Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment
Abstract
1. Introduction
2. Proximal Tubule Involvement
2.1. Glucosuria
2.2. Aminoaciduria
2.3. Phosphaturia
2.4. Uricosuria
2.5. Citraturia
3. Non-Proximal Tubule Involvement
3.1. Kaliuresis
3.2. Natriuresis
3.3. Calciuria
3.4. Magnesuria
3.5. Urine Osmolality
3.6. Urine Anion GAP/Osmolal GAP
3.7. Urine pH
3.8. Urine Sodium to Potassium Ratio
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADPKD | Autosomal dominant polycystic kidney disease |
AKI | Acute kidney injury |
ATIN | Acute tubulointerstitial nephritis |
ATN | Acute tubular necrosis |
CD | Collecting duct |
CDT | Convoluted distal tubule |
CNT | Connecting tubule |
Cur | Clearance of uric acid |
CrCl | Creatinine clearance |
CKD | Chronic kidney disease |
CWS | Cerebral wasting syndrome |
DKD | Diabetic kidney disease |
eGFR | Estimated glomerular filtration rate |
ESKD | End stage kidney disease |
EurGF | Excretion of uric acid per volume of glomerular filtration rate |
FEK | Fractional excretion of potassium |
FEMg | Fractional excretion of magnesium |
FENa | Fractional excretion of sodium |
FEUA | Fractional excretion of uric acid |
FEP | Fractional excretion of phosphate |
FLur | Glomerular filtration load of urc acid |
FST | Furosemide stress test |
GFR | Glomerular filtration rate |
GLUT | Glucose transporter |
HBP | High blood pressure. |
HF | Heart failure |
HIV | Human immunodeficiency virus infection |
HRS | Hepatorenal syndrome |
LMW | Low to medium weight |
MDS | Magnesium depletion score |
NaCl | Sodium Chloride |
NAE | Net acid excretion |
NAGMA | Normal anion-GAP metabolic acidosis |
PAC | Plasma aldosterone concentration |
PLCT | Proximal light chain tubulopathy |
PRA | Plasma renin activity |
PTH | Parathyroid hormone |
RTA | Renal tubular acidosis |
SGLT | Sodium glucose cotransporter |
SIAD | Syndrome of inappropriate antidiuresis |
SLC | Solute carrier |
SMA | Subclinical metabolic acidosis |
SNGFR | Single nephron glomerular filtration rate |
SPT | Subclinical proximal tubulopathy |
T1D | Type 1 diabetes |
T2D | Type 2 diabetes |
TAL | Thick ascending limb |
TIF | Tubulointerstitial fibrosis |
TKV | Total kidney volume |
TmP/GFR | Tubular maximum phosphate reabsorption to glomerular filtration rate ratio |
TRP | Tubular reabsorption of phosphate |
UAG | Urine anion GAP |
uCa/uCr | Urine calcium to urine creatinine ratio |
uNa/uK | Urine sodium to urine potassium ratio |
UOG | Urine osmolal GAP |
Uosm | Urine osmolality |
URAT | Urate transporter |
UUCR | Uric acid to creatinine ratio |
References
- Beyenbach, K.W. Kidneys Sans Glomeruli. Am. J. Physiol. Ren. Physiol. 2004, 286, F811–F827. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.W. From Fish to Philosopher, 1st ed.; Little: Boston, MA, USA, 1953. [Google Scholar]
- Taggart, J.V. Tubular Transport Mechanisms. Am. J. Med. 1950, 9, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Fine, L.G.; Trizna, W.; Bourgoignie, J.J.; Bricker, N.S. Functional Profile of the Isolated Uremic Nephron. Role of Compensatory Hypertrophy in the Control of Fluid Reabsorption by the Proximal Straight Tubule. J. Clin. Investig. 1978, 61, 1508–1518. [Google Scholar] [CrossRef] [PubMed]
- Trizna, W.; Yanagawa, N.; Bar-Khayim, Y.; Houston, B.; Fine, L.G. Functional Profile of the Isolated Uremic Nephron. Evidence of Proximal Tubular “Memory” in Experimental Renal Disease. J. Clin. Investig. 1981, 68, 760–767. [Google Scholar] [CrossRef]
- Fine, L.G. Adaptation of Renal Tubule in Uremia. Kidney Int. 1982, 22, 546–549. [Google Scholar] [CrossRef]
- Fine, L.G.; Schlondorff, D.; Trizna, W.; Gilbert, R.M.; Bricker, N.S. Functional Profile of the Isolated Uremic Nephron. Impaired Water Permeability and Adenylate Cyclase Responsiveness of the Cortical Collecting Tubule to Vasopressin. J. Clin. Investig. 1978, 61, 1519–1527. [Google Scholar] [CrossRef]
- Bricker, N.S.; Morrin, P.A.; Kime, S.W., Jr. The Pathologic Physiology of Chronic Bright’s Disease. An Exposition of the “Intact Nephron Hypothesis”. J. Am. Soc. Nephrol. 1997, 8, 1470–1476. [Google Scholar] [CrossRef]
- Lowenstein, J.; Grantham, J.J. The Rebirth of Interest in Renal Tubular Function. Am. J. Physiol. Ren. Physiol. 2016, 310, F1351–F1355. [Google Scholar] [CrossRef]
- Masereeuw, R.; Mutsaers, H.A.; Toyohara, T.; Abe, T.; Jhawar, S.; Sweet, D.H.; Lowenstein, J. The Kidney and Uremic Toxin Removal: Glomerulus or Tubule? Semin. Nephrol. 2014, 34, 191–208. [Google Scholar] [CrossRef]
- Rector, F.C., Jr. Sodium, Bicarbonate, and Chloride Absorption by the Proximal Tubule. Am. J. Physiol. 1983, 244, F461–F471. [Google Scholar] [CrossRef]
- Butterfield, W.J.; Keen, H.; Whichelow, M.J. Renal Glucose Threshold Variations with Age. Br. Med. J. 1967, 4, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Widmaier, E.; Raff, H.; Strang, K.; Vander, A.J. Vander’s Human Physiology: The Mechanisms of Body Function, 13th ed.; McGrawHill: New York, NY, USA, 2014. [Google Scholar]
- Wright, E.M. Sglt2 Inhibitors: Physiology and Pharmacology. Kidney360 2021, 2, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- Cowie, M.R.; Fisher, M. Sglt2 Inhibitors: Mechanisms of Cardiovascular Benefit Beyond Glycaemic Control. Nat. Rev. Cardiol. 2020, 17, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhao, R.; Zhao, Y.; Tang, X.; Si, N.; Guo, X.; Yue, C.; Nie, M.; Chen, L. Genetic and Clinical Characterization of Familial Renal Glucosuria. Clin. Kidney J. 2024, 17, sfad265. [Google Scholar] [CrossRef]
