Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (176)

Search Parameters:
Keywords = bond formation and breaking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2561 KB  
Article
Biodegradable Polymer Films Based on Hydroxypropyl Methylcellulose and Blends with Zein and Investigation of Their Potential as Active Packaging Material
by Sofia Milenkova, Maria Marudova and Asya Viraneva
Coatings 2026, 16(1), 66; https://doi.org/10.3390/coatings16010066 - 6 Jan 2026
Viewed by 258
Abstract
Active packages have become a significant center of attention, and especially those based on biodegradable materials, due to their ability to enhance food preservation and extend shelf life. A suitable base for obtaining such types of packages has turned out to be polymers [...] Read more.
Active packages have become a significant center of attention, and especially those based on biodegradable materials, due to their ability to enhance food preservation and extend shelf life. A suitable base for obtaining such types of packages has turned out to be polymers with natural origin, such as hydroxylpropyl methylcellulose (HPMC) and zein. Therefore, the present study is focused on developing films using the casting method based on pure HPMC and blends between HPMC and zein. Three types of polymer matrices were developed: pure HPMC film, HPMC 3:1 zein, and HPMC 1:1 zein. Further, all of them were loaded with curcumin to improve their biological activity, and mainly their antioxidant activity. In order to investigate the potential of these films, some of their most vital properties in terms of potential application as packaging material are established, such as mechanical properties (strain at break, Young’s modulus), barrier properties (water vapor transmission rate), and morphology. A significant change in the Young’s modulus was present after the addition of zein; it went from 276.98 ± 28.48 MPa for pure HPMC to 52.17 ± 10.19 MPa in a 1:1 ratio between the polymers. Meanwhile, strain at break showed a slight drop from 86.74 ± 8.64% to 72.44 ± 9.62%. Barrier properties were also influenced by the formation of composite film and the addition of polyphenol, lowering the water vapor transmission rate from 913.07 ± 74.01 g/m2.24 h for pure HPMC to 873.05 ± 9.07 g/m2.24 h for 1:1 ratio film and further to 826.35 ± 33.67 g/m2.24 h after the addition of rutin to the latter. Additional characterization of radical scavenging ability towards DPPH free radicals showed a similar A-shaped trend to the values of Young’s modulus, due to the presence of hydrogen bonds, which affect both properties of the film structures. Thermal behavior and phase state investigation of the films obtained by differential scanning calorimetry prior to and after polyphenol addition was carried out, indicating full phase transition of rutin from crystalline to amorphous state. Full article
(This article belongs to the Special Issue Preparation and Applications of Bio-Based Polymer Coatings)
Show Figures

