Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = bodily fluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1835 KiB  
Review
Multidomain Molecular Sensor Devices, Systems, and Algorithms for Improved Physiological Monitoring
by Lianna D. Soriano, Shao-Xiang Go, Lunna Li, Natasa Bajalovic and Desmond K. Loke
Micromachines 2025, 16(8), 900; https://doi.org/10.3390/mi16080900 (registering DOI) - 31 Jul 2025
Viewed by 95
Abstract
Molecular sensor systems, e.g., implantables and wearables, provide extensive health-related monitoring. Glucose sensor systems have historically prevailed in wearable bioanalysis applications due to their continuous and reliable glucose monitoring, a feat not yet accomplished for other biomarkers. However, the advancement of reagentless detection [...] Read more.
Molecular sensor systems, e.g., implantables and wearables, provide extensive health-related monitoring. Glucose sensor systems have historically prevailed in wearable bioanalysis applications due to their continuous and reliable glucose monitoring, a feat not yet accomplished for other biomarkers. However, the advancement of reagentless detection methodologies may facilitate the creation of molecular sensor systems for multiple analytes. Improving the sensitivity and selectivity of molecular sensor systems is also crucial for biomarker detection under intricate physiological circumstances. The term multidomain molecular sensor systems is utilized to refer, in general, to both biological and chemical sensor systems. This review examines methodologies for enhancing signal amplification, improving selectivity, and facilitating reagentless detection in multidomain molecular sensor devices. The review also analyzes the fundamental components of multidomain molecular sensor systems, including substrate materials, bodily fluids, power, and decision-making units. The review article further investigates how extensive data gathered from multidomain molecular sensor systems, in conjunction with current data processing algorithms, facilitate biomarker detection for precision medicine. Full article
Show Figures

Figure 1

32 pages, 12213 KiB  
Review
Capacitive Sensors for Label-Free Detection in High-Ionic-Strength Bodily Fluids: A Review
by Seerat Sekhon, Richard Bayford and Andreas Demosthenous
Biosensors 2025, 15(8), 491; https://doi.org/10.3390/bios15080491 - 30 Jul 2025
Viewed by 268
Abstract
Capacitive sensors are platforms that enable label-free, real-time detection at low non-perturbing voltages. These sensors do not rely on Faradaic processes, thereby eliminating the need for redox-active species and simplifying system integration for point-of-care diagnostics. However, their sensitivity in high-ionic-strength solutions, such as [...] Read more.
Capacitive sensors are platforms that enable label-free, real-time detection at low non-perturbing voltages. These sensors do not rely on Faradaic processes, thereby eliminating the need for redox-active species and simplifying system integration for point-of-care diagnostics. However, their sensitivity in high-ionic-strength solutions, such as bodily fluids, is limited due to a reduced Debye length and non-specific interactions. The present review highlights advances in material integration, surface modification, and signal enhancement techniques to mitigate the challenges of deploying capacitive sensors in biofluids (sweat, saliva, blood, serum). This work further expands on the promise of such sensors for advancing liquid biopsies and highlights key technical challenges in translating capacitive systems to clinics. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

23 pages, 524 KiB  
Review
A Narrative Review of the Role of Non-Viral Circulating Tumor DNA Profiling in Predicting the Treatment Response and Recurrence in Head and Neck Squamous Cell Carcinoma
by Ugur Gezer, Rasim Meral, Emre Özgür, Ebru. E. Yörüker, Abel Bronkhorst and Stefan Holdenrieder
Cancers 2025, 17(14), 2279; https://doi.org/10.3390/cancers17142279 - 9 Jul 2025
Viewed by 584
Abstract
Head and neck squamous cell carcinomas (HNSCCs) that develop from the mucosal epithelium in the oral cavity, pharynx, and larynx are a heterogeneous group of malignant tumors. A lack of appropriate screening and diagnostic methods leads to late diagnoses, with the majority of [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) that develop from the mucosal epithelium in the oral cavity, pharynx, and larynx are a heterogeneous group of malignant tumors. A lack of appropriate screening and diagnostic methods leads to late diagnoses, with the majority of patients having locally advanced disease, which is associated with a high risk of local recurrence and a poor prognosis and is usually treated with combination therapies. Biomarkers for predicting the therapy response and risk of recurrence in HNSCC patients are urgently needed. Liquid biopsy, e.g., the profiling of circulating biomarkers in bodily fluids, is a promising approach with increasing utility in the early detection and diagnosis of cancer, monitoring cancer progression, patient stratification and treatment selection, detecting minimal residual disease (MRD), and predicting recurrence across different cancer types, including HNSCC. Among liquid biomarkers, circulating tumor DNA (ctDNA), which is based on detecting tumor-specific mutations, insertions/deletions, copy number alterations, and methylation, is the most promising transformative tool in cancer management and personalized cancer treatment. In this review, we provide an update of recent data on the role of non-viral ctDNA in the management of HNSCC patients. Accumulating data suggests the enormous potential of ctDNA profiling by serial sampling during and after definitive therapy in detecting MRD and predicting recurrence in HNSSC patients treated with a single treatment modality (surgery or radiotherapy) or with combination therapies, including immune-checkpoint-inhibitor-based immunotherapy. By incorporating the latest immunotherapy trials and organizing the data by the treatment modality, this review offers a novel perspective not found in previous surveys. Full article
Show Figures