- Tietavainen, J.; Mantula, P.; Outinen, T.; Huhtala, H.; Porsti, I.H.; Niemela, O.; Vaheri, A.; Makela, S.; Mustonen, J. Glucosuria Predicts the Severity of Puumala Hantavirus Infection. Kidney Int. Rep. 2019, 4, 1296–1303. [Google Scholar] [CrossRef]
- Stokes, M.B.; Valeri, A.M.; Herlitz, L.; Khan, A.M.; Siegel, D.S.; Markowitz, G.S.; D’Agati, V.D. Light Chain Proximal Tubulopathy: Clinical and Pathologic Characteristics in the Modern Treatment Era. J. Am. Soc. Nephrol. 2016, 27, 1555–1565. [Google Scholar] [CrossRef]
- Wang, X.; Yu, X.J.; Wang, S.X.; Zhou, F.D.; Zhao, M.H. Light-Chain Proximal Tubulopathy: A Retrospective Study from a Single Chinese Nephrology Referral Center. Ren. Fail. 2024, 46, 2283587. [Google Scholar] [CrossRef]
- Fogo, A.B.; Lusco, M.A.; Najafian, B.; Alpers, C.E. Ajkd Atlas of Renal Pathology: Light Chain Proximal Tubulopathy. Am. J. Kidney Dis. 2016, 67, e9–e10. [Google Scholar] [CrossRef]
- Kwok, S.; D’Agati, V.; Anis, K.; Jim, B. An Unusual Case of Nephrotic Syndrome and Glucosuria. Am. J. Kidney Dis. 2012, 59, 734–737. [Google Scholar] [CrossRef]
- Schwartz, B.A.; Kidd, J.M. Glycosuria and Acute Kidney Injury: A Rare Presentation of Acute Interstitial Nephritis. Kidney Med. 2020, 2, 801–803. [Google Scholar] [CrossRef]
- Lee, T.; Yang, W.S. Non-Diabetic Glycosuria as a Diagnostic Clue for Acute Tubulointerstitial Nephritis in Patients with Azotemia. Ren. Fail. 2020, 42, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Ormonde, C.; Laranjinha, I.; Gil, C.; Goncalves, M.; Gaspar, A.A. Glycosuria in Primary Glomerulopathies: Prevalence and Prognostic Significance. J. Bras. Nefrol. 2022, 44, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zuo, K.; Le, W.; Lu, M.; Liu, Z.; Xu, W. Non-Diabetic Urine Glucose in Idiopathic Membranous Nephropathy. Ren. Fail. 2022, 44, 1104–1111. [Google Scholar] [CrossRef]
- Fishman, B.; Shlomai, G.; Twig, G.; Derazne, E.; Tenenbaum, A.; Fisman, E.Z.; Leiba, A.; Grossman, E. Renal Glucosuria Is Associated with Lower Body Weight and Lower Rates of Elevated Systolic Blood Pressure: Results of a Nationwide Cross-Sectional Study of 2.5 Million Adolescents. Cardiovasc. Diabetol. 2019, 18, 124. [Google Scholar] [CrossRef]
- Kovacs, C.S.; Seshiah, V.; Swallow, R.; Jones, R.; Rattunde, H.; Woerle, H.J.; Broedl, U.C.; Empa-Reg Pio trial investigators. Empagliflozin Improves Glycaemic and Weight Control as Add-on Therapy to Pioglitazone or Pioglitazone Plus Metformin in Patients with Type 2 Diabetes: A 24-Week, Randomized, Placebo-Controlled Trial. Diabetes Obes. Metab. 2014, 16, 147–158. [Google Scholar] [CrossRef]
- Nauck, M.A.; Del Prato, S.; Meier, J.J.; Duran-Garcia, S.; Rohwedder, K.; Elze, M.; Parikh, S.J. Dapagliflozin Versus Glipizide as Add-on Therapy in Patients with Type 2 Diabetes Who Have Inadequate Glycemic Control with Metformin: A Randomized, 52-Week, Double-Blind, Active-Controlled Noninferiority Trial. Diabetes Care 2011, 34, 2015–2022. [Google Scholar] [CrossRef]
- Baker, W.L.; Smyth, L.R.; Riche, D.M.; Bourret, E.M.; Chamberlin, K.W.; White, W.B. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Blood Pressure: A Systematic Review and Meta-Analysis. J. Am. Soc. Hypertens. 2014, 8, 262–275.e9. [Google Scholar] [CrossRef]
- Sternlicht, H.; Bakris, G.L. Blood Pressure Lowering and Sodium-Glucose Co-Transporter 2 Inhibitors (Sglt2is): More Than Osmotic Diuresis. Curr. Hypertens. Rep. 2019, 21, 12. [Google Scholar] [CrossRef]
- Chisolm, J.J., Jr. The Clinical Significance of Aminoaciduria. J. Pediatr. 1959, 55, 303–314. [Google Scholar] [CrossRef]
- Dent, C.E.; Walshe, J.M. Amino-Acid Metabolism. Br. Med. Bull. 1954, 10, 247–250. [Google Scholar] [CrossRef]
- Verrey, F.; Singer, D.; Ramadan, T.; Vuille-dit-Bille, R.N.; Mariotta, L.; Camargo, S.M. Kidney Amino Acid Transport. Pflugers Arch. 2009, 458, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Verrey, F.; Ristic, Z.; Romeo, E.; Ramadan, T.; Makrides, V.; Dave, M.H.; Wagner, C.A.; Camargo, S.M. Novel Renal Amino Acid Transporters. Annu. Rev. Physiol. 2005, 67, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Romeo, E.; Dave, M.H.; Bacic, D.; Ristic, Z.; Camargo, S.M.; Loffing, J.; Wagner, C.A.; Verrey, F. Luminal Kidney and Intestine Slc6 Amino Acid Transporters of B0at-Cluster and Their Tissue Distribution in Mus Musculus. Am. J. Physiol. Ren. Physiol. 2006, 290, F376–F383. [Google Scholar] [CrossRef] [PubMed]
- Kravetz, Z.; Schmidt-Kastner, R. New Aspects for the Brain in Hartnup Disease Based on Mining of High-Resolution Cellular Mrna Expression Data for Slc6a19. IBRO Neurosci. Rep. 2023, 14, 393–397. [Google Scholar] [CrossRef]
- Kowalczuk, S.; Broer, A.; Munzinger, M.; Tietze, N.; Klingel, K.; Broer, S. Molecular Cloning of the Mouse Imino System: An Na+- and Cl−-Dependent Proline Transporter. Biochem. J. 2005, 386 Pt 3, 417–422. [Google Scholar] [CrossRef]
- Takanaga, H.; Mackenzie, B.; Suzuki, Y.; Hediger, M.A. Identification of Mammalian Proline Transporter Sit1 (Slc6a20) with Characteristics of Classical System Imino. J. Biol. Chem. 2005, 280, 8974–8984. [Google Scholar] [CrossRef]
- Danilczyk, U.; Sarao, R.; Remy, C.; Benabbas, C.; Stange, G.; Richter, A.; Arya, S.; Pospisilik, J.A.; Singer, D.; Camargo, S.M.; et al. Essential Role for Collectrin in Renal Amino Acid Transport. Nature 2006, 444, 1088–1091. [Google Scholar] [CrossRef]
- Schioth, H.B.; Roshanbin, S.; Hagglund, M.G.; Fredriksson, R. Evolutionary Origin of Amino Acid Transporter Families Slc32, Slc36 and Slc38 and Physiological, Pathological and Therapeutic Aspects. Mol. Asp. Med. 2013, 34, 571–585. [Google Scholar] [CrossRef]