Figure 1

20 pages, 6375 KB  
Article
Research on the Thermal–Mechanical Synergistic Activation Mechanism of Coal Gangue and Its Hydration Characteristics
by Jiajun Chen, Qianyu Sun, Miaomiao Li, Kuizhou Dou, Yirui Song and Xudong Tan
Buildings 2026, 16(1), 152; https://doi.org/10.3390/buildings16010152 - 29 Dec 2025
Viewed by 276
Abstract
The coal washing and processing industry generates substantial quantities of coal gangue, which exerts significant impacts on soil and groundwater environments. Activating the reactivity of inert coal gangue to achieve comprehensive utilization in the field of cementitious materials holds considerable importance. This study [...] Read more.
The coal washing and processing industry generates substantial quantities of coal gangue, which exerts significant impacts on soil and groundwater environments. Activating the reactivity of inert coal gangue to achieve comprehensive utilization in the field of cementitious materials holds considerable importance. This study investigates a method that synergistically utilizes thermal activation and mechanical activation to enhance the reactivity of coal gangue. The approach aims to reduce the temperature required for thermal activation while effectively stimulating the reactive properties. Furthermore, the mechanisms underlying the thermal–mechanical synergistic activation and its hydration characteristics are thoroughly examined. Experimental results demonstrate that thermo-mechanical synergistic activation, in comparison to sole thermal activation at 950 °C, enhances reaction activity by 28.3%, improves mechanical properties by 27.4%, reduces setting time by 65 min, and significantly optimizes flow performance. The XRD, FT-IR, and TG-DTG analyses demonstrate that the interlayer hydrogen bonds of kaolinite are disrupted during the thermal activation stage, resulting in the formation of amorphous and highly reactive metakaolinite. Subsequent mechanical activation after thermal treatment significantly reduces particle size, further breaks the interlayer hydrogen bonds of kaolinite, and leads to the complete disintegration of the lattice framework. This process markedly enhances the degree of amorphization and thoroughly disrupts the long-range ordered crystalline structure of the kaolinite mineral phase in coal gangue. Concurrently, the d002 interplanar spacing of kaolinite expands by 0.155 Å, leading to an increase in reactivity. SEM-EDS analysis reveals that C-S-H gel is embedded within the mortar matrix, with a reduction in calcium hydroxide content and Ca/Si ratio, and an increase in Al/Si ratio in coal gangue mortar. This confirms that the thermo-mechanical synergistic activation introduces highly reactive Ca2+ and Al3+ from coal gangue into the secondary hydration reaction, resulting in the formation of a gel structure characterized by high stability and enhanced durability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 13852 KB  
Article
Ternary Interactions of Starch, Protein, and Polyphenols in Constructing Composite Thermoplastic Starch-Based Edible Packaging: Optimization of Preparation Techniques and Investigation of Film-Formation Mechanisms
by Anna Wang, Jingyuan Zhang and Ligen Wu
Foods 2026, 15(1), 36; https://doi.org/10.3390/foods15010036 - 22 Dec 2025
Viewed by 347
Abstract
Biodegradable starch-based films often suffer from insufficient mechanical strength, which limits their practical applications. To enhance film performance, this study optimized the preparation of composite thermoplastic starch (CTPS) films composed of corn starch, sorbitol, whey protein isolate (WPI), and gallic acid (GA). The [...] Read more.
Biodegradable starch-based films often suffer from insufficient mechanical strength, which limits their practical applications. To enhance film performance, this study optimized the preparation of composite thermoplastic starch (CTPS) films composed of corn starch, sorbitol, whey protein isolate (WPI), and gallic acid (GA). The optimized formulation—0.074 g/mL corn starch, 47.5% sorbitol, 5.6% WPI, and 2.0 mg/mL GA—yielded films with a tensile strength of 3.11 ± 0.31 MPa and an elongation at break of 43.35 ± 0.69%, achieving a desirable balance between flexibility and strength. Mechanistic investigations using in situ Fourier-transform infrared spectroscopy (FTIR), low-field nuclear magnetic resonance (LF-NMR), confocal laser scanning microscopy (CLSM), and molecular docking revealed a ternary interaction system among starch, WPI, and GA. These components primarily interacted through hydrogen bonding and van der Waals forces. Such non-covalent interactions enhanced the short-range molecular ordering of the starch matrix, stabilized the secondary structure of WPI, and facilitated water redistribution during film formation. The resulting interaction network among starch, proteins, and polyphenols significantly improved the mechanical properties and antioxidant capacity of the CTPS films. Full article
(This article belongs to the Special Issue Using Biodegradable Films and Coatings for Food Packaging Materials)
Show Figures

Figure 1

16 pages, 3357 KB  
Article
Synergistic Optimization of Multiple Properties: Enhancement Mechanism of Thermoelectric and Mechanical Performances of Ta-Doped In2O3 Materials for Advanced Energy Harvesting Applications
by Jiang Zhu, Jie Zhang, Bo Feng, Yaoyang Zhang, Xiaoqiong Zuo, Zhiwen Yang, Tongqiang Xiong, Wenzheng Li, Tong Tang, Suoluoyan Yang and Ruolin Ruan
Inorganics 2026, 14(1), 4; https://doi.org/10.3390/inorganics14010004 - 22 Dec 2025
Viewed by 305
Abstract
To improve the comprehensive performance of indium oxide (In2O3) thermoelectric materials, this study systematically investigates the regulatory effects of tantalum (Ta) doping on their electrical transport characteristics, thermoelectric conversion efficiency, and mechanical properties. The results show that Ta doping [...] Read more.
To improve the comprehensive performance of indium oxide (In2O3) thermoelectric materials, this study systematically investigates the regulatory effects of tantalum (Ta) doping on their electrical transport characteristics, thermoelectric conversion efficiency, and mechanical properties. The results show that Ta doping achieves synchronous optimization of multiple properties through precise regulation of crystal structure, electronic structure, and microdefects. In terms of electrical transport, the electron doping effect of Ta5+ substituting In3+ and the introduction of impurity levels lead to a continuous increase in carrier concentration; lattice relaxation and impurity band formation at high doping concentrations promote mobility to first decrease and then increase, resulting in a significant growth in electrical conductivity. Although the absolute value of the Seebeck coefficient slightly decreases, the growth rate of electrical conductivity far exceeds the attenuation rate of its square, increasing the power factor from 1.83 to 5.26 μWcm−1K−2 (973 K). The enhancement of density of states near the Fermi level not only optimizes carrier transport efficiency but also provides electronic structure support for synergistic performance improvement. For thermoelectric conversion efficiency, the substantial increase in power factor collaborates with thermal conductivity suppression induced by lattice distortion and impurity scattering, leading to a leapfrog increase in ZT value from 0.055 to 0.329 (973 K). In terms of mechanical properties, lattice distortion strengthening, formation of strong Ta-O covalent bonds, and dispersion strengthening effect significantly improve the Vickers hardness of the material. Ta doping breaks the bottleneck of mutual property constraints in traditional modification through an integrated mechanism of “electronic structure regulation-carrier transport optimization-multiple performance synergistic enhancement”, providing a key strategy for designing high-performance indium oxide-based thermoelectric materials and facilitating their practical application in the field of green energy conversion. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

