numerical simulation. Shear and [...] Read more.
Unlike previous studies focusing on two-layer structures or single-parameter effects, this work systematically investigates the influence of sheet layer combination modes on the mechanical properties of three-layer AA6063-T6 self-piercing riveting (SPR) joints through a combination of experimental testing and numerical simulation. Shear and cross-tensile tests were conducted on three-layer AA6063-T6 SPR joints with three distinct sheet layer combinations: T1 (top/middle: 100 × 40 mm2, bottom: 40 × 40 mm2), T2 (top/bottom: 100 × 40 mm2, middle: 40 × 40 mm2), and T3 (middle/bottom: 100 × 40 mm2, top: 40 × 40 mm2). Experimental results reveal significant differences in joint strength and failure modes across the three combinations. T3 joints exhibited the highest shear strength (9.16 kN) but the lowest cross-tensile strength (3.56 kN), whereas T1 joints showed the highest cross-tensile strength (4.97 kN) but moderate shear strength (8.76 kN). A high-fidelity finite element model was developed to simulate the SPR joint under varying sheet layer combinations, incorporating precise geometric details (0.25 mm mesh at critical zones) and advanced contact algorithms (friction coefficient μ = 0.2). Numerical simulations revealed the stress distribution and failure mechanisms under shear and cross-tensile loading, aligning well with experimental observations. Analysis highlights that the mechanical performance of the joint is governed by two key factors: (1) the stress redistribution in sheet layers due to combination mode variations, and (2) the interlocking strength between the rivet and sheets. These findings provide practical guidelines for optimizing sheet layer combinations in lightweight automotive structures subjected to mixed loading conditions. Full article
Show Figures

Figure 1

16 pages, 3918 KiB  
Article
Improvements in Wettability and Tribological Behavior of Zirconia Artificial Teeth Using Surface Micro-Textures
by Yayun Liu, Guangjie Wang, Fanshuo Jia, Xue Jiang, Ning Jiang, Chuanyang Wang and Zhouzhou Lin
Materials 2025, 18(13), 3117; https://doi.org/10.3390/ma18133117 - 1 Jul 2025
Viewed by 306
Abstract
Zirconia ceramics are promising materials for restoration and are widely used in the field of artificial teeth. However, wear resistance affects the longevity of artificial teeth. In this study, peacock tail feather micro-textures and groove micro-textures are prepared on the surfaces of zirconia [...] Read more.
Zirconia ceramics are promising materials for restoration and are widely used in the field of artificial teeth. However, wear resistance affects the longevity of artificial teeth. In this study, peacock tail feather micro-textures and groove micro-textures are prepared on the surfaces of zirconia ceramics via the laser ablation technique to improve their tribological properties. The effects of micro-textures on the surface wettability and tribological properties of zirconia ceramics are studied. The micro-textures improve the surface wettability and tribological properties of zirconia ceramics. The average coefficient of friction of peacock tail feather micro-textured samples decreases by 53% compared to that of the samples without micro-textures. Different operating conditions affect the friction properties of zirconia ceramics. The samples have the best friction performance when the rotational speed, load, and acid/alkaline environment are 200 r/min, 15 N, and weakly alkaline, respectively. Furthermore, the mechanism by which surface micro-textures reduce frictional wear is as follows: the textured grooves store debris, and the bottom edge of the textured groove acts as a cutting tool to cut debris, preventing debris from scratching the surface. The micro-textures store lubricant and form a liquid film on the ceramic surface to reduce wear. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