- Shayakul, C.; Kanai, Y.; Lee, W.S.; Brown, D.; Rothstein, J.D.; Hediger, M.A. Localization of the High-Affinity Glutamate Transporter Eaac1 in Rat Kidney. Am. J. Physiol. 1997, 273, F1023–F1029. [Google Scholar] [CrossRef]
- Kanai, Y.; Clemencon, B.; Simonin, A.; Leuenberger, M.; Lochner, M.; Weisstanner, M.; Hediger, M.A. The Slc1 High-Affinity Glutamate and Neutral Amino Acid Transporter Family. Mol. Asp. Med. 2013, 34, 108–120. [Google Scholar] [CrossRef]
- McGivan, J.D.; Bungard, C.I. The Transport of Glutamine into Mammalian Cells. Front. Biosci. 2007, 12, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, N.A.; Moscarello, M.A.; Goldberg, D.M. Aminoaciduria Is an Earlier Index of Renal Tubular Damage Than Conventional Renal Disease Markers in the Gentamicin-Rat Model of Acute Renal Failure. Clin. Investig. Med. 1991, 14, 101–110. [Google Scholar]
- Carone, F.A.; Ganote, C.E. D-Serine Nephrotoxicity. The Nature of Proteinuria, Glucosuria, and Aminoaciduria in Acute Tubular Necrosis. Arch. Pathol. 1975, 99, 658–662. [Google Scholar] [PubMed]
- Albuquerque, A.L.B.; Borges, R.D.S.; Conegundes, A.F.; Santos, E.E.D.; Fu, F.M.M.; Araujo, C.T.; de Castro, P.A.S.V.; Simoes, E.S.A.C. Inherited Fanconi Syndrome. World J. Pediatr. 2023, 19, 619–634. [Google Scholar] [CrossRef]
- Recker, F.; Reutter, H.; Ludwig, M. Lowe Syndrome/Dent-2 Disease: A Comprehensive Review of Known and Novel Aspects. J. Pediatr. Genet. 2013, 2, 53–68. [Google Scholar] [CrossRef]
- Foreman, J.W. Fanconi Syndrome. Pediatr. Clin. N. Am. 2019, 66, 159–167. [Google Scholar] [CrossRef]
- Bingham, C.; Ellard, S.; Nicholls, A.J.; Pennock, C.A.; Allen, J.; James, A.J.; Satchell, S.C.; Salzmann, M.B.; Hattersley, A.T. The Generalized Aminoaciduria Seen in Patients with Hepatocyte Nuclear Factor-1alpha Mutations Is a Feature of All Patients with Diabetes and Is Associated with Glucosuria. Diabetes 2001, 50, 2047–2052. [Google Scholar] [CrossRef]
- Melena, I.; Piani, F.; Tommerdahl, K.L.; Severn, C.; Chung, L.T.; MacDonald, A.; Vinovskis, C.; Cherney, D.; Pyle, L.; Roncal-Jimenez, C.A.; et al. Aminoaciduria and Metabolic Dysregulation During Diabetic Ketoacidosis: Results from the Diabetic Kidney Alarm (Dka) Study. J. Diabetes Complicat. 2022, 36, 108203. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, C.; Zhang, Q.; Liu, Z. Metabolomic Profiling of Amino Acids Study Reveals a Distinct Diagnostic Model for Diabetic Kidney Disease. Amino Acids 2023, 55, 1563–1572. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite Profiles and the Risk of Developing Diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef]
- Pena, M.J.; Heerspink, H.J.L.; Hellemons, M.E.; Friedrich, T.; Dallmann, G.; Lajer, M.; Bakker, S.J.; Gansevoort, R.T.; Rossing, P.; de Zeeuw, D.; et al. Urine and Plasma Metabolites Predict the Development of Diabetic Nephropathy in Individuals with Type 2 Diabetes Mellitus. Diabet. Med. 2014, 31, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zhang, Z.; Lu, Y.; Feng, W.; Wu, H.; Fan, L.; Guan, B.; Dai, Y.; Tang, D.; Dong, X.; et al. Urine Metabolomics Reveals Biomarkers and the Underlying Pathogenesis of Diabetic Kidney Disease. Int. Urol. Nephrol. 2023, 55, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Vergara, A.; Wang, K.; Colombo, D.; Gheblawi, M.; Rasmuson, J.; Mandal, R.; Del Nonno, F.; Chiu, B.; Scholey, J.W.; Soler, M.J.; et al. Urinary Angiotensin-Converting Enzyme 2 and Metabolomics in COVID-19-Mediated Kidney Injury. Clin. Kidney J. 2023, 16, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Nisoli, E.; Cinti, S.; Valerio, A. COVID-19 and Hartnup Disease: An Affair of Intestinal Amino Acid Malabsorption. Eat. Weight. Disord. 2021, 26, 1647–1651. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding Sources of Dietary Phosphorus in the Treatment of Patients with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef]
- Uribarri, J. Phosphorus Additives in Food and Their Effect in Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1290–1292. [Google Scholar] [CrossRef]
- Saurette, M.; Alexander, R.T. Intestinal Phosphate Absorption: The Paracellular Pathway Predominates? Exp. Biol. Med. 2019, 244, 646–654. [Google Scholar] [CrossRef]
- Marks, J.; Debnam, E.S.; Unwin, R.J. Phosphate Homeostasis and the Renal-Gastrointestinal Axis. Am. J. Physiol. Ren. Physiol. 2010, 299, F285–F296. [Google Scholar] [CrossRef]
- Virkki, L.V.; Biber, J.; Murer, H.; Forster, I.C. Phosphate Transporters: A Tale of Two Solute Carrier Families. Am. J. Physiol. Ren. Physiol. 2007, 293, F643–F654. [Google Scholar] [CrossRef]
- Collins, J.F.; Ghishan, F.K. Molecular Cloning, Functional Expression, Tissue Distribution, and in Situ Hybridization of the Renal Sodium Phosphate (Na+/P(I)) Transporter in the Control and Hypophosphatemic Mouse. FASEB J. 1994, 8, 862–868. [Google Scholar] [CrossRef]
- Breusegem, S.Y.; Takahashi, H.; Giral-Arnal, H.; Wang, X.; Jiang, T.; Verlander, J.W.; Wilson, P.; Miyazaki-Anzai, S.; Sutherland, E.; Caldas, Y.; et al. Differential Regulation of the Renal Sodium-Phosphate Cotransporters Napi-Iia, Napi-Iic, and Pit-2 in Dietary Potassium Deficiency. Am. J. Physiol. Ren. Physiol. 2009, 297, F350–F361. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Plain, A.; Beggs, M.R.; Dimke, H.; Alexander, R.T. Effects of Phospho- and Calciotropic Hormones on Electrolyte Transport in the Proximal Tubule. F1000Research 2017, 6, 1797. [Google Scholar] [CrossRef] [PubMed]