13 pages, 1649 KB  
Article
Vibrational Spectra of R and S Methyl Para Tolyl Sulfoxide and Their Racemic Mixture in the Solid–Liquid State and in Water Solution
by Flaminia Rondino, Mauro Falconieri, Serena Gagliardi, Mauro Satta, Susanna Piccirillo and Enrico Bodo
Symmetry 2026, 18(1), 17; https://doi.org/10.3390/sym18010017 - 21 Dec 2025
Viewed by 252
Abstract
The vibrational properties of the chiral sulfoxide methyl-p-tolyl-sulfoxide (Metoso) were investigated by infrared and Raman spectroscopy in the solid, liquid and aqueous solution phases, for both the enantiopure compounds and their racemic mixture. Experimental data were complemented by DFT calculations on the isolated [...] Read more.
The vibrational properties of the chiral sulfoxide methyl-p-tolyl-sulfoxide (Metoso) were investigated by infrared and Raman spectroscopy in the solid, liquid and aqueous solution phases, for both the enantiopure compounds and their racemic mixture. Experimental data were complemented by DFT calculations on the isolated enantiomer and on the two RR and RS dimeric conformers to support spectral interpretation and mode assignment. The IR and Raman spectra of the crystalline enantiomer and racemic mixture are similar, indicating comparable molecular organization and intermolecular interactions in the solid state. Upon melting, band broadening and frequency shifts are observed, consistent with molecular disorder and the breaking of weak intramolecular interactions, accompanied by changes in the S-O, S-CH3 and C-H stretching frequencies. In aqueous solution, further broadening and opposite shifts in these bands reflect the formation of Metoso-H2O complexes through hydrogen bonds. Theoretical spectra reproduce the observed trends and confirm that either solvent or phase transitions control the balance between intra- and intermolecular interactions thus influencing the vibrational degrees of freedom of the model chiral sulfoxide. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

17 pages, 2202 KB  
Article
Physicochemical Characterization and Biodegradability of Nanostructured Chitosan-Based Films Reinforced with Orange Waste
by Zormy Nacary Correa-Pacheco, Silvia Bautista-Baños, Pedro Ortega-Gudiño, Erick Omar Cisneros-López, Daniel Tapia-Maruri and José Luis Jiménez-Pérez
J. Compos. Sci. 2025, 9(11), 627; https://doi.org/10.3390/jcs9110627 - 12 Nov 2025
Viewed by 767
Abstract
The valorization of agricultural by-products through their integration into biodegradable materials represents a promising approach for sustainable food preservation. In this study, nanostructured chitosan/polyvinyl alcohol (PVA)/orange peel–bagasse waste (OPB) (0.125%, 0.25%, and 0.5% OPB) films were developed and characterized for their physicochemical, mechanical, [...] Read more.
The valorization of agricultural by-products through their integration into biodegradable materials represents a promising approach for sustainable food preservation. In this study, nanostructured chitosan/polyvinyl alcohol (PVA)/orange peel–bagasse waste (OPB) (0.125%, 0.25%, and 0.5% OPB) films were developed and characterized for their physicochemical, mechanical, and biodegradation properties. Scanning electron microscopy and confocal laser scanning microscopy revealed that OPB concentration influenced structural homogeneity. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) revealed possible molecular interactions among components through hydrogen bonding (peaks at 1570, 1416 cm−1, and 1020 cm−1) and imine (C = N) formation (broadening of the peak at 1425 cm−1). As OPB increased, water vapor diffusion and film rigidity increased, while elongation at break decreased. After composting, weight loss was 93.7% and 100% for the chitosan and PVA films, respectively. For the nanostructured films, weight loss was between 94.7% (30PVA/0.5OPB) and 99.7% (30PVA/0.125OPB). Regarding ATR-FTIR of the blends, the intensity of the peaks located between 3625 and 3005 cm−1, at 2919 cm−1, at 1729 cm−1, at 1621 cm−1, at 1521 cm−1, and between 1160 and 885 cm−1, corresponding to the OPB functional groups, decreased. These results demonstrate that incorporating citrus waste enhances biodegradability and provides films barrier properties suitable for fresh produce preservation. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Figure 1