Figure 1

23 pages, 3823 KiB  
Review
Electrochemical Strategies for MicroRNA Quantification Leveraging Amplification and Nanomaterials: A Review
by Alexander Hunt and Gymama Slaughter
Chemosensors 2025, 13(7), 242; https://doi.org/10.3390/chemosensors13070242 - 6 Jul 2025
Viewed by 537
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have emerged as critical biomarkers in various diseases, including cancer. Their stability in bodily fluids and role as oncogenes or tumor suppressors make them attractive targets for non-invasive diagnostics. However, conventional detection [...] Read more.
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have emerged as critical biomarkers in various diseases, including cancer. Their stability in bodily fluids and role as oncogenes or tumor suppressors make them attractive targets for non-invasive diagnostics. However, conventional detection methods, such as Northern blotting, RT-PCR, and microarrays, are limited by low sensitivity, lengthy protocols, and limited specificity. Electrochemical biosensors offer a promising alternative, providing high sensitivity, rapid response times, portability, and cost-effectiveness. These biosensors translate miRNA hybridization events into quantifiable electrochemical signals, often leveraging redox-active labels, mediators, or intercalators. Recent advancements in nanomaterials and signal amplification strategies have further enhanced detection capabilities, enabling sensitive, label-free miRNA quantification. This review provides a comprehensive overview of the recent advances in electrochemical biosensing of miRNAs, emphasizing innovative redox-based detection strategies, probe immobilization techniques, and hybridization modalities. The critical challenges and future perspectives in advancing electrochemical miRNA biosensors toward clinical translation and point-of-care diagnostics are discussed. Full article
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment
by Mario Alamilla-Sanchez, Miguel Angel Alcalá Salgado, Victor Manuel Ulloa Galván, Valeria Yanez Salguero, Martín Benjamin Yamá Estrella, Enrique Fleuvier Morales López, Nicte Alaide Ramos García, Martín Omar Carbajal Zárate, Jorge David Salazar Hurtado, Daniel Alberto Delgado Pineda, Leticia López González and Julio Manuel Flores Garnica
Pathophysiology 2025, 32(3), 33; https://doi.org/10.3390/pathophysiology32030033 - 3 Jul 2025
Viewed by 1848
Abstract
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms [...] Read more.
Renal function refers to the combined actions of the glomerulus and tubular system to achieve homeostasis in bodily fluids. While the glomerulus is essential in the first step of urine formation through a coordinated filtration mechanism, the tubular system carries out active mechanisms of secretion and reabsorption of solutes and proteins using specific transporters in the epithelial cells. The assessment of renal function usually focuses on glomerular function, so the tubular function is often underestimated as a fundamental part of daily clinical practice. Therefore, it is essential to properly understand the tubular physiological mechanisms and their clinical association with prevalent human pathologies. This review discusses the primary solutes handled by the kidneys, including glucose, amino acids, sodium, potassium, calcium, phosphate, citrate, magnesium and uric acid. Additionally, it emphasizes the significance of physicochemical characteristics of urine, such as pH and osmolarity. The use of a concise methodology for the comprehensive assessment of urine should be strengthened in the basic training of nephrologists when dealing with problems such as water and electrolyte balance disorders, acid-base disorders, and harmful effects of commonly used drugs such as chemotherapy, antibiotics, or diuretics to avoid isolated replacement of the solute without carrying out comprehensive approaches, which can lead to potentially severe complications. Full article
Show Figures