- Ansermet, C.; Moor, M.B.; Centeno, G.; Auberson, M.; Hu, D.Z.; Baron, R.; Nikolaeva, S.; Haenzi, B.; Katanaeva, N.; Gautschi, I.; et al. Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron. J. Am. Soc. Nephrol. 2017, 28, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Emmens, J.E.; de Borst, M.H.; Boorsma, E.M.; Damman, K.; Navis, G.; van Veldhuisen, D.J.; Dickstein, K.; Anker, S.D.; Lang, C.C.; Filippatos, G.; et al. Assessment of Proximal Tubular Function by Tubular Maximum Phosphate Reabsorption Capacity in Heart Failure. Clin. J. Am. Soc. Nephrol. 2022, 17, 228–239. [Google Scholar] [CrossRef]
- Waheed, S.; Attia, D.; Estrella, M.M.; Zafar, Y.; Atta, M.G.; Lucas, G.M.; Fine, D.M. Proximal Tubular Dysfunction and Kidney Injury Associated with Tenofovir in Hiv Patients: A Case Series. Clin. Kidney J. 2015, 8, 420–425. [Google Scholar] [CrossRef]
- van Londen, M.; Aarts, B.M.; Sanders, J.S.; Hillebrands, J.L.; Bakker, S.J.L.; Navis, G.; de Borst, M.H. Tubular Maximum Phosphate Reabsorption Capacity in Living Kidney Donors Is Independently Associated with One-Year Recipient GFR. Am. J. Physiol. Ren. Physiol. 2018, 314, F196–F202. [Google Scholar] [CrossRef]
- Kawasaki, T.; Maeda, Y.; Matsuki, H.; Matsumoto, Y.; Akazawa, M.; Kuyama, T. Urinary Phosphorus Excretion Per Creatinine Clearance as a Prognostic Marker for Progression of Chronic Kidney Disease: A Retrospective Cohort Study. BMC Nephrol. 2015, 16, 116. [Google Scholar] [CrossRef]
- Mandal, A.K.; Mount, D.B. The Molecular Physiology of Uric Acid Homeostasis. Annu. Rev. Physiol. 2015, 77, 323–345. [Google Scholar] [CrossRef]
- Roch-Ramel, F.; Guisan, B. Renal Transport of Urate in Humans. News Physiol. Sci. 1999, 14, 80–84. [Google Scholar] [CrossRef]
- Bobulescu, I.A.; Moe, O.W. Renal Transport of Uric Acid: Evolving Concepts and Uncertainties. Adv. Chronic Kidney Dis. 2012, 19, 358–371. [Google Scholar] [CrossRef]
- Enomoto, A.; Kimura, H.; Chairoungdua, A.; Shigeta, Y.; Jutabha, P.; Cha, S.H.; Hosoyamada, M.; Takeda, M.; Sekine, T.; Igarashi, T.; et al. Molecular Identification of a Renal Urate Anion Exchanger That Regulates Blood Urate Levels. Nature 2002, 417, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Vitart, V.; Rudan, I.; Hayward, C.; Gray, N.K.; Floyd, J.; Palmer, C.N.; Knott, S.A.; Kolcic, I.; Polasek, O.; Graessler, J.; et al. Slc2a9 Is a Newly Identified Urate Transporter Influencing Serum Urate Concentration, Urate Excretion and Gout. Nat. Genet. 2008, 40, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Bach, M.H.; Simkin, P.A. Uricosuric Drugs: The Once and Future Therapy for Hyperuricemia? Curr. Opin. Rheumatol. 2014, 26, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.K.; Liu, S.; Gunic, E.; Miner, J.N. Discovery and Characterization of Verinurad, a Potent and Specific Inhibitor of Urat1 for the Treatment of Hyperuricemia and Gout. Sci. Rep. 2017, 7, 665. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stack, A.G.; Terkeltaub, R.; Jongs, N.; Inker, L.A.; Bjursell, M.; Maklad, N.; Perl, S.; Eklund, O.; Rikte, T.; et al. Combination Treatment with Verinurad and Allopurinol in Ckd: A Randomized Placebo and Active Controlled Trial. J. Am. Soc. Nephrol. 2024, 35, 594–606. [Google Scholar] [CrossRef]
- Diamond, H.S.; Paolino, J.S. Evidence for a Postsecretory Reabsorptive Site for Uric Acid in Man. J. Clin. Investig. 1973, 52, 1491–1499. [Google Scholar] [CrossRef]
- Roch-Ramel, F.; Diezi-Chomety, F.; De Rougemont, D.; Tellier, M.; Widmer, J.; Peters, G. Renal Excretion of Uric Acid in the Rat: A Micropuncture and Microperfusion Study. Am. J. Physiol. 1976, 230, 768–776. [Google Scholar] [CrossRef]
- Simmonds, H.A.; Hatfield, P.J.; Cameron, J.S.; Cadenhead, A. Uric Acid Excretion by the Pig Kidney. Am. J. Physiol. 1976, 230, 1654–1661. [Google Scholar] [CrossRef]
- Kosmadakis, G.; Viskaduraki, M.; Michail, S. The Validity of Fractional Excretion of Uric Acid in the Diagnosis of Acute Kidney Injury Due to Decreased Kidney Perfusion. Am. J. Kidney Dis. 2009, 54, 1186–1187. [Google Scholar] [CrossRef]
- Berger, A.A.; Mawson, T.L.; Dejam, A. Fractional Excretion of Urate for Diuresis Management in Heart Failure and Cardiorenal Syndrome. JACC Case Rep. 2021, 3, 1051–1054. [Google Scholar] [CrossRef]
- Choi, J.W.; Park, J.S.; Koo, T.Y.; Lee, C.H.; Kang, C.M.; Kim, G.H. Fractional Excretion of Uric Acid as a Predictor for Saline Responsiveness in Long-Term Kidney Transplant Patients. Kidney Blood Press. Res. 2012, 35, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Kalita, J.; Singh, R.K.; Misra, U.K. Cerebral Salt Wasting Is the Most Common Cause of Hyponatremia in Stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Lohani, S.; Devkota, U.P. Hyponatremia in Patients with Traumatic Brain Injury: Etiology, Incidence, and Severity Correlation. World Neurosurg. 2011, 76, 355–360. [Google Scholar] [CrossRef]
- Maesaka, J.K.; Imbriano, L.J.; Miyawaki, N. Application of Established Pathophysiologic Processes Brings Greater Clarity to Diagnosis and Treatment of Hyponatremia. World J. Nephrol. 2017, 6, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F. Hyponatremia in Patients with Central Nervous System Disease: Siadh Versus Csw. Trends Endocrinol. Metab. 2003, 14, 182–187. [Google Scholar] [CrossRef]
- Sterns, R.H.; Rondon-Berrios, H. Cerebral Salt Wasting Is a Real Cause of Hyponatremia: Con. Kidney360 2023, 4, e441–e444. [Google Scholar] [CrossRef]