16 pages, 1751 KiB  
Article
Drag Reduction in Compressible Channel Turbulence with Periodic Interval Blowing and Suction
by Shibo Lee, Chenglin Zhou, Yang Zhang, Yunlong Zhao, Jiaqi Luo and Yao Zheng
Appl. Sci. 2025, 15(13), 7117; https://doi.org/10.3390/app15137117 - 24 Jun 2025
Viewed by 282
Abstract
This paper employs direct numerical simulation (DNS) to investigate the influence of blowing and suction control on the compressible fully developed turbulent flow within an infinitely long channel. The spanwise blowing strips are positioned at uniform intervals along the bottom wall of the [...] Read more.
This paper employs direct numerical simulation (DNS) to investigate the influence of blowing and suction control on the compressible fully developed turbulent flow within an infinitely long channel. The spanwise blowing strips are positioned at uniform intervals along the bottom wall of the channel, while the suction strips are symmetrically placed on the top wall. The basic flow (uncontrolled case) and the controlled cases involving global control and interval control are compared at Ma=0.8 and 1.5. Although the wall mass flow rate remains constant across all controlled cases, the applied blowing/suction intensity and spanwise strip areas exhibit significant variations. The numerical results indicate that augmenting the blowing/suction intensity will alter the velocity gradient of the viscous sublayer in the controlled region. Nonetheless, a reduction in the area of the controlled region diminishes the impact of blowing/suction on drag reduction on the entire wall. The spatially averaged velocity profiles on the wall for cases with identical wall mass flow rates are nearly indistinguishable, suggesting that the wall mass flow rate is the primary factor influencing the spatially averaged drag reduction rate on the entire wall, rather than the blowing/suction intensity or the injected energy. This is because the wall mass flow rate influences the average peak position of the Reynolds stress, which, in turn, affects the skin friction drag. An increase in the wall mass flow rate correlates with a heightened drag reduction rate on the blowing side, while simultaneously leading to a rising drag increase rate on the suction side. Full article
Show Figures

Figure 1

21 pages, 8446 KiB  
Article
Regional Wave Analysis in the East China Sea Based on the SWAN Model
by Songnan Ma, Fuwu Ji, Qunhui Yang, Zhinan Mi and Wenhui Cao
J. Mar. Sci. Eng. 2025, 13(6), 1196; https://doi.org/10.3390/jmse13061196 - 19 Jun 2025
Viewed by 563
Abstract
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and [...] Read more.
High-precision wave data serve as a foundation for investigating the wave characteristics of the East China Sea (ECS) and wave energy development. Based on the simulating waves nearshore (SWAN) model, this study uses the ERA5 (ECMWF Reanalysis v5) reanalysis wind field data and ETOPO1 bathymetric data to perform high-precision simulations at a resolution of 0.05° × 0.05° for the waves in the area of 25–35° N and 120–130° E in the ECS from 2009 to 2023. The simulation results indicate that the application of the whitecapping dissipation parameter Komen and the bottom friction parameter Collins yields an average RMSE of 0.374 m and 0.369 m when compared to satellite-measured data, demonstrating its superior suitability for wave simulation in shallow waters such as the ESC over the other whitecapping dissipation parameter, Westhuysen, and the other two bottom friction parameters, Jonswap and Madsen, in the SWAN model. The monthly average significant wave height (SWH) ranges from 0 to 3 m, exhibiting a trend that it is more important in autumn and winter than in spring and summer and gradually increases from the northwest to the southeast. Due to the influence of the Kuroshio current, topography, and events such as typhoons, areas with significant wave heights are found in the northwest of the Ryukyu Islands and north of the Taiwan Strait. The wave energy flux density in most areas of the ECS is >2 kW/m, particularly in the north of the Ryukyu Islands, where the annual average value remains above 8 kW/m. Because of the influence of climate events such as El Niño and extreme heatwaves, the wave energy flux density decreased significantly in some years (a 21% decrease in 2015). The coefficient of variation of wave energy in the East China Sea exhibits pronounced regional heterogeneity, which can be categorized into four distinct patterns: high mean wave energy with high variation coefficient, high mean wave energy with low variation coefficient, low mean wave energy with high variation coefficient, and low mean wave energy with low variation coefficient. This classification fundamentally reflects the intrinsic differences in dynamic environments across various maritime regions. These high-precision numerical simulation results provide methodological and theoretical support for exploring the spatiotemporal variation laws of waves in the ECS region, the development and utilization of wave resources, and marine engineering construction. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