16 pages, 1207 KB  
Article
Preparation and Performance Study of Silicone-Oligomer Composite-Modified Polyurethane Sealant
by Ning Li, Feiyu Chen, Qing Liu, Ming Zhao, Cheng Zhang, Peizhe Li, Xueting Ma, Jiangye Zheng and Qunchao Zhang
Polymers 2025, 17(22), 2990; https://doi.org/10.3390/polym17222990 - 11 Nov 2025
Cited by 1 | Viewed by 860
Abstract
To address the shortcomings of traditional polyurethane (PU) sealants, including inadequate weather resistance, low curing efficiency, and limited environmental performance, this study synthesized a functional silicone oligomer (DQPSi) featuring both dynamic crosslinking and hydrophobic properties via the sol–gel method, which was subsequently incorporated [...] Read more.
To address the shortcomings of traditional polyurethane (PU) sealants, including inadequate weather resistance, low curing efficiency, and limited environmental performance, this study synthesized a functional silicone oligomer (DQPSi) featuring both dynamic crosslinking and hydrophobic properties via the sol–gel method, which was subsequently incorporated into the polyurethane matrix. The effects of DQPSi content (0–20 wt%) on the properties of silane-modified polyurethane (SPU) sealants were systematically investigated. Results demonstrate that DQPSi significantly enhances the comprehensive performance of the material. At 15% loading, the sealant achieves optimal performance balance: surface-drying time shortens to 110 min (45% reduction), curing rate increases to 1.7 mm/d (112.5% improvement), tensile modulus rises by 14% to 0.88 MPa, elongation at break substantially increases to 420%, and contact angle improves to 78° with markedly enhanced hydrophobicity. Microscopic analyses (SEM, nanoindentation) confirm that these improvements stem from DQPSi forming a uniform interpenetrating network (IPN) structure with the PU matrix, where dynamic Si-O-Si bonds provide rigidity and stress dissipation while hydrophobic groups (methylpropyl) migrate to the surface to form a barrier. However, excessive addition (20%) induces silicone phase separation and over-crosslinking, causing mechanical degradation (tensile strength decreases to 0.70 MPa, elongation at break drops to 331%) and microcrack formation. This research elucidates DQPSi’s reinforcement mechanism and critical loading threshold, establishing theoretical and technical foundations for developing high-performance eco-friendly silane-modified polyurethane sealants. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 4087 KB  
Article
Degradation of Bisphenols by Air Micro-Nano Bubbles Activated Persulfate
by Xiaoxiao Niu, Can Lu, Xinjuan Li, Liang Tang, Abdulaziz Al-Anazi and Xiaodi Duan
Catalysts 2025, 15(11), 1048; https://doi.org/10.3390/catal15111048 - 3 Nov 2025
Viewed by 766
Abstract
Micro-nano bubbles (MNBs) have been widely used in water treatment due to their large specific surface area, long retention time, and high zeta potential. This study investigated the degradation of bisphenols by activating persulfate (PDS, an oxidizing agent) with air MNBs (MNBs/PDS). The [...] Read more.
Micro-nano bubbles (MNBs) have been widely used in water treatment due to their large specific surface area, long retention time, and high zeta potential. This study investigated the degradation of bisphenols by activating persulfate (PDS, an oxidizing agent) with air MNBs (MNBs/PDS). The removal rate of bisphenol A (BPA) in the MNBs/PDS process was 98.3% within 25 min, while there was almost no degradation observed by PDS or MNBs alone. This enhancement was attributed to the huge amount of energy released during the collapse of MNBs, sufficient to break the O–H bonds of water molecules or the O–O bond of PDS to induce the formation of reactive oxygen species (ROS, such as HO and SO4•−). To qualitatively analyze ROS generated in this system, electron paramagnetic resonance and quenching experiments were conducted, and the HO and SO4•− were detected in MNBs/PDS. Furthermore, the degradation percentages of bisphenols after 25 min of MNBs/PDS treatment followed the order of bisphenol B (100%) > BPA (98.3%) > bisphenol E (87.9%) > bisphenol F (86.5%) > bisphenol AF (84.9%) > bisphenol S (51%). Higher PDS dosage, higher gas flow rate, and lower pH values were preferred for the degradation. Moreover, the MNBs/PDS treatment reduced the TOC of secondary effluent containing BPA by 45.8% in one hour, indicating the application potential of MNBs/PDS in the advanced treatment of wastewater. Full article
Show Figures