- Rodriguez-Novoa, S.; Garcia-Samaniego, J.; Prieto, M.; Calleja, J.L.; Pascasio, J.M.; Blanco, M.D.; Crespo, J.; Buti, M.; Vidal, M.L.B.; Tapiador, J.A.R.; et al. Altered Underlying Renal Tubular Function in Patients with Chronic Hepatitis B Receiving Nucleos(T)Ide Analogs in a Real-World Setting: The Mente Study. J. Clin. Gastroenterol. 2016, 50, 779–789. [Google Scholar] [CrossRef]
- Paul, B.J.; Anoopkumar, K.; Krishnan, V. Asymptomatic Hyperuricemia: Is It Time to Intervene? Clin. Rheumatol. 2017, 36, 2637–2644. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. Kdigo 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Asahina, Y.; Sakaguchi, Y.; Oka, T.; Hattori, K.; Kawaoka, T.; Doi, Y.; Yamamoto, R.; Matsui, I.; Mizui, M.; Kaimori, J.Y.; et al. Association between Urinary Uric Acid Excretion and Kidney Outcome in Patients with Ckd. Sci. Rep. 2024, 14, 5119. [Google Scholar] [CrossRef]
- Guan, H.; Zheng, Y.; Zhou, X.; Xu, Y.; Fu, C.; Xiao, J.; Ye, Z. Efficacy of Different Urinary Uric Acid Indicators in Patients with Chronic Kidney Disease. BMC Nephrol. 2020, 21, 290. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wei, L.; Chen, H.; Zhang, Z.; Yu, Q.; Ji, Z.; Jiang, L. Influence of Urate-Lowering Therapies on Renal Handling of Uric Acid. Clin. Rheumatol. 2016, 35, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, S.; Zhao, W.; Chen, M.; Ke, J.; Zhang, Z.; Lu, J.; Li, L. Urine Uric Acid Excretion Levels Are Positively Associated with Obesity and Abdominal Obesity in Type 2 Diabetes Patients without Chronic Kidney Disease. Diabetes Metab. Syndr. Obes. 2021, 14, 4691–4703. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Li, X.; Zhang, X.; Li, S.; Liu, Y.; Zhang, M.; Cui, J. Fractional Excretion of Urate Is Positively Associated with Type 2 Diabetes in Hua Patients: A Cross-Sectional Study. Diabetes Metab. Syndr. Obes. 2024, 17, 1701–1713. [Google Scholar] [CrossRef]
- Prot-Bertoye, C.; Vallet, M.; Houillier, P. Urinary Citrate: Helpful to Predict Acid Retention in Ckd Patients? Kidney Int. 2019, 95, 1020–1022. [Google Scholar] [CrossRef]
- Fegan, J.; Khan, R.; Poindexter, J.; Pak, C.Y. Gastrointestinal Citrate Absorption in Nephrolithiasis. J. Urol. 1992, 147, 1212–1214. [Google Scholar] [CrossRef]
- Granchi, D.; Baldini, N.; Ulivieri, F.M.; Caudarella, R. Role of Citrate in Pathophysiology and Medical Management of Bone Diseases. Nutrients 2019, 11, 2576. [Google Scholar] [CrossRef]
- Wesson, D.E.; Simoni, J. Increased Tissue Acid Mediates a Progressive Decline in the Glomerular Filtration Rate of Animals with Reduced Nephron Mass. Kidney Int. 2009, 75, 929–935. [Google Scholar] [CrossRef]
- Wesson, D.E.; Simoni, J. Acid Retention During Kidney Failure Induces Endothelin and Aldosterone Production Which Lead to Progressive Gfr Decline, a Situation Ameliorated by Alkali Diet. Kidney Int. 2010, 78, 1128–1135. [Google Scholar] [CrossRef]
- Simpson, D.P. Citrate Excretion: A Window on Renal Metabolism. Am. J. Physiol. 1983, 244, F223–F234. [Google Scholar] [CrossRef]
- Goraya, N.; Simoni, J.; Sager, L.N.; Madias, N.E.; Wesson, D.E. Urine Citrate Excretion as a Marker of Acid Retention in Patients with Chronic Kidney Disease without Overt Metabolic Acidosis. Kidney Int. 2019, 95, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Gianella, F.G.; Prado, V.E.; Poindexter, J.R.; Adams-Huet, B.; Li, X.; Miller, R.T.; Sakhaee, K.; Maalouf, N.M.; Moe, O.W. Spot Urinary Citrate-to-Creatinine Ratio Is a Marker for Acid-Base Status in Chronic Kidney Disease. Kidney Int. 2021, 99, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F. Regulation of Potassium Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.; Mente, A.; Rangarajan, S.; McQueen, M.J.; Wang, X.; Liu, L.; Yan, H.; Lee, S.F.; Mony, P.; Devanath, A.; et al. Urinary Sodium and Potassium Excretion, Mortality, Cardiovascular Events. N. Engl. J. Med. 2014, 371, 612–623. [Google Scholar] [CrossRef]
- Mente, A.; Irvine, E.J.; Honey, R.J.; Logan, A.G. Urinary Potassium Is a Clinically Useful Test to Detect a Poor Quality Diet. J. Nutr. 2009, 139, 743–749. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. Dash Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Rabb, H.; Wang, Z.; Postler, G.; Soleimani, M. Possible Molecular Basis for Changes in Potassium Handling in Acute Renal Failure. Am. J. Kidney Dis. 2000, 35, 871–877. [Google Scholar] [CrossRef]
- Gimelreich, D.; Popovtzer, M.M.; Wald, H.; Pizov, G.; Berlatzky, Y.; Rubinger, D. Regulation of Romk and Channel-Inducing Factor (Chif) in Acute Renal Failure Due to Ischemic Reperfusion Injury. Kidney Int. 2001, 59, 1812–1820. [Google Scholar] [CrossRef]
- Mc Greevy, C.; Horan, J.; Jones, D.; Biswas, K.; O’Meara, Y.M.; Mulkerrin, E.C. A Study of Tubular Potassium Secretory Capacity in Older Patients with Hyperkalaemia. J. Nutr. Health Aging 2008, 12, 152–155. [Google Scholar] [CrossRef]
- Li, J.; Ma, H.; Lei, Y.; Wan, Q. Diagnostic Value of Parameters from a Spot Urine Sample for Renal Potassium Loss in Hypokalemia. Clin. Chim. Acta 2020, 511, 221–226. [Google Scholar] [CrossRef]
