Regional Wave Analysis in the East China Sea Based on the SWAN Model
Abstract
1. Introduction
2. Model Parameterization and Data Sources
2.1. SWAN Model
2.2. Key Model Parameter Selection
2.2.1. Whitecapping Dissipation Parameter Selection
2.2.2. Bottom Friction Parameter Selection
2.3. Data Sources of Model
2.4. Model Control Conditions
3. Results and Discussion
3.1. Model Validity Test
3.1.1. Model Validity Testing Based on Whitecapping Dissipation Parameters
3.1.2. Model Validity Testing Based on Bottom Friction Parameters
3.1.3. SWAN Model Parameter Settings
3.2. Numerical Simulation Results of Wave Parameters
3.2.1. Characteristics of Wave Parameter Variations
3.2.2. Key Factors Influencing Wave Parameters Variability
3.3. Wave Energy Simulation Results and Discussion
3.3.1. Characteristics of Wave Energy Variability
3.3.2. Key Factors Influencing Wave Energy Variability
3.4. Stability Analysis of Wave Energy Results and Discussion
3.4.1. Stability Analysis of Wave Energy
3.4.2. Factors Affecting the Stability of Wave Energy Variation
4. Conclusions
- (1)
- The simulated SWH is consistent with the satellite-measured data. In the ECS with a broad continental shelf and shallow water, the simulation results based on the Collins bottom friction parameter have higher accuracy than those based on the Jonswap and Madsen bottom friction parameters. The simulation results demonstrate that applying the whitecapping dissipation parameter Komen and the bottom friction parameter Collins produces an average RMSE of 0.374 m and 0.369 m, respectively, compared to satellite-measured data.
- (2)
- The ECS’s significant wave height (SWH) exhibits significant seasonal variation characteristics. It is higher in autumn and winter (from September to February of the following year) than in spring and summer. It exhibits a trend of gradually increasing from the northwest to the southeast. There is a long-term high-SWH in the northwest of the Ryukyu Islands, which may be due to the influence of the interaction among the Kuroshio current, waves from the Pacific Ocean, and topography. The high SWH in the northern part of the Taiwan Strait primarily appears during seasons with frequent, intense wind events, such as typhoons.
- (3)
- The annual average wave energy flux densities in most ECS sea areas exceed 2 kW/m, and the wave energy flux density is more significant in the open sea than in the nearshore area. In particular, in the northwestern sea area of the Ryukyu Islands, the high annual average energy flux density is generally greater than 10 kW/m, which can be regarded as a key sea area for wave energy development. The interannual variation of the wave energy flux density in the ECS is significantly affected by climate events such as El Niño and extreme heatwaves, which significantly decrease the wave energy flux density in some years. For example, the wave energy flux density 2015 decreased by 21% compared to 2014.
- (4)
- The spatial distribution of wave energy coefficient of variation (COV) in the East China Sea exhibits distinct regional differentiation, manifesting four characteristic combination patterns: high wave energy mean-high COV, high wave energy mean-low COV, low wave energy mean-high COV, and low wave energy mean-low COV. Notably, the eastern Ryukyu Islands and continental shelf break transition zone constitute a high wave energy mean-high COV region, where wave energy density exceeds 8 kW/m, and COV values generally surpass 1.5 due to the combined effects of Kuroshio’s strong shear flow and abrupt topographic changes. The northern Taiwan Strait demonstrates high wave energy mean-low COV characteristics, resulting from stable energy input by monsoon–Kuroshio interactions and topographic shielding effects. In contrast, the northeastern East China Sea exhibits low wave energy mean but high variability under the combined influences of cold surges, typhoon track fluctuations, and convergence of cold/warm water masses. Coastal areas along mainland China maintain both low wave energy mean and COV values owing to limited wind energy input and significant topographic dissipation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babanin, A.V. Ocean Waves in Large-Scale Air-Sea Weather and Climate Systems. J. Geophys. Res.-Ocean. 2023, 128, e2023JC019633. [Google Scholar] [CrossRef]