Figure 1

28 pages, 3481 KB  
Article
Development and Characterization of Scented PLA-Based Biocomposites Reinforced with Spent Coffee Grounds and Lignin for FDM 3D Printing
by Zeineb Siala, Ahmed Koubaa, Sofiane Guessasma, Nicolas Stephant, Ahmed Elloumi and Martin Beauregard
Polymers 2025, 17(21), 2836; https://doi.org/10.3390/polym17212836 - 24 Oct 2025
Viewed by 1212
Abstract
This study investigates the development of biodegradable, scented bio-composite filaments incorporating industrial residues, specifically spent coffee grounds (SCG) and lignin (LI), into a PLA matrix for FDM 3D printing. Two fragrance additives, essential oil (EO) and microencapsulated fragrance powder (FP), were introduced (3%) [...] Read more.
This study investigates the development of biodegradable, scented bio-composite filaments incorporating industrial residues, specifically spent coffee grounds (SCG) and lignin (LI), into a PLA matrix for FDM 3D printing. Two fragrance additives, essential oil (EO) and microencapsulated fragrance powder (FP), were introduced (3%) to enhance sensory properties. The research investigates the effects of filler content (5%, 10%, and 15%) and fragrance additives on the surface chemistry (FTIR), thermal stability (TGA and DSC), mechanical properties (Tensile, flexural and impact), microstructure, and dimensional stability (Water absorption test and thickness swelling). Incorporating industrial residues and additives into PLA reduced the thermal stability, the degradation temperature and the glass transition temperature but increased the residual mass and the crystallinity. The effect of lignin was more pronounced than that of SCG, significantly influencing these thermal properties. Increasing the filler content of spent coffee grounds and lignin also led to a progressive decrease in tensile, flexural, and impact strength due to poor interfacial adhesion and increased void formation. However, lignin-based biocomposites exhibited enhanced stiffness at lower concentrations (≤10%), while biocomposites containing 15% SCG doubled their elongation at break compared to pure PLA. Adding fragrance reduced the mechanical strength but improved ductility due to plasticizer-like interactions. Microstructural analysis revealed heterogeneity in the biocomposites’ fracture surface characterized by the presence of pores, filler agglomeration, and delamination, indicating uneven filler dispersion and limited interfacial adhesion, particularly at high filler concentrations. The water absorption and dimensional stability of 3D-printed biocomposites increased progressively with the addition of residues. The presence of essential oil slightly improved water resistance by forming hydrogen bonds that limited moisture absorption. This article adds significant value by extending the potential applications of biocomposites beyond conventional engineering uses, making them particularly suitable for the fashion and design sectors, where multi-sensory and sustainable materials are increasingly sought after. Full article
Show Figures