- Elisaf, M.; Siamopoulos, K.C. Fractional Excretion of Potassium in Normal Subjects and in Patients with Hypokalaemia. Postgrad. Med. J. 1995, 71, 211–212. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, B.; Yang, Y.; Li, X. Diagnostic Value of the Fractional Excretion of Urine Potassium for Primary Aldosteronism. Ann. Transl. Med. 2023, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Caravaca-Fontan, F.; Valladares, J.; Diaz-Campillejo, R.; Barroso, S.; Luna, E.; Caravaca, F. Renal Potassium Handling in Chronic Kidney Disease: Differences between Patients with or Wihtout Hyperkalemia. Nefrologia (Engl. Ed.) 2020, 40, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Van Beusecum, J.P.; Rianto, F.; Teakell, J.; Kon, V.; Sparks, M.A.; Hoorn, E.J.; Kirabo, A.; Ramkumar, N. Novel Concepts in Nephron Sodium Transport: A Physiological and Clinical Perspective. Adv. Kidney Dis. Health 2023, 30, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Gamba, G. From Fish Physiology to Human Disease: The Discovery of the Ncc, Nkcc2, and the Cation-Coupled Chloride Cotransporters. Kidney360 2024, 5, 133–141. [Google Scholar] [CrossRef]
- Kazory, A.; Ronco, C.; Koratala, A. Cardiorenal Interactions in Acute Heart Failure: Renal Proximal Tubules in the Spotlight. Cardiorenal Med. 2024, 14, 58–66. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, X.; Shi, S.; Xu, X.; Lv, J.; Zhang, B.; Wu, H.; Song, Q. Sglt2 Inhibitors in the Treatment of Type 2 Cardiorenal Syndrome: Focus on Renal Tubules. Front. Nephrol. 2022, 2, 1109321. [Google Scholar] [CrossRef]
- Tan, M.; Wang, C.; Song, J.; He, F.J.; MacGregor, G.A. Spot Urinary Sodium to Monitor Relative Changes in Population Salt Intake During the Uk Salt Reduction Programme. J. Hypertens. 2022, 40, 1406–1410. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Langenberg, C.; Bellomo, R. Urinary Biochemistry and Microscopy in Septic Acute Renal Failure: A Systematic Review. Am. J. Kidney Dis. 2006, 48, 695–705. [Google Scholar] [CrossRef]
- Maciel, A.T.; Vitorio, D. Urine Biochemistry Assessment in Critically Ill Patients: Controversies and Future Perspectives. J. Clin. Monit. Comput. 2017, 31, 539–546. [Google Scholar] [CrossRef]
- Prowle, J.; Bagshaw, S.M.; Bellomo, R. Renal Blood Flow, Fractional Excretion of Sodium and Acute Kidney Injury: Time for a New Paradigm? Curr. Opin. Crit. Care 2012, 18, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Rateke, E.C.M.; Matiollo, C.; de Andrade Moura, E.Q.; Andrigueti, M.; Maccali, C.; Fonseca, J.S.; Canova, S.M.F.; Narciso-Schiavon, J.L.; Schiavon, L.L. Low Sodium to Potassium Ratio in Spot Urine Sample Is Associated with Progression to Acute Kidney Injury and Mortality in Hospitalized Patients with Cirrhosis. Dig. Liver Dis. 2021, 53, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Gowda, Y.H.S.; Jagtap, N.; Karyampudi, A.; Rao, N.P.; Deepika, G.; Sharma, M.; Gupta, R.; Tandan, M.; Ramchandani, M.; John, P.; et al. Fractional Excretion of Sodium and Urea in Differentiating Acute Kidney Injury Phenotypes in Decompensated Cirrhosis. J. Clin. Exp. Hepatol. 2022, 12, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Dewitte, A.; Biais, M.; Petit, L.; Cochard, J.F.; Hilbert, G.; Combe, C.; Sztark, F. Fractional Excretion of Urea as a Diagnostic Index in Acute Kidney Injury in Intensive Care Patients. J. Crit. Care 2012, 27, 505–510. [Google Scholar] [CrossRef]
- Pepin, M.N.; Bouchard, J.; Legault, L.; Ethier, J. Diagnostic Performance of Fractional Excretion of Urea and Fractional Excretion of Sodium in the Evaluations of Patients with Acute Kidney Injury with or without Diuretic Treatment. Am. J. Kidney Dis. 2007, 50, 566–573. [Google Scholar] [CrossRef]
- Abdelhafez, M.O.; Alhroob, A.A.; Abu Hawilla, M.O.; Rjoob, A.A.; Abualia, N.M.; Gorman, E.F.; Hamadah, A.M.; Gharaibeh, K.A. Utility of Fractional Excretion of Urea in Acute Kidney Injury with Comparison to Fractional Excretion of Sodium: A Systematic Review and Meta-Analysis. Am. J. Med. Sci. 2024, 368, 224–234. [Google Scholar] [CrossRef]
- Coca, A.; Aller, C.; Sanchez, J.R.; Valencia, A.L.; Bustamante-Munguira, E.; Bustamante-Munguira, J. Role of the Furosemide Stress Test in Renal Injury Prognosis. Int. J. Mol. Sci. 2020, 21, 3086. [Google Scholar] [CrossRef]
- McMahon, B.A.; Chawla, L.S. The Furosemide Stress Test: Current Use and Future Potential. Ren. Fail. 2021, 43, 830–839. [Google Scholar] [CrossRef]
- Chawla, L.S.; Davison, D.L.; Brasha-Mitchell, E.; Koyner, J.L.; Arthur, J.M.; Shaw, A.D.; Tumlin, J.A.; Trevino, S.A.; Kimmel, P.L.; Seneff, M.G. Development and Standardization of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury. Crit. Care 2013, 17, R207. [Google Scholar] [CrossRef]
- Rivero, J.; Rodriguez, F.; Soto, V.; Macedo, E.; Chawla, L.S.; Mehta, R.L.; Vaingankar, S.; Garimella, P.S.; Garza, C.; Madero, M. Furosemide Stress Test and Interstitial Fibrosis in Kidney Biopsies in Chronic Kidney Disease. BMC Nephrol. 2020, 21, 87. [Google Scholar] [CrossRef]
- Kosiorek, A.; Biegus, J.; Rozentryt, P.; Hurkacz, M.; Zymlinski, R. Cardiorenal Syndrome: Decongestion in Heart Failure across Wide Spectrum of Kidney Pathophysiology. Adv. Clin. Exp. Med. 2022, 31, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Zhukouskaya, V.V.; Bardet, C. Editorial: Calcium: An Overview from Physiology to Pathological Mineralization. Front. Endocrinol. 2022, 13, 932019. [Google Scholar] [CrossRef] [PubMed]
- Matikainen, N.; Pekkarinen, T.; Ryhanen, E.M.; Schalin-Jantti, C. Physiology of Calcium Homeostasis: An Overview. Endocrinol. Metab. Clin. N. Am. 2021, 50, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Moor, M.B.; Bonny, O. Ways of Calcium Reabsorption in the Kidney. Am. J. Physiol. Ren. Physiol. 2016, 310, F1337–F1350. [Google Scholar] [CrossRef]
- Hanna, R.M.; Ahdoot, R.S.; Kalantar-Zadeh, K.; Ghobry, L.; Kurtz, I. Calcium Transport in the Kidney and Disease Processes. Front. Endocrinol. 2021, 12, 762130. [Google Scholar] [CrossRef]