Figure 1

21 pages, 3636 KiB  
Article
Antioxidant System Disturbances, Bioenergetic Disruption, and Glial Reactivity Induced by Methylmalonic Acid in the Developing Rat Brain
by Cristiano Antonio Dalpizolo, Josyane de Andrade Silveira, Manuela Bianchin Marcuzzo, Vitor Gayger-Dias, Vanessa-Fernanda Da Silva, Camila Vieira Pinheiro, Bruno Pereira dos Santos, Tiago Franco de Oliveira, Carlos-Alberto Gonçalves and Guilhian Leipnitz
Neuroglia 2025, 6(3), 25; https://doi.org/10.3390/neuroglia6030025 - 30 Jun 2025
Viewed by 360
Abstract
Background: Elevated levels of methylmalonic acid (MMA) are observed in the bodily fluids and tissues of patients with methylmalonic aciduria, a metabolic disorder characterized by manifestations such as vomiting, lethargy, muscle weakness, seizures, and coma. Objectives and Methods: To better understand the neuropathological [...] Read more.
Background: Elevated levels of methylmalonic acid (MMA) are observed in the bodily fluids and tissues of patients with methylmalonic aciduria, a metabolic disorder characterized by manifestations such as vomiting, lethargy, muscle weakness, seizures, and coma. Objectives and Methods: To better understand the neuropathological mechanisms underlying this condition, we investigated the effects of intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) administration of MMA on antioxidant defenses, citric acid cycle functioning, and glial reactivity in the cerebral cortex and striatum of Wistar rats. Amino acid levels were also quantified. Results: i.p. and i.c.v. administration of MMA decreased reduced glutathione levels and altered the activities of different antioxidant enzymes in the cortex and striatum. The activity of the citric acid cycle enzyme succinate dehydrogenase was diminished in both brain regions by i.p. and i.c.v. administration. Citrate synthase, isocitrate dehydrogenase, and malate dehydrogenase activities were further inhibited in the striatum. Furthermore, the i.p. administration increased glial fibrillary acidic protein (GFAP) and glucose transporter 1 (GLUT1) levels, whereas i.c.v. administration elevated GFAP and ionized calcium-binding adaptor molecule 1 (IBA1) levels in the striatum, suggesting glial activation. In contrast, no significant changes in glial markers were detected in the cortex. Moreover, synaptophysin levels remained unaltered in both regions. Finally, i.p. administration increased glutamate, glycine, and serine levels and reduced tyrosine concentrations in the striatum. Conclusions: Our findings indicate that oxidative stress, bioenergetic dysfunction, and glial reactivity induced by MMA may contribute to the neurological deficits observed in methylmalonic aciduria. Full article
Show Figures

Figure 1

17 pages, 9885 KiB  
Article
Tuberculosis Patients’ Serum Extracellular Vesicles Induce Relevant Immune Responses for Initial Defense Against BCG in Mice
by Wenzhao Xu, Yue Hou, Jingfang Zhang, Tingming Cao, Guangming Dai, Wenjing Wang, Na Tian, Dingyi Liu, Hongqian Chu, Hong Sun and Zhaogang Sun
Microorganisms 2025, 13(7), 1524; https://doi.org/10.3390/microorganisms13071524 - 29 Jun 2025
Viewed by 339
Abstract
Extracellular vesicles (EVs) can be distributed in various bodily fluids, such as serum and urine, and play an essential role in immune regulation, substance transport, and other aspects. Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which places [...] Read more.
Extracellular vesicles (EVs) can be distributed in various bodily fluids, such as serum and urine, and play an essential role in immune regulation, substance transport, and other aspects. Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which places a tremendous burden on public health prevention and control within society. Researchers are committed to developing various diagnoses and treatment plans to eliminate TB effectively. The results of some studies conducted to date demonstrate that the serum EVs of TB patients, which carry components related to Mtb, can be used as relevant markers for TB detection and improve diagnostic efficiency. However, no relevant reports exist on the particular physiological functions such EVs perform, thus warranting further exploration. In this study, we collected serum EVs from both healthy individuals and TB patients. After identifying the morphology, concentration, and expression of classic markers (CD63, CD81, and CD9) of EVs, we explored their physiological functions at the cellular level and their physiological functions and effects on BCG colonization in the lungs at the mouse level. It was found that EVs were abundant in TB patients and healthy individuals, and the number of CD63 and CD9 markers co-expressed on the surface of serum EVs in healthy individuals was greater than that in TB patients. Serum EVs in patients with TB can stimulate cells to secrete more immune cytokines, such as TNF-α and IL-6, compared with those in healthy individuals; induce an increase in the M1/M2 ratio of macrophages in the peripheral blood mononuclear cells of mice; and inhibit the colonization of Mycobacterium bovis bacillus Calmette Guérin (BCG) in the lungs of mice. In addition, they can inhibit the occurrence of inflammatory responses in the lung tissue of mice. The above results suggest that serum EVs in TB patients may exert their physiological function by regulating immune responses. This finding also indicates that exploring serum EVs in TB patients with regard to their physiological functions shows excellent potential. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

