Sustainable Polymer Composites: Waste Reutilization and Valorization

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Polymer Composites".

Deadline for manuscript submissions: 20 December 2025 | Viewed by 2948

Special Issue Editor


E-Mail Website
Guest Editor
School of Computing, Engineering and Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
Interests: sustainable materials; bio-based polymers; polymer blends and composites; plastic recycling and rheology of polymers and plastics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The demand for greener, smarter materials is rapidly reshaping the future of composites. This Special Issue invites cutting-edge contributions that explore the science, engineering, and transformative potential of sustainable polymer composites—those designed with environmental responsibility at their core.

We seek bold research that reimagines composite materials through the lens of sustainability, including the creative reuse of waste plastics and fillers, the integration of bio-derived and biodegradable polymers, and the advancement of eco-efficient manufacturing techniques. Studies focusing on recyclability, design for circularity, and life-cycle-oriented thinking are particularly encouraged.

Topics of interest include, but are not limited to, the following:

  • Polymer composites made with industrial or post-consumer waste streams;
  • Bio-based and biodegradable polymer matrices and reinforcements;
  • Composite recycling, repair, and repurposing technologies;
  • Innovative processing methods that lower energy and material footprints;
  • Life Cycle Assessment (LCA) and sustainability metrics for composites;
  • Functional performance of eco-composites in real-world applications.

We welcome original research articles, reviews, and case studies that challenge conventional thinking and push the boundaries of sustainable materials development. This Special Issue aims to inspire solutions that not only perform but also endure responsibly in a changing world.

Dr. Reza Salehiyan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bio-based composites
  • waste-derived fillers
  • recycled polymers
  • LCA
  • composite recycling
  • biodegradable polymers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4057 KB  
Article
Sustainable Valorization of Kenaf Fiber Waste in Polymer Composites for Drone Arm Structure: A Finite Element Analysis Approach
by Navaneetha Krishna Chandran, Mohamed Thariq Hameed Sultan, Farah Syazwani Shahar and Andrzej Łukaszewicz
J. Compos. Sci. 2025, 9(9), 505; https://doi.org/10.3390/jcs9090505 - 19 Sep 2025
Viewed by 555
Abstract
This study investigates the feasibility of kenaf fiber, which is a natural fiber, used as a polymer composite for use in quadcopter arm structures through finite element analysis. The research emphasizes the mechanical performance of various fiber orientations and cross-sectional configurations of the [...] Read more.
This study investigates the feasibility of kenaf fiber, which is a natural fiber, used as a polymer composite for use in quadcopter arm structures through finite element analysis. The research emphasizes the mechanical performance of various fiber orientations and cross-sectional configurations of the quadcopter arm, focusing on optimizing stress resistance, displacement, and strain characteristics. By relating the relationship between deflection and area moment of inertia of the quadcopter arm, a comparative analysis was conducted for circular hollow tubes, hollow rectangular tubes, and solid rectangular tubes, with the circular hollow tube configuration demonstrating the highest stiffness and minimal deflection. The result from the theoretical calculation and the simulation result of deflection are compared. The study also evaluates the influence of kenaf fiber orientations on the mechanical properties of the composite. Among the seven tested orientations, the sequence 0°, 30°, 45°, 30°, 0° yielded the highest maximum stress (0.3427 MPa), indicating optimal load distribution. Conversely, the 0°, 45°, 0°, 45°, 0° orientation provided the least displacement, making it ideal for high rigidity applications. These findings confirm the potential of kenaf fiber-reinforced polymer as an eco-friendly, lightweight alternative to synthetic fibers for UAV applications, offering a balance of strength, flexibility, and structural stability, and promoting sustainable value in the field of aerospace, as it proves the utilization of waste product into a high-value product. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Figure 1

15 pages, 2419 KB  
Article
Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder
by Giovanna Colucci, Francesca Sacchi, Marta Checchi, Marianna Barbalinardo, Francesca Chiarini, Federica Bondioli, Carla Palumbo and Massimo Messori
J. Compos. Sci. 2025, 9(9), 479; https://doi.org/10.3390/jcs9090479 - 3 Sep 2025
Viewed by 691
Abstract
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization [...] Read more.
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization (VP) using a Liquid Crystal Display (LCD) 3D printer. Formulation viscosity was studied because of its important role in a VP process able to influence the printability of the final parts. Different 3D printed architectures were successfully realized with good resolution and accuracy, high level of detail, and flexibility. The effect of OP addition was investigated by thermal (TGA and DSC), morphological (SEM and PSD), viscoelastic (DMA), and mechanical (tensile testing) characterization. The filler led to an increase in the Tg, storage modulus, and tensile properties, underlining the stiffening effect induced by the OP particles onto the polymeric starting resin. This underlines the possibility to apply these bio-based composites in many application fields by valorizing agro-wastes, developing more sustainable materials, and taking advantages of VP 3D printing, such as low costs, minimal wastage, and customized geometry. Biocompatibility tests were also successfully carried out. The results clearly indicate that the AESO-based composites promote cell adhesion and viability. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Graphical abstract

29 pages, 12570 KB  
Article
Sustainable Zinc-Ion Battery Separators Based on Silica and Cellulose Fibers Derived from Coffee Parchment Waste
by Vorrada Loryuenyong, Buntita Plongmai, Nitikorn Pajantorn, Prasit Pattananuwat and Achanai Buasri
J. Compos. Sci. 2025, 9(8), 452; https://doi.org/10.3390/jcs9080452 - 21 Aug 2025
Viewed by 1281
Abstract
Currently, electrochemical devices and portable electronic equipment play a significant role in people’s daily lives. Zinc-ion batteries (ZIBs) are growing rapidly due to their excellent safety, eco-friendliness, abundance of resources, and cost-effectiveness. The application of biomass as a polymer separator is gradually expanding [...] Read more.
Currently, electrochemical devices and portable electronic equipment play a significant role in people’s daily lives. Zinc-ion batteries (ZIBs) are growing rapidly due to their excellent safety, eco-friendliness, abundance of resources, and cost-effectiveness. The application of biomass as a polymer separator is gradually expanding in order to promote a circular economy and sustainable materials. This research focuses on the usage of cellulose fibers obtained from coffee parchment (CP) waste. The extracted cellulose fibers are produced via both mechanical and chemical methods. The sustainable separators are fabricated through vacuum filtration using a polymer filter membrane. The impact of incorporating silica particles and varying silica content on the physical and electrochemical properties of a cellulose-based separator is examined. The optimum amount of silica integrated into the cellulose separator is determined to be 5 wt%. This content led to an effective distribution of the silica particles, enhanced wettability, and improved fire resistance. The ZIBs incorporating cellulose/recycled silica at 5 wt% demonstrate exceptional cycle stability and the highest capacity retention (190% after 400 cycles). This study emphasizes the promise of sustainable polymers as a clean energy resource, owing to their adaptability and simplicity of processing, serving as a substitute for synthetic polymers sourced from fossil fuels. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Graphical abstract

Back to TopTop