- Suki, W.N. Calcium Transport in the Nephron. Am. J. Physiol. 1979, 237, F1–F6. [Google Scholar] [CrossRef]
- Hodgkinson, A.; Pyrah, L.N. The Urinary Excretion of Calcium and Inorganic Phosphate in 344 Patients with Calcium Stone of Renal Origin. Br. J. Surg. 1958, 46, 10–18. [Google Scholar] [CrossRef]
- Smith, L.M.; Gallagher, J.C. Reference Range for 24-H Urine Calcium, Calcium/Creatinine Ratio, and Correlations with Calcium Absorption and Serum Vitamin D Metabolites in Normal Women. Osteoporos. Int. 2021, 32, 539–547. [Google Scholar] [CrossRef]
- Laroche, M.; Nigon, D.; Gennero, I.; Lassoued, S.; Pouilles, J.M.; Tremolieres, F.; Vallet, M.; Tack, I. 24 Hours Calciuria: Normal Values, Regulations: About a Cohort of 317 Control Subjects. Ann. Biol. Clin. 2016, 74, 465–471. [Google Scholar] [CrossRef]
- Cameli, P.; Caffarelli, C.; Refini, R.M.; Bergantini, L.; d’Alessandro, M.; Armati, M.; Pitinca, M.D.T.; Sestini, P.; Gonnelli, S.; Bargagli, E. Hypercalciuria in Sarcoidosis: A Specific Biomarker with Clinical Utility. Front. Med. 2020, 7, 568020. [Google Scholar] [CrossRef]
- Wu, X.; Jin, T.; Wang, Z.; Ye, T.; Kong, Q.; Nordberg, G. Urinary Calcium as a Biomarker of Renal Dysfunction in a General Population Exposed to Cadmium. J. Occup. Environ. Med. 2001, 43, 898–904. [Google Scholar] [CrossRef]
- Bech, A.P.; Wetzels, J.F.; Bongers, E.M.; Nijenhuis, T. Thiazide Responsiveness Testing in Patients with Renal Magnesium Wasting and Correlation with Genetic Analysis: A Diagnostic Test Study. Am. J. Kidney Dis. 2016, 68, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, A.; Bockenhauer, D.; Bolignano, D.; Calo, L.A.; Cosyns, E.; Devuyst, O.; Ellison, D.H.; Frankl, F.E.K.; Knoers, N.V.; Konrad, M.; et al. Gitelman Syndrome: Consensus and Guidance from a Kidney Disease: Improving Global Outcomes (Kdigo) Controversies Conference. Kidney Int. 2017, 91, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Hagras, A.M.; Abdelazim, I.A.; Elhamamy, N. The Accuracy of the Calcium-Creatinine Ratio in a Spot Urine Sample for Predicting Preeclampsia. Prz. Menopauzalny 2022, 21, 191–196. [Google Scholar] [CrossRef] [PubMed]
- David, A.; Padmaja, P. Calcium-to-Creatinine Ratio in a Spot Sample of Urine, for Early Prediction of Hypertensive Disorders of Pregnancy: A Prospective Study. J. Obstet. Gynaecol. India 2016, 66 (Suppl. S1), 94–97. [Google Scholar] [CrossRef]
- Alexander, R.T.; Fuster, D.G.; Dimke, H. Mechanisms Underlying Calcium Nephrolithiasis. Annu. Rev. Physiol. 2022, 84, 559–583. [Google Scholar] [CrossRef]
- Borghi, L.; Meschi, T.; Amato, F.; Briganti, A.; Novarini, A.; Giannini, A. Urinary Volume, Water and Recurrences in Idiopathic Calcium Nephrolithiasis: A 5-Year Randomized Prospective Study. J. Urol. 1996, 155, 839–843. [Google Scholar] [CrossRef]
- Coe, F.L.; Worcester, E.M.; Evan, A.P. Idiopathic Hypercalciuria and Formation of Calcium Renal Stones. Nat. Rev. Nephrol. 2016, 12, 519–533. [Google Scholar] [CrossRef]
- Shastri, S.; Patel, J.; Sambandam, K.K.; Lederer, E.D. Kidney Stone Pathophysiology, Evaluation and Management: Core Curriculum 2023. Am. J. Kidney Dis. 2023, 82, 617–634. [Google Scholar] [CrossRef]
- Arrabal-Polo, M.A.; Arrabal-Martin, M.; Garrido-Gomez, J. Calcium Renal Lithiasis: Metabolic Diagnosis and Medical Treatment. Sao Paulo Med. J. 2013, 131, 46–53. [Google Scholar] [CrossRef]
- Li, D.F.; Gao, Y.L.; Liu, H.C.; Huang, X.C.; Zhu, R.F.; Zhu, C.T. Use of Thiazide Diuretics for the Prevention of Recurrent Kidney Calculi: A Systematic Review and Meta-Analysis. J. Transl. Med. 2020, 18, 106. [Google Scholar] [CrossRef] [PubMed]
- Dhayat, N.A.; Bonny, O.; Roth, B.; Christe, A.; Ritter, A.; Mohebbi, N.; Faller, N.; Pellegrini, L.; Bedino, G.; Venzin, R.M.; et al. Hydrochlorothiazide and Prevention of Kidney-Stone Recurrence. N. Engl. J. Med. 2023, 388, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Adomako, E.A.; Yu, A.S.L. Magnesium Disorders: Core Curriculum 2024. Am. J. Kidney Dis. 2024, 83, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M.; de Baaij, J.H.F.; Hoenderop, J.G.J. Magnesium Disorders. N. Engl. J. Med. 2024, 390, 1998–2009. [Google Scholar] [CrossRef]
- de Baaij, J.H.; Hoenderop, J.G.; Bindels, R.J. Magnesium in Man: Implications for Health and Disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Hahn, A. Intestinal Absorption and Factors Influencing Bioavailability of Magnesium—An Update. Curr. Nutr. Food Sci. 2017, 13, 260–278. [Google Scholar] [CrossRef]
- Le Grimellec, C. Micropuncture Study Along the Proximal Convoluted Tubule. Electrolyte Reabsorption in First Convolutions. Pflugers Arch. 1975, 354, 133–150. [Google Scholar] [CrossRef]
- de Baaij, J.H.F. Magnesium Reabsorption in the Kidney. Am. J. Physiol. Ren. Physiol. 2023, 324, F227–F44. [Google Scholar] [CrossRef]
- Toto, R.D.; Goldenberg, R.; Chertow, G.M.; Cain, V.; Stefansson, B.V.; Sjostrom, C.D.; Sartipy, P. Correction of Hypomagnesemia by Dapagliflozin in Patients with Type 2 Diabetes: A Post Hoc Analysis of 10 Randomized, Placebo-Controlled Trials. J. Diabetes Complicat. 2019, 33, 107402. [Google Scholar] [CrossRef]
- Zhang, J.; Huan, Y.; Leibensperger, M.; Seo, B.; Song, Y. Comparative Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Serum Electrolyte Levels in Patients with Type 2 Diabetes: A Pairwise and Network Meta-Analysis of Randomized Controlled Trials. Kidney360 2022, 3, 477–487. [Google Scholar] [CrossRef]