- Casas-Prat, M.; Hemer, M.A.; Dodet, G.; Morim, J.; Wang, X.L.; Mori, N.; Young, I.R.; Erikson, L.; Kamranzad, B.; Kumar, P.; et al. Wind-wave climate changes and their impacts. Nat. Rev. Earth Environ. 2024, 5, 23–42. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, X.; Zhang, R.; Ren, J.; Wu, Y.; Liu, S.; Huang, D. Dissolved Fe in the East China Sea Under the Influences of Land Sources and the Boundary Current with Implications for Global Marginal Seas. Glob. Biogeochem. Cycle 2022, 36, e2021GB006946. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Lyu, T.; Zhang, H. Regional significant wave height forecast in the East China Sea based on the Self-Attention ConvLSTM with SWAN model. Ocean Eng. 2024, 312, 119064. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Wang, J.; Ma, Y.; Xu, Z. Numerical modeling of an offshore shellfish farm exposed to extreme wave conditions. Front. Mar. Sci. 2024, 11, 1452919. [Google Scholar] [CrossRef]
- Sun, F.; Yang, J.; Cui, W. Accuracy Evaluation of Ocean Wave Spectra from Sentinel-1 SAR Based on Buoy Observations and ERA5 Data. Remote Sens. 2024, 16, 987. [Google Scholar] [CrossRef]
- Beckman, J.N.; Long, J.W. Quantifying errors in wind and wave measurements from a compact, low-cost wave buoy. Front. Mar. Sci. 2022, 9, 966855. [Google Scholar] [CrossRef]
- Dzwonkowski, B.; Coogan, J.; Fournier, S.; Lockridge, G.; Park, K.; Lee, T. Compounding impact of severe weather events fuels marine heatwave in the coastal ocean. Nat. Commun. 2020, 11, 4623. [Google Scholar] [CrossRef]
- Group, T.W. The WAM Model—A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef]
- Tolman, H.L. A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents. J. Phys. Oceanogr. 1991, 21, 782–797. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res.-Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Björkqvist, J.V.; Vähä-Piikkiö, O.; Alari, V.; Kuznetsova, A.; Tuomi, L. WAM, SWAN and WAVEWATCH III in the Finnish archipelago—The effect of spectral performance on bulk wave parameters. J. Oper. Oceanogr. 2020, 13, 55–70. [Google Scholar] [CrossRef]
- Umesh, P.A.; Swain, J.; Balchand, A.N. Inter-comparison of WAM and WAVEWATCH-III in the North Indian Ocean using ERA-40 and QuikSCAT/NCEP blended winds. Ocean Eng. 2018, 164, 298–321. [Google Scholar] [CrossRef]
- Shao, W.; Yu, W.; Jiang, X.; Shi, J.; Wei, Y.; Ji, Q. Analysis of Wave Distributions Using the WAVEWATCH-III Model in the Arctic Ocean. J. Ocean Univ. 2022, 21, 15–27. [Google Scholar] [CrossRef]
- Wu, W.; Li, P.; Zhai, F.; Gu, Y.; Liu, Z. Evaluation of different wind resources in simulating wave height for the Bohai, Yellow, and East China Seas (BYES) with SWAN model. Cont. Shelf Res. 2020, 207, 104217. [Google Scholar] [CrossRef]
- Ponce de León, S.; Bettencourt, J.; Van Vledder, G.; Doohan, P.; Higgins, C.; Guedes Soares, C.; Dias, F. Performance of WAVEWATCH-III and SWAN Models in the North Sea. In Proceedings of the International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, 17–22 June 2018. [Google Scholar]
- Cong, J.; Zhang, Y.; Hu, G.; Mi, B.; Kong, X.; Xue, B.; Ning, Z.; Yuan, Z. Textures, provenances, and transport patterns of sediment on the inner shelf of the East China Sea. Cont. Shelf Res. 2022, 232, 104624. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, J.; Zhu, J.; Liu, X.; Li, G. Simulative Analysis on the Significant Wave Height over the East China Sea by SWAN Model with Jason-2 Satellite Altimetric Crossover Points. J. Ocean Technol. 2017, 36, 24–30. (In Chinese) [Google Scholar]