26 pages, 11288 KiB  
Article
Application of Composite Drainage and Gas Production Synergy Technology in Deep Coalbed Methane Wells: A Case Study of the Jishen 15A Platform
by Longfei Sun, Donghai Li, Wei Qi, Li Hao, Anda Tang, Lin Yang, Kang Zhang and Yun Zhang
Processes 2025, 13(5), 1457; https://doi.org/10.3390/pr13051457 - 9 May 2025
Viewed by 474
Abstract
The development of deep coalbed methane (CBM) wells faces challenges such as significant reservoir depth, low permeability, and severe liquid loading in the wellbore. Traditional drainage and gas recovery techniques struggle to meet the dynamic production demands. This study, using the deep CBM [...] Read more.
The development of deep coalbed methane (CBM) wells faces challenges such as significant reservoir depth, low permeability, and severe liquid loading in the wellbore. Traditional drainage and gas recovery techniques struggle to meet the dynamic production demands. This study, using the deep CBM wells at the Jishen 15A platform as an example, proposes a “cyclic gas lift–wellhead compression-vent gas recovery” composite synergy technology. By selecting a critical liquid-carrying model, innovating equipment design, and dynamically regulating pressure, this approach enables efficient production from low-pressure, low-permeability gas wells. This research conducts a comparative analysis of different critical liquid-carrying velocity models and selects the Belfroid model, modified for well inclination angle effects, as the primary model to guide the matching of tubing production and annular gas injection parameters. A mobile vent gas rapid recovery unit was developed, utilizing a three-stage/two stage pressurization dual-process switching technology to achieve sealed vent gas recovery while optimizing pipeline frictional losses. By combining cyclic gas lift with wellhead compression, a dynamic wellbore pressure equilibrium system was established. Field tests show that after 140 days of implementation, the platform’s daily gas production increased to 11.32 × 104 m3, representing a 35.8% rise. The average bottom-hole flow pressure decreased by 38%, liquid accumulation was reduced by 72%, and cumulative gas production increased by 370 × 104 m3. This technology effectively addresses gas–liquid imbalance and liquid loading issues in the middle and late stages of deep CBM well production, providing a technical solution for the efficient development of low-permeability CBM reservoirs. Full article
Show Figures

Figure 1

11 pages, 7943 KiB  
Article
Development of Thin Carbon-Ceramic Based Coatings in Roll-to-Roll Mode: Tribological and Corrosion Results on Stainless Steel
by Mª Fe Menéndez Suárez, Pascal Sanchez, Ana L. Martínez Díez, Beatriz Mingo Roman and Marta Mohedano Sánchez
Materials 2025, 18(9), 2159; https://doi.org/10.3390/ma18092159 - 7 May 2025
Viewed by 471
Abstract
In this work, silicon oxide based coatings with embedded graphene nanoplatelets (content ranging from 1.8 wt.% to 7.2 wt.%) have been developed following the sol-gel route, using AISI430 stainless steel as substrate and dip and roll-to-roll as coating techniques. The tribological and corrosion [...] Read more.
In this work, silicon oxide based coatings with embedded graphene nanoplatelets (content ranging from 1.8 wt.% to 7.2 wt.%) have been developed following the sol-gel route, using AISI430 stainless steel as substrate and dip and roll-to-roll as coating techniques. The tribological and corrosion behaviour of these coatings have been evaluated and compared to bare steel. Concerning tribological behaviour, the coefficient of friction and wear print were significantly reduced with increasing the graphene nanoplatelets content. Regarding corrosion, all coatings showed improved corrosion behaviour compared to bare steel. However, higher concentration of nanoplatelets revealed a negative effect on the corrosion resistance, probably due to aggregation. Taking into account these two counteracting effects, as final part of this work, a bilayer coating with different graphene content has been proposed and fabricated. A top layer, with high graphene nanoplatelets concentration has allowed enhanced tribological properties whereas bottom layer, with no graphene nanoplatelets assures corrosion inhibition under harsh environments. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