20 pages, 2511 KiB  
Article
Oocyte Exposure to Low Levels of Triclosan Has a Significant Impact on Subsequent Embryo Physiology
by Vasiliki Papachristofi, Paul J. McKeegan, Henry J. Leese, Jeanette M. Rotchell and Roger G. Sturmey
Int. J. Environ. Res. Public Health 2025, 22(7), 1031; https://doi.org/10.3390/ijerph22071031 - 28 Jun 2025
Viewed by 562
Abstract
Triclosan (TCS) is an antimicrobial agent in a wide range of health care products. It has been found in various human bodily fluids and is a potential reproductive toxicant. However, the effect of TCS on early embryo development in mammalian species is limited. [...] Read more.
Triclosan (TCS) is an antimicrobial agent in a wide range of health care products. It has been found in various human bodily fluids and is a potential reproductive toxicant. However, the effect of TCS on early embryo development in mammalian species is limited. We therefore asked whether exposure to TCS affects mammalian cumulus–oocyte complexes (COCs), and if so, whether the effects persist into the early embryo. COCs, isolated from abattoir-derived bovine ovaries, were exposed to two environmentally relevant doses of TCS (1 and 10 nM) during in vitro maturation. When exposed to 1 nM TCS during in vitro maturation, progesterone release from bovine oocytes was elevated. Furthermore, altered pyruvate metabolism and mitochondrial dysfunction were also observed; specifically, O2 consumption coupled to ATP production was significantly decreased in COCs after acute exposure to TCS prior to maturation, whereas proton leak from the respiratory chain was increased. Subsequently, TCS-exposed COCs were fertilised. Fewer oocytes were able to develop to blastocyst when exposed to 1 nM TCS during maturation compared to the Control group, and those that did reach the blastocyst displayed impaired glycolytic and amino acid metabolic activity. These findings indicate for the first time that oocytes exposed to TCS during the final stages of maturation give rise to embryos with impaired mitochondrial function, altered steroidogenesis, and disrupted metabolic activity. Full article
Show Figures

Figure 1

26 pages, 6136 KiB  
Review
Exosomes as Future Therapeutic Tools and Targets for Corneal Diseases
by Joshua Gamez, Daxian Zha, Shaghaiegh M. Ebrahimi, Seok White, Alexander V. Ljubimov and Mehrnoosh Saghizadeh
Cells 2025, 14(13), 959; https://doi.org/10.3390/cells14130959 - 23 Jun 2025
Viewed by 743
Abstract
The therapeutic potential of exosomes (Exos), a subpopulation of extracellular vesicles (EVs) secreted by various cell types, has been broadly emphasized. Exos are endosome-derived membrane-bound vesicles 50–150 nm in size. Exos can be general or cell type-specific. Their contents enable them to function [...] Read more.
The therapeutic potential of exosomes (Exos), a subpopulation of extracellular vesicles (EVs) secreted by various cell types, has been broadly emphasized. Exos are endosome-derived membrane-bound vesicles 50–150 nm in size. Exos can be general or cell type-specific. Their contents enable them to function as multi-signaling and vectorized vehicles. Exos are important for maintaining cellular homeostasis. They are released into extracellular spaces, leading to uptake by neighboring or distant cells and delivering their contents to modulate cell signaling. Exos influence tissue responses to injury, infection, and disease by fusion with the target cells and transferring their cargo, including cytokines, growth and angiogenic factors, signaling molecules, lipids, DNA, mRNAs, and non-coding RNAs. They are implicated in various physiological and pathological conditions, including ocular surface events, such as corneal scarring, wound healing, and inflammation. Their biocompatibility, stability, low immunogenicity, and easy detectability in bodily fluids (blood, tears, saliva, and urine) make them promising tools for diagnosing and treating ocular diseases. The potential to engineer specific Exo cargos makes them outstanding therapeutic delivery vehicles. The objective of this review is to provide novel insights into the functions of Exo cargos and their applications as biomarkers and therapeutics, or targets in the cornea. Full article
Show Figures