- Liu, C.; Zheng, C.; Li, R.; Jia, Y. Statistics analysis of big wave frequency and extreme wave height in the East China Sea. Mar. Forecast. 2014, 31, 8–13. (In Chinese) [Google Scholar]
- Kutupoğlu, V.; Çakmak, R.E.; Akpınar, A.; van Vledder, G.P. Setup and evaluation of a SWAN wind wave model for the Sea of Marmara. Ocean Eng. 2018, 165, 450–464. [Google Scholar] [CrossRef]
- Samiksha, S.V.; Jancy, L.; Sudheesh, K.; Kumar, V.S.; Shanas, P.R. Evaluation of wave growth and bottom friction parameterization schemes in the SWAN based on wave modelling for the central west coast of India. Ocean Eng. 2021, 235, 109356. [Google Scholar] [CrossRef]
- Nielsen, P. Coastal Bottom Boundary Layers and Sediment Transport; World Scientific: Singapore, 1992; Volume 4, p. 340. [Google Scholar]
- Wu, H.; Yan, P.; Hou, W.; Zhao, J.; Feng, G. Detection of Decadal Phase Transition and Early Warning Signals of PDO in Recent and Next 100 Years. Chin. J. Atmos. Sci. 2022, 46, 225–236. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, N.; Yang, Q.; Ma, Z.; Kurths, J. Early Warning of the Pacific Decadal Oscillation Phase Transition Using Complex Network Analysis. Geophys. Res. Lett. 2021, 48, e2020GL091674. [Google Scholar] [CrossRef]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res.-Ocean. 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- Du, J.; Bolaños, R.; Guo Larsén, X. The use of a wave boundary layer model in SWAN. J. Geophys. Res.-Ocean. 2017, 122, 42–62. [Google Scholar] [CrossRef]
- Hasselmann, K.F.; Barnett, T.P.; Bouws, E.; Carlson, H.C.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, H.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deut. Hydrogr. Z. 1973, 8, 1–95. [Google Scholar]
- Amarouche, K.; Akpınar, A.; Rybalko, A.; Myslenkov, S. Assessment of SWAN and WAVEWATCH-III models regarding the directional wave spectra estimates based on Eastern Black Sea measurements. Ocean Eng. 2023, 272, 113944. [Google Scholar] [CrossRef]
- Lee, H. Evaluation of WAVEWATCH III performance with wind input and dissipation source terms using wave buoy measurements for October 2006 along the east Korean coast in the East Sea. Ocean Eng. 2015, 100, 67–82. [Google Scholar] [CrossRef]
- Zheng, K.; Osinowo, A.A.; Sun, J.; Hu, W. Long-Term Characterization of Sea Conditions in the East China Sea Using Significant Wave Height and Wind Speed. J. Ocean Univ. 2018, 17, 733–743. [Google Scholar] [CrossRef]
- Sun, W.; Liang, B.; Shao, Z.; Wang, Z. Analysis of Komen scheme in the SWAN model for the whitecapping dissipation during the tropical cyclone. Ocean Eng. 2022, 266, 113060. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Sun, B.; Shi, Y. Improvements to the statistical theoretical model for wave breaking based on the ratio of breaking wave kinetic and potential energy. Sci. China-Earth Sci. 2017, 60, 180–187. [Google Scholar] [CrossRef]
- Allahdadi, M.N.; He, R.; Neary, V.S. Predicting ocean waves along the US east coast during energetic winter storms: Sensitivity to whitecapping parameterizations. Ocean Sci. 2019, 15, 691–715. [Google Scholar] [CrossRef]
- Collins, J.I. Prediction of shallow-water spectra. J. Geophys. Res. 1972, 77, 2693–2707. [Google Scholar] [CrossRef]
- Shum, C.K.; Ries, J.C.; Tapley, B.D. The accuracy and applications of satellite altimetry. Geophys. J. Int. 1995, 121, 321–336. [Google Scholar] [CrossRef]
- Bašić, T. Introductory Chapter: Satellite Altimetry—Overview. In Satellite Altimetry; Bašić, T., Ed.; IntechOpen: Rijeka, Croatia, 2023; pp. 1–131. [Google Scholar]
- van Eeden, F.; Klonaris, G.; Verbeurgt, J.; Troch, P.; De Wulf, A. Sensitivities in Wind Driven Spectral Wave Modelling for the Belgian Coast. J. Mar. Sci. Eng. 2022, 10, 1138. [Google Scholar] [CrossRef]
- Team, T.S. SWAN Cycle III version 41.51. SWAN Tech. Doc. 2024, 1–149. Available online: https://swanmodel.sourceforge.io/download/zip/swanuse.pdf (accessed on 10 December 2024).
