Interaction of Oxygen Molecules with Fe Atom-Doped γ-Graphyne Surfaces: First-Principles Calculations
Abstract
1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Fe Atoms Doped into γ-Graphyne
3.2. Activation and Dissociation Behaviors of O2 on GY-Fe Surfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, J.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B. Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J. Phys. Chem. C 2011, 115, 20466–20470. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Liu, H.; Li, Y. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586. [Google Scholar] [CrossRef]
- Kim, B.G.; Choi, H.J. Graphyne: Hexagonal network of carbon with versatile diraccones. Phys. Rev. B 2012, 86, 115435. [Google Scholar] [CrossRef]
- Baughman, R.H.; Eckhardt, H.; Kertesz, M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J. Phys. Chem. C 1987, 87, 6687–6699. [Google Scholar] [CrossRef]
- Kang, J.; Wei, Z.; Li, J. Graphyne and its family: Recent theoretical advances. ACS Appl. Mater. Interfaces 2018, 11, 2692–2706. [Google Scholar] [CrossRef]
- Puigdollers, A.R.; Alonso, G.; Gamallo, P. First-principles study of structural, elastic and electronic properties of α-, β- and γ-graphyne. Carbon 2016, 96, 879–887. [Google Scholar] [CrossRef]
- Zheng, E.; He, G.; Shang, C.; Chen, B.; Wang, Q.; Liu, Y. Insights into graphdiyne-supported single Ti for water dissociation reaction. Comput. Theor. Chem. 2022, 1207, 113499. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y. Chemical Modification and Functionalization of Graphdiyne. Acta Phys.-Chim. Sin. 2018, 34, 992–1013. [Google Scholar] [CrossRef]
- Li, B.; Lai, C.; Zhang, M.; Zeng, G.; Liu, S.; Huang, D.; Qin, L.; Liu, X.; Yi, H.; Xu, F.; et al. Graphdiyne: A Rising Star of Electrocatalyst Support for Energy Conversion. Adv. Energy Mater. 2020, 10, 2000177. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Chen, Y.; Wu, L.; Yang, C.; Cui, X. Synthesis of γ-graphyne by mechanochemistry and its electronic structure. Carbon 2018, 136, 248–254. [Google Scholar] [CrossRef]
- Zuo, Z.; Li, Y. Emerging Electrochemical Energy Applications of Graphdiyne. Joule 2019, 3, 899–907. [Google Scholar] [CrossRef]
- Akbari, F.; Vanani, A.R.; Darvishnejad, M.H. DFT study of the electronic and structural properties of single Al and N atoms and Al-N co-doped graphyne toward hydrogen storage. Appl. Surf. Sci. 2019, 488, 600–610. [Google Scholar] [CrossRef]
- Liu, P.P.; Zhang, H.; Cheng, X.L.; Tang, Y.-J. External electric field: An effective way to prevent aggregation of Mg atoms on γ–graphyne for high hydrogen storage capacity. Appl. Surf. Sci. 2019, 371, 44–49. [Google Scholar] [CrossRef]
- Gangan, A.; Chakraborty, B.; Ramaniah, L.M.; Banerjee, S. First principles study on hydrogen storage in yttrium doped graphyne: Role of acetylene linkage in enhancing hydrogen storage. Int. J. Hydrogen Energy 2019, 44, 16735–16744. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Z.; Wu, W.; Liu, Y.; Zhou, Z. Adsorption of NOx (x = 1, 2) gas molecule on pristine and B atom embedded γ-graphyne based on first-principles study. Appl. Surf. Sci. 2018, 455, 484–491. [Google Scholar] [CrossRef]
- Mofidi, F.; Vanani, A.R. Sensing and elimination of the hazardous materials such as Sarin by metal functionalized γ-graphyne surface: A DFT study. J. Mol. Liq. 2019, 286, 110929. [Google Scholar] [CrossRef]
- Darvishnejad, M.H.; Vanani, A.R. DFT-D3 calculations of the charge-modulated CO2 capture of N/Sc-embedded graphyne: Compilation of some factors. J. CO2 Util. 2021, 46, 101469. [Google Scholar] [CrossRef]