Figure 1

16 pages, 734 KiB  
Review
Clinical Utility of ctDNA Analysis in Lung Cancer—A Review
by Kamil Makar, Agata Wróbel, Adam Antczak and Damian Tworek
Adv. Respir. Med. 2025, 93(3), 17; https://doi.org/10.3390/arm93030017 - 12 Jun 2025
Viewed by 1936
Abstract
Circulating free DNA (cfDNA) is genetic material released from various cells into bodily fluids. Among its fractions, circulating tumor DNA (ctDNA) originates from tumor cells and reflects their genetic material, including mutations and epigenetic changes. Methods commonly employed for detecting ctDNA in blood [...] Read more.
Circulating free DNA (cfDNA) is genetic material released from various cells into bodily fluids. Among its fractions, circulating tumor DNA (ctDNA) originates from tumor cells and reflects their genetic material, including mutations and epigenetic changes. Methods commonly employed for detecting ctDNA in blood include next-generation sequencing (NGS) and various types of PCR. The presence of ctDNA can be utilized in liquid biopsies for many diagnostic purposes related to various cancers. It is a minimally invasive method of sampling molecular compounds from tumor cells. In this paper, we focus on current knowledge regarding the liquid biopsy of blood ctDNA in the context of lung cancer, one of the leading causes of cancer-related mortality. Currently, as a clinically approved method, liquid biopsy serves as a complementary technique in NSCLC diagnostic and genetic profiling. Other applications of liquid biopsy that are still being investigated include the detection of minimal residual disease (MRD) after curative treatment and response monitoring to systemic treatment. This review discusses current and future potential directions for the development and implementation of ctDNA for patients with NSCLC. Full article
Show Figures

Figure 1

22 pages, 640 KiB  
Review
Innovative Approaches to Early Detection of Cancer-Transforming Screening for Breast, Lung, and Hard-to-Screen Cancers
by Shlomi Madar, Reef Einoch Amor, Sharon Furman-Assaf and Eitan Friedman
Cancers 2025, 17(11), 1867; https://doi.org/10.3390/cancers17111867 - 2 Jun 2025
Viewed by 1786
Abstract
Early detection of cancer is crucial for improving patient outcomes. Traditional modalities such as mammography and low-dose computed tomography are effective but exhibit inherent limitations, including radiation exposure and accessibility challenges. This review explores innovative, non-invasive cancer screening methods, focusing on liquid biopsy [...] Read more.
Early detection of cancer is crucial for improving patient outcomes. Traditional modalities such as mammography and low-dose computed tomography are effective but exhibit inherent limitations, including radiation exposure and accessibility challenges. This review explores innovative, non-invasive cancer screening methods, focusing on liquid biopsy and volatile organic compound (VOC)-based detection platforms. Liquid biopsy analyzes circulating tumor DNA and other biomarkers in bodily fluids, offering potential for early detection and monitoring of treatment response. VOC-based detection leverages unique metabolic signatures emitted by cancer cells, detectable in exhaled breath or other bodily emissions, providing a rapid and patient-friendly screening option. We provide a comprehensive overview of these advanced multi-cancer detection techniques to enhance diagnostic accuracy, accessibility, and patient adherence, and ultimately enhance survival rates and patient outcomes. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