- Zhang, W.; Zhao, H.; Chen, G.; Yang, J. Assessing the performance of SWAN model for wave simulations in the Bay of Bengal. Ocean Eng. 2023, 285, 115295. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, Y. Numerical estimation of the typhoon-induced wind and wave fields in Taiwan Strait. Ocean Eng. 2021, 239, 109803. [Google Scholar] [CrossRef]
- Christakos, K.; Björkqvist, J.; Tuomi, L.; Furevik, B.R.; Breivik, Ø. Modelling wave growth in narrow fetch geometries: The white-capping and wind input formulations. Ocean. Model. 2021, 157, 101730. [Google Scholar] [CrossRef]
- Ji, Y.; Zhu, Y.; Li, L.; He, Z.; Shen, H.; Li, X. Study on the parameters adaptability of typhoon wave model in Zhejiang coastal area. Mar. Forecast. 2023, 40, 22–31. (In Chinese) [Google Scholar] [CrossRef]
- Lin, Y.; Liu, Y.; Wang, X.; Lu, P.; Yang, Z.; Dong, S. Study on the calibration of wave field simulation in the China adjacent sea based on SWAN model. Trans. Oceanol. Limnol. 2024, 46, 1–10. (In Chinese) [Google Scholar] [CrossRef]
- Zijlema, M.; van Vledder, G.P.; Holthuijsen, L.H. Bottom friction and wind drag for wave models. Coast. Eng. 2012, 65, 19–26. [Google Scholar] [CrossRef]
- Chen, X.; Ni, Y.; Shen, Y.; Ying, Y.; Wang, J. The research on the applicability of different typhoon wind fields in the simulation of typhoon waves in China’s coastal waters. Front. Mar. Sci. 2024, 11, 1492521. [Google Scholar] [CrossRef]
- Komen, G.; Hasselmann, K. On the Existence of a Fully Developed Wind-Sea Spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Morrisey, D.J.; Inglis, G.J.; Tait, L.W.; Woods, C.M.C.; Lewis, J.F.; Georgiades, E.T. Procedures for Evaluating in-Water Systems to Remove or Treat Vessel Biofouling; Ministry for Primary Industries: Manatū Ahu Matua, New Zealand, 2015; pp. 1–104. [Google Scholar] [CrossRef]
- Xu, X.; Tao, A.; Li, X.; Zheng, X.; Lin, Y. Analysis of Wave Characteristics in the Central Taiwan Strait Based on Measured Data. J. Trop. Oceanogr. 2021, 40, 12–20. (In Chinese) [Google Scholar] [CrossRef]
- Qian, J.; Lu, M.; Sui, C. Evolution of South China Sea and East Asian monsoon from spring to summer by the progression of daily weather types. Int. J. Climatol. 2022, 42, 3633–3647. [Google Scholar] [CrossRef]
- Hisaki, Y. Swell and wind-wave height variability in the East China Sea. Ocean Dyn. 2023, 73, 493–515. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Maeda, S. Increase in the Number of Tropical Cyclones Approaching Tokyo since 1980. J. Meteorol. Soc. Jpn. 2020, 98, 775–786. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Hong, q.; Guo, H. Correlation between complexity of coastal geomorphology and the dissipation of tidal energy- A case study of Zhoushan Islands in Hangzhou Bay. Authorea 2023. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, D.; Yin, B. The effect of background flow shear on the topographic Rossby wave. J. Oceanogr. 2020, 76, 307–315. [Google Scholar] [CrossRef]
- Ponce de León, S.; Guedes Soares, C. On the sheltering effect of islands in ocean wave models. J. Geophys. Res.-Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Pacaldo, J.C.; Bilgera, P.H.T.; Abundo, M.L.S. Nearshore Wave Energy Resource Assessment for Off-Grid Islands: A Case Study in Cuyo Island, Palawan, Philippines. Energies 2022, 15, 8637. [Google Scholar] [CrossRef]