- Kang, B.; Shi, H.; Wu, S.; Zhao, W.; Ai, H.; Lee, J.Y. Revealing the importance of nitrogen doping site in enhancing the oxygen reduction reaction on β-graphyne. Carbon 2017, 123, 415–420. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Y.; Liu, S.; Cheng, Z.; Tan, Y.; Shen, Z. Single cobalt atom anchored on N-doped graphyne for boosting the overall water splitting. Appl. Surf. Sci. 2020, 502, 144155. [Google Scholar] [CrossRef]
- Kong, X.; Huang, Y.; Liu, Q. Two-dimensional boron-doped graphyne nanosheet: A new metal-free catalyst for oxygen evolution reaction. Carbon 2017, 123, 558–564. [Google Scholar] [CrossRef]
- Fu, L.; Wang, R.; Zhao, C.; Huo, J.; He, C.; Kim, K.-H.; Zhang, W. Construction of Crembedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study. Chem. Eng. J. 2021, 414, 128857. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, Y.; Cheng, Z.; Tan, Y.; Liu, S.; Shen, Z. Doping sp-hybridized B atoms in graphyne supported single cobalt atoms for hydrogen evolution electrocatalysis. Int. J. Hydrogen Energy 2019, 458, 781–789. [Google Scholar] [CrossRef]
- Kattel, S.; Wang, G. Reaction Pathway for Oxygen Reduction on FeN4 Embedded Graphene. J. Phys. Chem. Lett. 2014, 5, 452–456. [Google Scholar] [CrossRef]
- Ma, D.; Tang, Y.; Yang, G.; Zeng, J.; He, C.; Lu, Z. CO catalytic oxidation on iron-embedded monolayer MoS2. Appl. Surf. Sci. 2015, 328, 71–77. [Google Scholar] [CrossRef]
- Yang, W.T.; Zhao, B.; Chen, W.; Guo, P.; Yin, L.; Li, M.; Zeng, H.; Zhang, M.; Wang, J. Theoretical investigation of adsorption and dissociation behaviors of H2O molecules on the surfaces of Transition-metal doped γ-graphyne. Mater. Today Commun. 2023, 37, 107109. [Google Scholar] [CrossRef]
- Deng, D.; Chen, X.; Yu, L.; Wu, X.; Liu, Q.; Liu, Y.; Yang, H.; Tian, H.; Hu, Y.; Du, P.; et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, T.; Chen, M.; Feng, H.; Yuan, R.; Zhong, C.; Yan, W.; Tian, Y.; Wu, X.; Chu, W.; et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, L.; Li, K.; Yin, C.; Tang, H.; Wang, Y.; Wu, Z. RuN4 Doped Graphene Oxide, a Highly Efficient Bifunctional Catalyst for Oxygen Reduction and CO2 Reduction from Computational Study. ACS Sustain. Chem. Eng. 2019, 7, 8136–8144. [Google Scholar] [CrossRef]
- Chen, X.; Qiao, Q.; An, L.; Xia, D. Why Do Boron and Nitrogen Doped α- and γ-Graphyne Exhibit Different Oxygen Reduction Mechanism? A First-Principles Study. J. Phys. Chem. C 2015, 119, 11493–11498. [Google Scholar] [CrossRef]
- Jiao, D.; Zhang, D.; Wang, D.; Fan, J.; Ma, X.; Zhao, J.; Zheng, W.; Cui, X. Applying machine-learning screening of single transition metal atoms anchored on N-doped γ-graphyne for carbon monoxide electroreduction toward C1 products. Nano Res. 2023, 16, 11511–11520. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Yun, J.; Zhang, Z.; Yan, J.; Zhao, W.; Xu, M. First-principles study of B or Al-doping effect on the structural, electronic structure and magnetic properties of γ-graphyne. Comput. Mater. Sci. 2015, 108, 147–152. [Google Scholar] [CrossRef]
- Tang, Y.; Dai, X.; Yang, Z.; Liu, Z.; Pan, L.; Ma, D.; Lu, Z. Tuning the catalytic property of non-noble metallic impurities in grapheme. Carbon 2014, 71, 139–149. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hongzhiwei Technology. Device Studio, Version 2021A; Hongzhiwei Technology: Shanghai, China, 2021; Available online: https://iresearch.net.cn/cloud-software (accessed on 15 September 2022).