25 pages, 9643 KiB  
Article
Numerical Modeling of the Three-Dimensional Wave-Induced Current Field
by Gabriela Gic-Grusza
Water 2025, 17(9), 1336; https://doi.org/10.3390/w17091336 - 29 Apr 2025
Viewed by 412
Abstract
This paper showcases the results of three-dimensional numerical modeling of coastal zone hydrodynamics, based on a recently developed three-dimensional analytical model incorporating a three-dimensional formulation of radiation stress. The study examines the influence of cross-shore and alongshore bathymetric variability on hydrodynamic model results, [...] Read more.
This paper showcases the results of three-dimensional numerical modeling of coastal zone hydrodynamics, based on a recently developed three-dimensional analytical model incorporating a three-dimensional formulation of radiation stress. The study examines the influence of cross-shore and alongshore bathymetric variability on hydrodynamic model results, focusing on internal volumetric current transport, bottom friction, free surface elevation, and velocity distributions. Using coastal zone cases with increasing complexity and wave datasets, we analyze differences between 2D and 3D model solutions, as well as theoretical calculations based on analytical solutions. Results indicate that in idealized, homogeneous bathymetric conditions, 2D and 3D models yield similar outputs. However, increased bathymetric complexity introduces significant variations, particularly in velocity fields and transport dynamics. Alongshore variability further modifies these distributions, emphasizing the role of lateral gradients often neglected in simplified models. The study demonstrates that neglecting alongshore bathymetric heterogeneity can lead to underestimation of key hydrodynamic variables, affecting model accuracy in coastal applications. Two-dimensional current transport fields reveal circulation patterns and possible rip current formations, suggesting that the proposed model framework provides improved insights into real-world coastal hydrodynamics. These findings highlight the necessity of incorporating three-dimensional bathymetric variability in predictive models to enhance accuracy in coastal engineering and environmental management applications. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

19 pages, 9716 KiB  
Article
Turbulent and Subcritical Flows over Macro-Roughness Elements
by Francisco Martínez and Javier Farías
Water 2025, 17(9), 1301; https://doi.org/10.3390/w17091301 - 27 Apr 2025
Viewed by 367
Abstract
Determining the friction coefficients for uniform flows over very rough bottoms is a long-standing problem in open-channel hydraulics and river engineering. This experimental study presents measurements of the surface deformation as well as Darcy–Weisbach and Manning friction coefficients for steady, turbulent (6058 [...] Read more.
Determining the friction coefficients for uniform flows over very rough bottoms is a long-standing problem in open-channel hydraulics and river engineering. This experimental study presents measurements of the surface deformation as well as Darcy–Weisbach and Manning friction coefficients for steady, turbulent (6058 Re 28,502), and subcritical flows (0.14 Fr 0.52) over large roughness elements, where Fr and Re denote the Froude and Reynolds numbers, respectively. The experiments were conducted in a rectangular, inclined flume with a train of half-cylinders mounted on the bed, with radii in the range 20 mm a 50 mm. These obstacles yield a relative submergence 1.45 hN/a 4.41 and a constant spacing ratio e/a=12.8 across all experimental runs, where hN and e denote the normal flow depth and the center-to-center spacing between cylinders, respectively. The relative amplitude of the surface profiles, (Δh/a), was analyzed and found to correlate strongly with hN/a, Re and Fr. The results reveal very high values of the Darcy friction factor, f, which follows scaling laws of the form f(hN/a)n^, with n^<0, independent of a, and fReβ, where β<0 is closely linked to a. Scaling relationships for the Manning roughness coefficient, (n), were also investigated and are reported herein. Full article
(This article belongs to the Special Issue Open Channel Flows: An Open Topic That Requires Further Exploration)
Show Figures