- He, H.; Song, J.; Bai, Y.; Xu, Y.; Wang, J.; Bi, F. Climate and extrema of ocean waves in the East China Sea. Sci. China-Earth Sci. 2018, 61, 980–994. [Google Scholar] [CrossRef]
- Chen, S.; Lin, J.; Su, C.; Doo, W. Introduction to the special issue on tectonic environment and seabed resources of the southern Okinawa Trough. Terr. Atmos. Ocean Sci. 2019, 30, 605–611. [Google Scholar] [CrossRef]
- Webb, P. Introduction to Oceanography; Rebus Community: Minneapolis, MN, USA, 2020. [Google Scholar]
- Zhu, X.; Park, J.; Wimbush, M.; Yang, C. Comment on “Current system east of the Ryukyu Islands” by A. Nagano et al. J. Geophys. Res.-Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Zheng, C.; Li, C. Variation of the wave energy and significant wave height in the China Sea and adjacent waters. Renew. Sust. Energ. Rev. 2015, 43, 381–387. [Google Scholar] [CrossRef]
- Navarro, W.; Orfila, A.; Orejarena-Rondón, A.; Velez, J.C.; Lonin, S. Wave Energy Dissipation in a Shallow Coral Reef Lagoon Using Marine X-Band Radar Data. J. Geophys. Res.-Ocean. 2021, 126, e2020JC017094. [Google Scholar] [CrossRef]
- Chen, J.; Ralston, D.K.; Geyer, W.R.; Sommerfield, C.K.; Chant, R.J. Wave Generation, Dissipation, and Disequilibrium in an Embayment with Complex Bathymetry. J. Geophys. Res.-Ocean. 2018, 123, 7856–7876. [Google Scholar] [CrossRef]
- Chu, T. Exploitation and Utilization of Ocean Energy; Chemical Industry Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Shi, H.; Zhang, X.; Du, W.; Li, Q.; Qu, H.; You, Z. Assessment of Wave Energy Resources in China. J. Mar. Sci. Eng. 2022, 10, 1771. [Google Scholar] [CrossRef]
- Chen, C.; Peng, C.; Xiao, H.; Wei, M.; Wang, T. Typhoon field construction and wind-induced wave model optimization based on topographic parameters. Terr. Atmos. Ocean Sci. 2023, 34, 2. [Google Scholar] [CrossRef]
- Wen, C.; Wang, Z.; Zou, J. Analysis of temporal and spatial characteristics of sea surface wind field in Taiwan Strait based on CCMP. Haiyang Xuebao 2024, 46, 65–78. (In Chinese) [Google Scholar] [CrossRef]
- Lin, X.; Wu, X.; Chen, M.; Li, Y.; Liu, J.; Chen, B. Characteristics of strong typhoon wind and typical cases of extreme wind on the west coast of the Taiwan Strait, China. J. Meteorol. Environ. 2019, 35, 93–100. (In Chinese) [Google Scholar]
- Tan, W.; Hu, Z.; McPhaden, M.J.; Zhu, C.; Li, X.; Liu, Y. On the Divergent Evolution of ENSO After the Coastal El Niños in 2017 and 2023. Geophys. Res. Lett. 2024, 51, e2024GL108198. [Google Scholar] [CrossRef]
- Chen, L.; Li, T.; Wang, B.; Wang, L. Formation Mechanism for 2015/16 Super El Niño. Sci. Rep. 2017, 7, 2975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, H.; Jiang, H.; Song, C.; Du, L. Sea surface temperature variations of the Yellow Sea and East China Sea influenced by both ENSO and typhoons in July. Haiyang Xuebao 2017, 39, 32–41. (In Chinese) [Google Scholar] [CrossRef]
- Xia, J.; Tu, K.; Yan, Z.; Qi, Y. The super-heat wave in eastern China during July–August 2013: A perspective of climate change. Int. J. Climatol. 2016, 36, 1291–1298. [Google Scholar] [CrossRef]