- Wang, M.; Wang, X.; Zheng, M.; Zhou, X. Improving Catalytic Activity of “Janus” MoSSe Based on Surface Interface Regulation. Molecules 2022, 27, 6038. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.T.; Zhao, B.; Li, C.Y.; Guo, P.; Li, M.; Ge, X.; Zhang, M.; Guan, X.; Wang, J. Enhanced gas molecules adsorption on γ-graphyne doped with Fe atom: A first-principles study. Appl. Surf. Sci. 2022, 601, 154083. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, W.; Chai, H.; Zhao, G.; Li, Y.; Ma, D.; Dai, X. Metal- and Nonmetal-Atom-Modified Graphene as Efficient Catalysts for CO Oxidation Reactions. J. Phys. Chem. C 2019, 123, 10926–10939. [Google Scholar] [CrossRef]
Position | dFe-C (Å) | Eb (eV) | ∆Q (e−) |
---|---|---|---|
C1 | 1.80/1.75/1.80 | −6.32 | −0.78 |
C2 | 1.66/1.86/2.17 | −7.47 | −0.82 |
D1 | 1.84/1.84/1.98/1.98 | −5.66 | −1.11 |
D2 | 1.80/1.89/1.89/1.80/1.96 | −7.14 | −0.85 |
Position | Ea (eV) | LFe-O (Å) | LO-O (Å) | ΔQ (e−) |
---|---|---|---|---|
C1 | −1.73 | 1.90/1.83 | 1.38 | 0.61 |
C2 | −2.02 | 1.83/1.83 | 1.41 | 0.67 |
D1 | −0.82 | 1.86/1.86 | 1.36 | 0.52 |
D2 | −2.21 | 1.78/1.99 | 1.36 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Yin, J.; Xiong, Z.; Yang, W.; Guo, P.; Li, M.; Zeng, H.; Wang, J. Interaction of Oxygen Molecules with Fe Atom-Doped γ-Graphyne Surfaces: First-Principles Calculations. Nanomaterials 2025, 15, 1479. https://doi.org/10.3390/nano15191479
Zhao B, Yin J, Xiong Z, Yang W, Guo P, Li M, Zeng H, Wang J. Interaction of Oxygen Molecules with Fe Atom-Doped γ-Graphyne Surfaces: First-Principles Calculations. Nanomaterials. 2025; 15(19):1479. https://doi.org/10.3390/nano15191479
Chicago/Turabian StyleZhao, Bin, Jiayi Yin, Zhuoting Xiong, Wentao Yang, Peng Guo, Meng Li, Haoxian Zeng, and Jianjun Wang. 2025. "Interaction of Oxygen Molecules with Fe Atom-Doped γ-Graphyne Surfaces: First-Principles Calculations" Nanomaterials 15, no. 19: 1479. https://doi.org/10.3390/nano15191479
APA StyleZhao, B., Yin, J., Xiong, Z., Yang, W., Guo, P., Li, M., Zeng, H., & Wang, J. (2025). Interaction of Oxygen Molecules with Fe Atom-Doped γ-Graphyne Surfaces: First-Principles Calculations. Nanomaterials, 15(19), 1479. https://doi.org/10.3390/nano15191479