18 pages, 4817 KiB  
Article
Prenatal Bisphenol B Exposure Induces Adult Male Offspring Reproductive Dysfunction via ERα Inhibition-Triggered MHC I-Mediated Testicular Immunological Responses
by Nannan Chen, Xiaotian Li, Shenrui Zhou, Xin Peng, Senlin Xue, Yuetong Liu, Tingwang Jiang and Wei Yan
Toxics 2025, 13(6), 423; https://doi.org/10.3390/toxics13060423 - 22 May 2025
Viewed by 926
Abstract
As an emerging endocrine-disrupting agent and structural analog of bisphenol A (BPA), bisphenol B (BPB) raises significant concerns due to its potential to induce male reproductive toxicity. Despite its presence in maternal bodily fluids, the effects of BPB exposure on the reproductive system [...] Read more.
As an emerging endocrine-disrupting agent and structural analog of bisphenol A (BPA), bisphenol B (BPB) raises significant concerns due to its potential to induce male reproductive toxicity. Despite its presence in maternal bodily fluids, the effects of BPB exposure on the reproductive system and its mechanisms in adult male offspring are poorly understood. By establishing a maternal BPB exposure model in mice, we found that the exposure reduced the relative weights of seminal vesicles and preputial glands, decreased the thickness of the seminiferous epithelium, enlarged the lumen area of seminiferous tubules, and lowered testosterone concentration and synthesis, as well as sperm count in 10-week-old male offspring. Bioinformatic analyses revealed that the differentially expressed genes were significantly associated with major histocompatibility complex I (MHC I)-mediated immunological processes, including immune system processes, antigen processing and presentation of exogenous peptide antigens via MHC class I, and interleukin-2 production. Importantly, molecular docking proposed a potential mechanistic model wherein BPB bound to estrogen receptor α (ERα) suppressed its testicular expression and triggered MHC class I gene overexpression, potentially promoting macrophage infiltration, CD4+/CD8+ T cell activation, and pro-inflammatory cytokine production. Our findings provide critical insights into the adverse effects of maternal BPB exposure on male reproductive development, suggesting that impairments in testicular morphology and spermatogenesis may be attributed to MHC I-mediated immunological responses and hormonal imbalances resulting from inhibited ERα signaling. These results underscore not only the toxicological risks associated with BPB but also potential therapeutic targets for mitigating male reproductive dysfunction. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

35 pages, 9564 KiB  
Review
Research Progress of the Coatings Fabricated onto Titanium and/or Titanium Alloy Surfaces in Biomaterials for Medical Applications for Anticorrosive Applications
by Qin Rao, Jinshuang Zhang, Yaqing Chen, Yujin Yang, Xu Chen, Donghao Liu, Ruilu Zhu, Ang Li, Yanping Lv and Shunli Zheng
Coatings 2025, 15(5), 599; https://doi.org/10.3390/coatings15050599 - 17 May 2025
Viewed by 624
Abstract
Titanium (Ti) and its alloys have attracted more interest, as they are widely employed as biomaterials due to their great biocompatibility, excellent strength ratio, and lightweight. However, corrosion occurs slowly due to an electrochemical reaction once the Ti material has been placed in [...] Read more.
Titanium (Ti) and its alloys have attracted more interest, as they are widely employed as biomaterials due to their great biocompatibility, excellent strength ratio, and lightweight. However, corrosion occurs slowly due to an electrochemical reaction once the Ti material has been placed in the human body, contributing to infection and failure of implants in medical applications. Thus, the corrosion phenomenon has caused great concern in the biomedical field. It is desirable to make the surface modification to provide better corrosion resistance. The fabrication techniques of the coatings fabricated onto Ti and/or Ti alloy surfaces have been reported, including sol–gel, annealing, plasma spraying, plasma immersion ion implantation, physical vapor deposition, chemical vapor deposition, anodization, and micro-arc oxidation. This review first describes the corrosion types, including localized corrosion (both pitting and crevice corrosion), galvanic corrosion, selective leaching, stress corrosion cracking (SCC), corrosion fatigue (CF), and fretting corrosion. In the second part, the effects of corrosion on the human body were discussed, and the primary cause for clinical failure and allergies has been identified as the excessive release of poisonous and dangerous metal ions (Co, Ni, and Ti) from corroded implants into bodily fluids. The inclusion and exclusion criteria during the selection of literature are described in the third section. In the last section, we emphasized the current research progress of Ti alloy (particularly Ti6Al4V alloy) coatings in biomaterials for medical applications involving dental, orthopedic, and cardiovascular implants for anticorrosive applications. However, there are also several problems to explore and address in future studies, such as the release of excessive metal ions, etc. This review will draw attention to both researchers and clinicians, which could help to increase the coatings fabricated onto Ti and/or Ti alloy surfaces for anticorrosive applications in biomaterials for medical applications. Full article
(This article belongs to the Special Issue Innovative Coatings for Corrosion Protection of Alloy Surfaces)
Show Figures