Figure 1

22 pages, 8377 KiB  
Article
Study on the Corrosion and Wear Mechanism of a Core Friction Pair in Methanol-Fueled Internal Combustion Engines
by Wenjuan Zhang, Hao Gao, Qianting Wang, Dong Liu and Enlai Zhang
Materials 2025, 18(9), 1966; https://doi.org/10.3390/ma18091966 - 25 Apr 2025
Cited by 1 | Viewed by 497
Abstract
With the global shift in energy structure and the advancement of the “double carbon” strategy, methanol has gained attention as a clean low-carbon fuel in the engine sector. However, the corrosion–wear coupling failure caused by acidic byproducts, such as methanoic acid and formaldehyde, [...] Read more.
With the global shift in energy structure and the advancement of the “double carbon” strategy, methanol has gained attention as a clean low-carbon fuel in the engine sector. However, the corrosion–wear coupling failure caused by acidic byproducts, such as methanoic acid and formaldehyde, generated during combustion severely limits the durability of methanol engines. In this study, we employed a systematic approach combining the construction of a corrosion liquid concentration gradient experiment with a full-load and full-speed bench test to elucidate the synergistic corrosion–wear mechanism of core friction pairs (cylinder liner, piston, and piston ring) in methanol-fueled engines. The experiment employed corrosion-resistant gray cast iron (CRGCI), high chromium cast iron (HCCI), and nodular cast iron (NCI) cylinder liners, along with F38MnVS steel and ZL109 aluminum alloy pistons. Piston rings with DLC, PVD, and CKS coatings were also tested. Corrosion kinetic analysis was conducted in a formaldehyde/methanoic acid gradient corrosion solution, with a concentration range of 0.5–2.5% for formaldehyde and 0.01–0.10% for methanoic acid, simulating the combustion products of methanol. The results showed that the corrosion depth of CRGCI was the lowest in low-concentration corrosion solutions, measuring 0.042 and 0.055 μm. The presence of microalloyed Cr/Sn/Cu within its pearlite matrix, along with the directional distribution of flake graphite, effectively inhibited the micro-cell effect. In high-concentration corrosion solutions (#3), HCCI reduced the corrosion depth by 60.7%, resulting in a measurement of 0.232 μm, attributed to the dynamic reconstruction of the Cr2O3-Fe2O3 composite passive film. Conversely, galvanic action between spherical graphite and the surrounding matrix caused significant corrosion in NCI, with a depth reaching 1.241 μm. The DLC piston coating obstructed the permeation pathway of formate ions due to its amorphous carbon structure. In corrosion solution #3, the recorded weight loss was 0.982 mg, which accounted for only 11.7% of the weight loss observed with the CKS piston coating. Following a 1500 h bench test, the combination of the HCCI cylinder liner and DLC-coated piston ring significantly reduced the wear depth. The average wear amounts at the top and bottom dead centers were 5.537 and 1.337 μm, respectively, representing a reduction of 67.7% compared with CRGCI, where the wear amounts were 17.152 and 4.244 μm. This research confirmed that the HCCI ferrite–Cr carbide matrix eliminated electrochemical heterogeneity, while the DLC piston coating inhibited abrasive wear. Together, these components reduced the wear amount at the top dead center on the push side by 80.1%. Furthermore, mismatches between the thermal expansion coefficients of the F38MnVS steel piston (12–14 × 10−6/°C) and gray cast iron (11 × 10−6/°C) resulted in a tolerance exceeding 0.105 mm in the cylinder fitting gap after 3500 h of testing. Notably, the combination of a HCCI matrix and DLC coating successfully maintained the gap within the required range of 50–95 μm. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

21 pages, 4376 KiB  
Article
Influence of Construction-Induced Effects and Post-Grouting on the Performance of Mud-Protected Bored Piles: A Numerical Investigation
by Hua Mo, Haopeng Liao, Xiangfeng Guo and Mi Zhou
Buildings 2025, 15(9), 1457; https://doi.org/10.3390/buildings15091457 - 25 Apr 2025
Viewed by 439
Abstract
Mud-protected bored piles are widely used in foundation engineering due to their high bearing capacity and strong adaptability to various geological conditions. However, the formation of mud skin around the pile shaft and sediment at the pile bottom during construction significantly affects their [...] Read more.
Mud-protected bored piles are widely used in foundation engineering due to their high bearing capacity and strong adaptability to various geological conditions. However, the formation of mud skin around the pile shaft and sediment at the pile bottom during construction significantly affects their mechanical behavior, posing challenges for performance evaluation and design optimization. The post-grouting technique, which involves injecting grout material to strengthen the bottom and surrounding soils, has been practically adopted to enhance pile performance. This study investigates the effect of construction-induced factors (mud skin and sediment) and post-grouting on the performance of mud-protected bored piles. Finite element analyses were conducted based on a super-long test pile (60 m in length, 1.8 m in diameter) from an infrastructure project in Eastern China. The numerical model was validated against field test measurements and previously published numerical results. The results reveal that mud skin and sediment individually decrease the bearing capacity by 28% and 24%, respectively, compared to ideal conditions. When both factors are present, the bearing capacity is decreased by 36%. The post-grouting technique effectively improves pile performance, increasing the bearing capacity by 81% compared to non-grouting conditions. The findings also demonstrate that side friction dominates the bearing behavior of the studied super-long pile, accounting for approximately 90% of the total bearing capacity. Parametric analysis indicates that post-grouting effectiveness varies with soil properties and dimensions of effective grouting zones, showing greater improvement in weak soils. These results provide insights into the mechanisms through which construction-induced effects impact pile performance and offer guidelines for post-grouting applications. Full article
Show Figures