Figure 1

19 pages, 7242 KB  
Article
Influence of Fe Vacancy on the Bonding Properties of γ-Fe (111)/α-Al2O3 (0001) Interfaces: A Theoretical Study
by Xiaofeng Zhang, Renwei Li, Qicheng Chen, Dehao Kong and Haifeng Yang
Materials 2025, 18(20), 4666; https://doi.org/10.3390/ma18204666 - 11 Oct 2025
Cited by 1 | Viewed by 692
Abstract
Here, the effects of Fe vacancy defects on the bonding properties of γ-Fe (111)/α-Al2O3 (0001) interfaces are studied in depth at the atomic and electronic levels using first-principles calculations. The first (V1), second (V2), third (V [...] Read more.
Here, the effects of Fe vacancy defects on the bonding properties of γ-Fe (111)/α-Al2O3 (0001) interfaces are studied in depth at the atomic and electronic levels using first-principles calculations. The first (V1), second (V2), third (V3), and fourth (V4) layers of vacancy structures within the Fe substrate, as well as the ideal Fe/Al2O3 interface structure, are proposed and contrasted, including their thermodynamic parameters and atomic/electronic properties. The results demonstrate that the presence of vacancies in the first atomic layer of Fe deteriorates the interfacial bonding strength, whereas vacancies situated in the third layer enhance the interfacial bonding strength. The effect of vacancy beyond the third layer becomes negligible. This occurs mainly because vacancy defects at different positions induce the relaxation behavior of atoms, resulting in bond-breaking and bond-forming reactions at the interface. Following that, the formation process of vacancies can cause the transfer and rearrangement of the electrons at the interface. This process leads to significant changes in the charge concentration of the interfaces, where V3 is the largest and V1 is the smallest, indicating that the greater the charge concentration, the stronger the bonding strength of the interface. Furthermore, it is discovered that vacancy defects can induce new electronic orbital hybridization between Fe and O at the interface, which is the fundamental reason for changes in the properties of the interface. Interestingly, it is also found that more electronic orbital hybridization will strengthen the bonding performance of the interface. It seems, then, that the existence of vacancy defects not only changes the electronic environment of the Fe/Al2O3 interface but also directly affects the bonding properties of the interface. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

15 pages, 9756 KB  
Article
Interaction of Oxygen Molecules with Fe Atom-Doped γ-Graphyne Surfaces: First-Principles Calculations
by Bin Zhao, Jiayi Yin, Zhuoting Xiong, Wentao Yang, Peng Guo, Meng Li, Haoxian Zeng and Jianjun Wang
Nanomaterials 2025, 15(19), 1479; https://doi.org/10.3390/nano15191479 - 27 Sep 2025
Viewed by 593
Abstract
The activation and dissociation of O2 molecules play a key role in the oxidation of toxic gas molecules and the oxygen reduction reaction (ORR) in hydrogen–oxygen fuel cells. The interactions between O2 molecules and the surfaces of Fe-doped γ-graphyne were systematically [...] Read more.
The activation and dissociation of O2 molecules play a key role in the oxidation of toxic gas molecules and the oxygen reduction reaction (ORR) in hydrogen–oxygen fuel cells. The interactions between O2 molecules and the surfaces of Fe-doped γ-graphyne were systematically explored, mainly adopting the combined method of the density functional theory with dispersion correction (DFT-D3) and the climbing image nudged elastic band (CI-NEB) method. The order of the formation energy values of these defective systems is Ef(FeC2) < Ef(FeC1) < Ef(FeD1) < Ef(VC1) < Ef(VD1) < Ef(VC2) < Ef(FeD2) < Ef(VD2), which indicates that the process of Fe dopant atoms substituting single-carbon atoms/double-carbon atoms is relatively easier than the formation of vacancy-like defects. The results of ab initio molecular dynamics (AIMD) simulations confirm that the doped systems can maintain structural stability at room temperature conditions. Fe-doped atoms transfer a certain amount of electrons to the adsorbed O2 molecules, thereby causing an increase in the O-O bond length of the adsorbed O2 molecules. The electrons obtained by the anti-bonding 2π* orbitals of the adsorbed O2 molecules are mainly derived from the 3d orbitals of Fe atoms. There is a competitive relationship between the substrate’s carbon atoms and the adsorbed O2 molecules for the charges transferred from Fe atoms. In the C1 and C2 systems, O2 molecules have a greater advantage in electron accepting ability compared to the substrate’s carbon atoms. The elongation of O-O bonds and the amount of charge transfer exhibit a positive relationship. More electrons are transferred from Fe-3d orbitals to adsorbed O2 molecules, occupying the 2π* orbitals of adsorbed O2 molecules, further elongating the O-O chemical bond until it breaks. The dissociation process of adsorbed O2 molecules on the surfaces of GY-Fe systems (C2 and D2 sites) involves very low energy barriers (0.016 eV for C2 and 0.12 eV for D2). Thus, our studies may provide useful insights for designing catalyst materials for oxidation reactions and the oxygen reduction reaction. Full article
Show Figures