Figure 1

23 pages, 651 KiB  
Review
Advancing Leukemia Management Through Liquid Biopsy: Insights into Biomarkers and Clinical Utility
by Cíntia Nogueira Hollanda, Ana Cristina Moura Gualberto, Andréa Barretto Motoyama and Fabio Pittella-Silva
Cancers 2025, 17(9), 1438; https://doi.org/10.3390/cancers17091438 - 25 Apr 2025
Cited by 1 | Viewed by 1050
Abstract
Liquid biopsy is classically defined as the detection of biomarkers in bodily fluids. One of these biomarkers can be circulating cell-free DNA (cfDNA) released by healthy or cancer cells during apoptosis. These fragments can be quantified and molecularly characterized by techniques like digital [...] Read more.
Liquid biopsy is classically defined as the detection of biomarkers in bodily fluids. One of these biomarkers can be circulating cell-free DNA (cfDNA) released by healthy or cancer cells during apoptosis. These fragments can be quantified and molecularly characterized by techniques like digital droplet PCR (ddPCR) or next-generation sequencing (NGS). By identifying common genetic and epigenetic alterations associated with specific cancer types, cfDNA or circulating tumor DNA (ctDNA) can serve as robust biomarkers for monitoring tumor initiation and progression. Other biomarkers, such as circulating microRNAs (miRNAs), extracellular vesicles, or circulating tumor cells (CTCs) are also applied in this context. Liquid biopsy has gained attention as a versatile tool for cancer diagnostics, prognosis, therapeutic monitoring, and minimal residual disease (MRD) detection across various malignancies, including hematological cancers like myeloid and lymphoid leukemias. Herein, we present a comprehensive review of liquid biopsy usage in leukemia, with a specific focus on the clinical utility of ctDNA, miRNAs, and exosomes in monitoring treatment response, tracking clonal evolution, and detecting minimal residual disease. Our review emphasizes the translational implications of these tools for improving patient outcomes and outlines current challenges in their integration into clinical practice. Full article
(This article belongs to the Special Issue Recent Advances in Genetic Studies on Leukemia)
Show Figures

Figure 1

23 pages, 6254 KiB  
Article
Influence of Deposition Temperature on Microstructure and Properties of Tantalum Oxide Sputtered Coatings
by Maria P. Nikolova and Iliyan Tzvetkov
Materials 2025, 18(9), 1895; https://doi.org/10.3390/ma18091895 - 22 Apr 2025
Viewed by 628
Abstract
To increase the wear and corrosion resistance of (α + β) titanium-aluminium-vanadium (Ti6Al4V) alloy, ceramic tantalum oxide coatings were deposited by direct current (DC) magnetron sputtering at three different substrate temperatures—400, 450, and 500 °C. The crystallographic structure, surface morphology, chemical compositions, film [...] Read more.
To increase the wear and corrosion resistance of (α + β) titanium-aluminium-vanadium (Ti6Al4V) alloy, ceramic tantalum oxide coatings were deposited by direct current (DC) magnetron sputtering at three different substrate temperatures—400, 450, and 500 °C. The crystallographic structure, surface morphology, chemical compositions, film adhesion, and hardness of the coatings were described using XRD, SEM, EDS, scratch tests, and microhardness measurements. The samples’ ability to withstand corrosion was assessed using electrochemical studies. Results revealed that thin films have an amorphous or crystalline structure dependent on temperature. The film’s thicknesses varied between 560 and 600 nm. With the increase in deposition temperature, the hardness of the film rose. All oxide coatings were tightly adherent to the titanium alloy substrate, and critical force increased from about 8.6 up to 20 N when the temperature rose from 400 to 500 °C. During the polarisation investigations, after 1 h of immersion, a drop in current density (jcorr) verified an improvement in the corrosion resistance of the amorphous and well-crystalline coatings. A two-layer model of the surface film accurately describes the coated systems’ electrochemical behaviour. However, according to the EIS analysis, the well-crystalline film deteriorates greatly, whereas the amorphous film prevents penetration during the 7-day immersion test in SBF. The wettability tests demonstrated the hydrophilic nature of the coatings, and after seven days, the mineralisation of calcium phosphate proves the coatings become bioactive in simulated bodily fluid (SBF). Thus, we produced films of tantalum oxide, which, with the proper deposition parameters, may prove to be appropriate surfaces for titanium-based implant bio-applications. Full article
Show Figures

Figure 1

Back to TopTop