Figure 1

13 pages, 4985 KiB  
Article
Kinetic Energy Harvesting with a Piezoelectric Patch Using a Bistable Laminate
by Sonia Bradai, Slim Naifar, Piotr Wolszczak, Jarosław Bieniaś, Patryk Jakubczak, Andrzej Rysak, Grzegorz Litak and Olfa Kanoun
Micromachines 2025, 16(4), 410; https://doi.org/10.3390/mi16040410 - 30 Mar 2025
Viewed by 421
Abstract
A bistable effect on a laminate structure with a piezoelectric patch was tested to harvest kinetic energy. The composite bistable plate was prepared in the autoclave with two different orientations of the glass fibers. The dynamic tests were performed on the universal testing [...] Read more.
A bistable effect on a laminate structure with a piezoelectric patch was tested to harvest kinetic energy. The composite bistable plate was prepared in the autoclave with two different orientations of the glass fibers. The dynamic tests were performed on the universal testing machine using cyclic vertical compression excitation. During the tests, the bottom edge of the plate was clamped firmly while its upper edge was attached with some clearance to enable sliding. In such a configuration, the friction force between the plate and upper clamp element is responsible for the plate excitation. Simultaneously, the plate has enough space to change the shape between the two equilibria. During the harmonic excitation of the testing machine operating mode, a piezoelectric element was placed on the bistable plate and its voltage and normalized power outputs were evaluated. The experiments were repeated with additional mass distribution, which influenced the natural frequency of the plate. Full article
(This article belongs to the Special Issue Linear and Nonlinear Vibrations for Sensing and Energy Harvesting)
Show Figures

Figure 1

19 pages, 2274 KiB  
Article
Construction and Application of a Coupled Temperature and Pressure Model for CO2 Injection Wells Considering Gas Composition
by Hang Lai, Peng Chen, Lingang Lv and Song Lu
Energies 2025, 18(5), 1238; https://doi.org/10.3390/en18051238 - 3 Mar 2025
Viewed by 815
Abstract
Accurate prediction of the temperature and pressure fields in carbon dioxide (CO2) injection wells is critical for enhancing oil recovery efficiency and ensuring safe carbon sequestration. At present, the prediction model generally assumes that CO2 is pure and does not [...] Read more.
Accurate prediction of the temperature and pressure fields in carbon dioxide (CO2) injection wells is critical for enhancing oil recovery efficiency and ensuring safe carbon sequestration. At present, the prediction model generally assumes that CO2 is pure and does not consider the influence of impurities in CO2 components. This study takes into account the common impurities, such as air and various alkanes in CO2, and uses Refprop 9.0 software to calculate the physical parameters of the mixture. A comprehensive coupling model was developed to account for axial heat conduction, convective heat transfer, frictional heat generation, the soup coke effect, pressure work, and gas composition. The model was solved iteratively using numerical methods. We validated the accuracy of the calculated results by comparing our model with the Ramey model using measured injection well data. Compared with the measured bottom hole temperature and pressure data, the error percentage of our model to predict the bottom hole temperature and pressure is less than 1%, while the error percentage of Ramey model to predict the bottom hole temperature and pressure is 5.15% and 1.33%, respectively. Our model has higher bottom hole temperature and pressure prediction accuracy than the Ramey model. In addition, we use the model to simulate the influence of different injection parameters on wellbore temperature and pressure and consider the influence of different gas components. Each injection parameter uses three components. Based on the temperature and pressure data calculated by the model simulation, the phase state of CO2 was analyzed. The results show that the impurities in CO2 have a great influence on the predicted wellbore pressure, critical temperature, and critical pressure. In the process of CO2 injection, increasing the injection pressure can significantly increase the bottom hole pressure, and changing the injection rate can adjust the bottom hole temperature. The research provides valuable insights for CO2 sequestration and enhanced oil recovery (EOR). Full article
Show Figures