Graphical abstract

7 pages, 1562 KB  
Article
Co-Adsorption of Formic Acid and Hexane Selenol on Cu
by Mats Ahmadi Götelid, Sareh Ahmadi Götelid, Saman Hosseinpour, Christofer Leygraf and C. Magnus Johnson
Corros. Mater. Degrad. 2025, 6(4), 48; https://doi.org/10.3390/cmd6040048 - 26 Sep 2025
Viewed by 640
Abstract
Self-assembled monolayers of alkane thiolate and alkane selenolate have been proven to inhibit atmospheric corrosion, but upon prolonged exposure to the important constituents of indoor atmosphere, namely humidified air with formic acid, the protective layer eventually breaks, but the exact reason is not [...] Read more.
Self-assembled monolayers of alkane thiolate and alkane selenolate have been proven to inhibit atmospheric corrosion, but upon prolonged exposure to the important constituents of indoor atmosphere, namely humidified air with formic acid, the protective layer eventually breaks, but the exact reason is not yet clear. In this paper, we report on an XPS study of co-adsorbed formic acid and hexane selenol on a Cu surface. Adsorption of hexane selenol at room temperature breaks the Se-C bond, leaving a monolayer of Se on the surface, whereas adsorption at 140 K leaves a layer of selenolate. Formic acid exposure to the selenolate-Cu surface leads to adsorbed formate on unprotected areas and absorption of formic acid within the alkane chain network. During heating, the formic acid desorbs and the Se-C bond breaks, but formic acid does not accelerate the Se-C scission, which occurs just below room temperature both with and without formic acid. Thus, formic acid alone does not affect the Se-C bond, but its presence may create disorder and open up the alkane carpet for other species. Selenol removes formate and oxide from the surface at room temperature. The Se-C bond breaks and the alkane chain reacts with surface oxygen to form carbon oxides and volatile hydrocarbons. Full article
Show Figures

Figure 1

16 pages, 1245 KB  
Article
Sulfur Vulcanization and Material Properties of Polyhydroxyalkanoates with Unsaturated Side Chain
by Phimthong Khamjapo, Lucas Vinicius Santini Ceneviva, Yusuke Nakata, Yuki Miyahara and Takeharu Tsuge
Polymers 2025, 17(18), 2561; https://doi.org/10.3390/polym17182561 - 22 Sep 2025
Viewed by 1321
Abstract
This study aimed to evaluate the physical properties and biodegradability of sulfur-vulcanized polyhydroxyalkanoates (PHAs) with unsaturated side chains. As a vulcanizable PHA, poly(3-hydroxybutyrate-co-3-hydroxy-5-hexenoate) [P(3HB-co-3H5HE)] was biosynthesized with a 3H5HE fraction of 3–47 mol% using recombinant Escherichia coli and subsequently [...] Read more.
This study aimed to evaluate the physical properties and biodegradability of sulfur-vulcanized polyhydroxyalkanoates (PHAs) with unsaturated side chains. As a vulcanizable PHA, poly(3-hydroxybutyrate-co-3-hydroxy-5-hexenoate) [P(3HB-co-3H5HE)] was biosynthesized with a 3H5HE fraction of 3–47 mol% using recombinant Escherichia coli and subsequently vulcanized with varying sulfur contents (2–20 per hundred resin, phr) in the presence of zinc oxide, stearic acid, and 2-mercaptobenzothiazole as curing agents. The vulcanized PHA copolymers were insoluble in chloroform, indicating the formation of a cross-linked network. Raman spectroscopy revealed the functional loss of the double bonds in the polymers. After the vulcanization with 5 phr sulfur, the tensile strength and elongation at break of P(3HB-co-47 mol% 3H5HE) increased from 0.6 MPa to 6.3 MPa and from 430% to 813%, respectively. This sample exhibited low tensile set (8%) after 200% elongation, indicating rubber-like properties. Although biodegradability decreased with increasing crosslink density, vulcanized P(3HB-co-3H5HE) exhibited a greater degradation potential than vulcanized rubber but was lower than that of non-vulcanized P(3HB-co-3H5HE). These findings demonstrate that sulfur vulcanization can enhance the resilience of unsaturated PHAs, making them suitable for elastomeric and environmental applications. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites, 3rd Edition)
Show Figures