- Barriopedro, D.; García-Herrera, R.; Ordóñez, C.; Miralles, D.G.; Salcedo-Sanz, S. Heat Waves: Physical Understanding and Scientific Challenges. Rev. Geophys. 2023, 61, e2022RG000780. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A global wave power resource and its seasonal, interannual and long-term variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- Su, W.; Chen, H.; Chen, W.; Chang, C.; Lin, L.; Jang, J.; Yu, Y. Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan. Renew. Energy 2018, 118, 814–824. [Google Scholar] [CrossRef]
- Dai, D.; Qiao, F.; Xia, C.; Jung, K.T. A numerical study on dynamic mechanisms of seasonal temperature variability in the Yellow Sea. J. Geophys. Res.-Ocean. 2006, 111. [Google Scholar] [CrossRef]
Year | Komen (MAE/m) | Komen (RMSE/m) | Westhuysen (MAE/m) | Westhuysen (RMSE/m) |
---|---|---|---|---|
2010 | 0.240 | 0.335 | 0.240 | 0.444 |
2011 | 0.244 | 0.357 | 0.244 | 0.455 |
2012 | 0.235 | 0.338 | 0.237 | 0.472 |
2013 | 0.270 | 0.399 | 0.270 | 0.497 |
2014 | 0.257 | 0.371 | 0.256 | 0.469 |
2015 | 0.262 | 0.405 | 0.262 | 0.456 |
2016 | 0.265 | 0.370 | 0.264 | 0.370 |
2017 | 0.279 | 0.452 | 0.319 | 0.502 |
2018 | 0.248 | 0.345 | 0.248 | 0.468 |
2019 | 0.234 | 0.366 | 0.216 | 0.434 |
Total | 2.532 | 3.738 | 2.556 | 4.567 |
Average | 0.253 | 0.374 | 0.256 | 0.457 |
% Difference a | - | - | 1.1% | 22% |
Year | Collins (MAE/m) | Collins (RMSE/m) | Jonswap (MAE/m) | Jonswap (RMSE/m) | Madsen (MAE/m) | Madsen (RMSE/m) |
---|---|---|---|---|---|---|
2010 | 0.244 | 0.325 | 0.240 | 0.335 | 0.239 | 0.334 |
2011 | 0.241 | 0.335 | 0.244 | 0.357 | 0.243 | 0.356 |
2012 | 0.233 | 0.350 | 0.235 | 0.338 | 0.234 | 0.372 |
2013 | 0.267 | 0.395 | 0.270 | 0.399 | 0.270 | 0.398 |
2014 | 0.254 | 0.367 | 0.257 | 0.371 | 0.256 | 0.369 |
2015 | 0.254 | 0.395 | 0.262 | 0.405 | 0.261 | 0.405 |
2016 | 0.264 | 0.371 | 0.265 | 0.370 | 0.264 | 0.369 |
2017 | 0.275 | 0.441 | 0.279 | 0.452 | 0.279 | 0.450 |
2018 | 0.250 | 0.348 | 0.248 | 0.345 | 0.247 | 0.344 |
2019 | 0.233 | 0.366 | 0.234 | 0.366 | 0.233 | 0.365 |
Total | 2.515 | 3.694 | 2.532 | 3.738 | 2.525 | 3.762 |
Average | 0.252 | 0.369 | 0.253 | 0.374 | 0.253 | 0.376 |
% Difference b | - | - | 0.3% | 1.3% | 0.3% | 1.8% |
Parameter | |
---|---|
SWAN Version | Versions 41.45 |
Model simulation area | 25–35° N,120–130° E |
Model spatial resolution | 0.05° |
Model temporal resolution | 1 h |
Wave propagation governing equations | Second-order SORDUP differential |
Whitecap dissipation | [46] |
Bottom friction dissipation | [34] |
Simulation time | January 2009 to December 2023 |
Directional discretization | 10° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Ji, F.; Yang, Q.; Mi, Z.; Cao, W. Regional Wave Analysis in the East China Sea Based on the SWAN Model. J. Mar. Sci. Eng. 2025, 13, 1196. https://doi.org/10.3390/jmse13061196
Ma S, Ji F, Yang Q, Mi Z, Cao W. Regional Wave Analysis in the East China Sea Based on the SWAN Model. Journal of Marine Science and Engineering. 2025; 13(6):1196. https://doi.org/10.3390/jmse13061196
Chicago/Turabian StyleMa, Songnan, Fuwu Ji, Qunhui Yang, Zhinan Mi, and Wenhui Cao. 2025. "Regional Wave Analysis in the East China Sea Based on the SWAN Model" Journal of Marine Science and Engineering 13, no. 6: 1196. https://doi.org/10.3390/jmse13061196
APA StyleMa, S., Ji, F., Yang, Q., Mi, Z., & Cao, W. (2025). Regional Wave Analysis in the East China Sea Based on the SWAN Model. Journal of Marine Science and Engineering, 13(6), 1196. https://doi.org/10.3390/jmse13061196