Figure 1

20 pages, 4126 KiB  
Article
Evolution of Wind-Generated Shallow-Water Waves in the Framework of a Modified Kadomtsev–Petviashvili Equation
by Montri Maleewong and Roger Grimshaw
Fluids 2025, 10(3), 61; https://doi.org/10.3390/fluids10030061 - 27 Feb 2025
Cited by 2 | Viewed by 454
Abstract
In a recent paper, denoted by MG24 in this text, we used a modified Korteweg–de Vries (KdV) equation to describe the evolution of wind-driven water wave packets in shallow water. The modifications were several forcing/friction terms describing wave growth due to critical-level instability [...] Read more.
In a recent paper, denoted by MG24 in this text, we used a modified Korteweg–de Vries (KdV) equation to describe the evolution of wind-driven water wave packets in shallow water. The modifications were several forcing/friction terms describing wave growth due to critical-level instability in the air, wave decay due to laminar friction in the water at the air–water interface, wave growth due to turbulent wave stress in the air near the interface, and wave decay due to a turbulent bottom boundary layer. The outcome was a KdV–Burgers type of equation that can be a stable or unstable model depending on the forcing/friction parameters. In most cases that we examined, many solitary waves are generated, suggesting the formation of a soliton gas. In this paper, we extend that model in the horizontal direction transverse to the wind forcing to produce a similarly modified Kadomtsev–Petviashvili equation (KPII for water waves in the absence of surface tension). A modulation theory is described for the cnoidal and solitary wave solutions of the unforced KP equation, focusing on the forcing/friction terms and the transverse dependence. Then, using similar initial conditions to those used in MG24, that is a sinusoidal wave with a slowly varying envelope, but supplemented here with a transverse sinusoidal term, we find through numerical simulations that the radiation field upstream is enhanced, but that a soliton gas still emerges downstream as in MG24. Full article
Show Figures

Figure 1

23 pages, 22633 KiB  
Article
The Toppling Deformation and Failure Criteria of a Steep Bedding Rock Slope—The Case of a Bank Slope at the Duonuo Hydropower Station
by Tiantao Li, Xuan Li, Kaihong Wei, Jian Guo, Xi Heng, Jing Yuan, Weiling Ran and Xiangjun Pei
Water 2025, 17(4), 594; https://doi.org/10.3390/w17040594 - 18 Feb 2025
Cited by 1 | Viewed by 684
Abstract
In this study, statistical analysis was conducted to categorize a large number of actual typical cases and analyze the formation conditions of toppling deformation in bedding rock slopes. Based on geological prototypes and similarity theory, a bottom friction test was conducted on the [...] Read more.
In this study, statistical analysis was conducted to categorize a large number of actual typical cases and analyze the formation conditions of toppling deformation in bedding rock slopes. Based on geological prototypes and similarity theory, a bottom friction test was conducted on the toppling deformable body while considering the excavation process. Based on the deformation and failure phenomena observed in the bottom friction test model, along with the displacement curves at key points, the deformation process in steep bedding rock slopes can be divided into the following five distinct stages: the initial phase, the unloading–rebound phase, the tensile failure phase, the bending creep phase, and the bending–toppling damage phase. To evaluate the stability, a new constitutive model of the nonlinear viscoelastic–plastic rheology of rock masses was developed. This model is based on a nonlinear function derived from analyzing the creep test data of rock masses under fractional loading. Furthermore, a mechanical equilibrium differential equation for rock slabs was formulated to quantitatively describe the aging deformation and failure processes of slopes with delayed instability. Finally, a stability criterion and a quantitative evaluation model for toppling deformation slopes that considered time-varying factors were established. The stability of the model was calculated using a hydropower station slope case, and the results were found to be in good agreement with the actual situation. Full article
Show Figures

Figure 1

Back to TopTop