Figure 1

24 pages, 7321 KB  
Article
Effect of UV Irradiation on Properties and Characteristics of Fish Gelatin-Based Film Containing Linoleic Acid and Ferrous Chloride
by Wipawee Theerawitayaart, Kullaya Poomithorn, Krisana Nilsuwan, Ponsatit Sookchoo, Soottawat Benjakul and Thummanoon Prodpran
Polymers 2025, 17(18), 2512; https://doi.org/10.3390/polym17182512 - 17 Sep 2025
Viewed by 737
Abstract
This study investigated the combined effects of linoleic acid (LA) incorporation and UV irradiation in the presence and absence of ferrous chloride (FeCl2) on the properties and characteristics of fish skin gelatin films. UV irradiation was implemented at different intensities (10,000–40,000 [...] Read more.
This study investigated the combined effects of linoleic acid (LA) incorporation and UV irradiation in the presence and absence of ferrous chloride (FeCl2) on the properties and characteristics of fish skin gelatin films. UV irradiation was implemented at different intensities (10,000–40,000 lux) and with different exposure times (1 and 5 min) by two different methods: irradiating the film-forming solution before casting (S-UV) versus irradiating the pre-cast film (F-UV). The UV treatment significantly increased the elastic modulus (EM) while decreasing the tensile strength (TS), elongation at break (EAB), and water-vapor permeability (WVP) of the films (p < 0.05), irrespective of the irradiation method used. This effect became more pronounced with higher UV intensity and longer exposure times. When both LA and FeCl2 were present, UV irradiation promoted the formation of non-disulfide covalent bonds, leading to increased cross-linking. This cross-linking improved the film’s strength and decreased its WVP, although it did cause the films to become yellowish. Fourier-transform infrared spectroscopy (FTIR) confirmed interactions between the gelatin and LA, indicated by a decrease in the intensity of Amide-A, Amide-I, and Amide-II bands. A key finding suggested that UV irradiation, combined with LA/FeCl2 incorporation, could significantly enhance the properties of fish skin gelatin films, especially their water-vapor barrier. The study’s novelty lies in demonstrating that applying the UV treatment to either the film solution or the final film yields similar results, providing flexibility in the manufacturing process. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

14 pages, 2309 KB  
Article
Modification of Bitumen with Mechanochemically Devulcanized Crumb Rubber
by Anar Akkenzheyeva, Akkenzhe Bussurmanova, Uzilkhan Yensegenova, Viktors Haritonovs, Remo Merijs Meri, Yerzhan Imanbayev, Yerbolat Ayapbergenov, Serik Sydykov and Aibar Murzabekov
Processes 2025, 13(8), 2489; https://doi.org/10.3390/pr13082489 - 7 Aug 2025
Cited by 1 | Viewed by 1187
Abstract
This study investigates the modification of bitumen using mechanochemically devulcanized crumb rubber. The objective of this research is to enhance the performance characteristics of bituminous binders while addressing the inherent limitations associated with conventional crumb rubber (CCR), such as insufficient dispersion, elevated viscosity, [...] Read more.
This study investigates the modification of bitumen using mechanochemically devulcanized crumb rubber. The objective of this research is to enhance the performance characteristics of bituminous binders while addressing the inherent limitations associated with conventional crumb rubber (CCR), such as insufficient dispersion, elevated viscosity, and phase instability. Preliminary chemical activation of the crumb rubber was performed using a planetary ball mill, followed by thermomechanical devulcanization on a two-roll open mixing mill. Structural features of the devulcanized crumb rubber were analyzed using infrared spectroscopy, which confirmed the breakdown of S–S bonds. This study presents a comparative analysis of the performance characteristics of rubber–bitumen binders produced using both conventional rubber crumb (CRC) and devulcanized rubber crumb (DRC). The use of DCR, obtained mechanochemically from rubber waste, improved penetration, Fraass breaking point and the ring and ball softening point on average at high concentrations (20; 25% crumb rubber) compared to conventional crumb rubber by 33%, 66% and 2.4%, respectively. Optical microscopy revealed the formation of a uniform mesh-like rubber structure within the bitumen matrix, which contributes to enhanced performance characteristics of the modified binder and improved mechanical strength of the material. The key contribution of this work lies in the development and experimental validation of an efficient approach to deep devulcanization of crumb rubber via mechanochemical activation using readily available nitrogen-containing reagents. Furthermore, the study establishes a direct correlation between the degree of devulcanization, the dispersion quality of rubber particles within the bitumen matrix, and the resultant performance characteristics of the modified binder. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Figure 1

Back to TopTop