- Ellison, D.H.; Maeoka, Y.; McCormick, J.A. Molecular Mechanisms of Renal Magnesium Reabsorption. J. Am. Soc. Nephrol. 2021, 32, 2125–2136. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.; Almoznino-Sarafian, D.; Zaidenstein, R.; Alon, I.; Gorelik, O.; Shteinshnaider, M.; Chachashvily, S.; Averbukh, Z.; Golik, A.; Chen-Levy, Z.; et al. Serum Magnesium Aberrations in Furosemide (Frusemide) Treated Patients with Congestive Heart Failure: Pathophysiological Correlates and Prognostic Evaluation. Heart 2003, 89, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Elisaf, M.; Panteli, K.; Theodorou, J.; Siamopoulos, K.C. Fractional Excretion of Magnesium in Normal Subjects and in Patients with Hypomagnesemia. Magnes. Res. 1997, 10, 315–320. [Google Scholar] [PubMed]
- Futrakul, P.; Yenrudi, S.; Futrakul, N.; Sensirivatana, R.; Kingwatanakul, P.; Jungthirapanich, J.; Cherdkiadtikul, T.; Laohapaibul, A.; Watana, D.; Singkhwa, V.; et al. Tubular Function and Tubulointerstitial Disease. Am. J. Kidney Dis. 1999, 33, 886–891. [Google Scholar] [CrossRef]
- Gheissari, A.; Andalib, A.; Labibzadeh, N.; Modarresi, M.; Azhir, A.; Merrikhi, A. Fractional Excretion of Magnesium (Femg), a Marker for Tubular Dysfunction in Children with Clinically Recovered Ischemic Acute Tubular Necrosis. Saudi J. Kidney Dis. Transpl. 2011, 22, 476–481. [Google Scholar]
- Deekajorndech, T. A Biomarker for Detecting Early Tubulointerstitial Disease and Ischemia in Glomerulonephropathy. Ren. Fail. 2007, 29, 1013–1017. [Google Scholar] [CrossRef]
- Futrakul, N.; Futrakul, P. Biomarker for Early Renal Microvascular and Diabetic Kidney Diseases. Ren. Fail. 2017, 39, 505–511. [Google Scholar] [CrossRef]
- Gommers, L.M.M.; Ederveen, T.H.A.; van der Wijst, J.; Overmars-Bos, C.; Kortman, G.A.M.; Boekhorst, J.; Bindels, R.J.M.; de Baaij, J.H.F.; Hoenderop, J.G.J. Low Gut Microbiota Diversity and Dietary Magnesium Intake Are Associated with the Development of Ppi-Induced Hypomagnesemia. FASEB J. 2019, 33, 11235–11246. [Google Scholar] [CrossRef]
- Bosman, W.; Hoenderop, J.G.J.; de Baaij, J.H.F. Genetic and Drug-Induced Hypomagnesemia: Different Cause, Same Mechanism. Proc. Nutr. Soc. 2021, 80, 327–338. [Google Scholar] [CrossRef]
- Gratreak, B.D.K.; Swanson, E.A.; Lazelle, R.A.; Jelen, S.K.; Hoenderop, J.; Bindels, R.J.; Yang, C.L.; Ellison, D.H. Tacrolimus-Induced Hypomagnesemia and Hypercalciuria Requires Fkbp12 Suggesting a Role for Calcineurin. Physiol. Rep. 2020, 8, e14316. [Google Scholar] [CrossRef]
- Upala, S.; Jaruvongvanich, V.; Wijarnpreecha, K.; Sanguankeo, A. Hypomagnesemia and Mortality in Patients Admitted to Intensive Care Unit: A Systematic Review and Meta-Analysis. QJM 2016, 109, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhang, C.; Duan, Q.; Shao, Y.; Zhou, J. Association of Magnesium Depletion Score with Cardiovascular Disease and Its Association with Longitudinal Mortality in Patients with Cardiovascular Disease. J. Am. Heart Assoc. 2023, 12, e030077. [Google Scholar] [CrossRef] [PubMed]
- Dantzler, W.H.; Layton, A.T.; Layton, H.E.; Pannabecker, T.L. Urine-Concentrating Mechanism in the Inner Medulla: Function of the Thin Limbs of the Loops of Henle. Clin. J. Am. Soc. Nephrol. 2014, 9, 1781–1789. [Google Scholar] [CrossRef] [PubMed]
- Pannabecker, T.L.; Dantzler, W.H.; Layton, H.E.; Layton, A.T. Role of Three-Dimensional Architecture in the Urine Concentrating Mechanism of the Rat Renal Inner Medulla. Am. J. Physiol. Ren. Physiol. 2008, 295, F1271–F1285. [Google Scholar] [CrossRef]
- Stephenson, J.L. Models of the Urinary Concentrating Mechanism. Kidney Int. 1987, 31, 648–661. [Google Scholar] [CrossRef]
- Sands, J.M.; Layton, H.E. The Physiology of Urinary Concentration: An Update. Semin. Nephrol. 2009, 29, 178–195. [Google Scholar] [CrossRef]
- Pallone, T.L.; Turner, M.R.; Edwards, A.; Jamison, R.L. Countercurrent Exchange in the Renal Medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R1153–R1175. [Google Scholar] [CrossRef]
- Thomas, S.R. Inner Medullary Lactate Production and Accumulation: A Vasa Recta Model. Am. J. Physiol. Ren. Physiol. 2000, 279, F468–F481. [Google Scholar] [CrossRef]
- Schmidt-Nielsen, B. August Krogh Lecture. The Renal Concentrating Mechanism in Insects and Mammals: A New Hypothesis Involving Hydrostatic Pressures. Am. J. Physiol. 1995, 268 Pt 2, R1087–R1100. [Google Scholar] [CrossRef]
- Tabibzadeh, N.; Wagner, S.; Metzger, M.; Flamant, M.; Houillier, P.; Boffa, J.J.; Vrtovsnik, F.; Thervet, E.; Stengel, B.; Haymann, J.P.; et al. Fasting Urinary Osmolality, Ckd Progression, and Mortality: A Prospective Observational Study. Am. J. Kidney Dis. 2019, 73, 596–604. [Google Scholar] [CrossRef]
- Hebert, L.A.; Greene, T.; Levey, A.; Falkenhain, M.E.; Klahr, S. High Urine Volume and Low Urine Osmolality Are Risk Factors for Faster Progression of Renal Disease. Am. J. Kidney Dis. 2003, 41, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Akihisa, T.; Kataoka, H.; Makabe, S.; Manabe, S.; Yoshida, R.; Ushio, Y.; Sato, M.; Yajima, A.; Hanafusa, N.; Tsuchiya, K.; et al. Immediate Drop of Urine Osmolality Upon Tolvaptan Initiation Predicts Impact on Renal Prognosis in Patients with Adpkd. Nephrol. Dial. Transplant. 2024, 39, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Guerrero, G.; Muller-Ortiz, H.; Pedreros-Rosales, C. Polyuria in Adults. A Diagnostic Approach Based on Pathophysiology. Rev. Clin. Esp. 2022, 222, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Inase, N.; Ozawa, K.; Sasaki, S.; Marumo, F. Is the Urine Anion Gap a Reliable Index of Urine Ammonium Excretion in Most Situations? Nephron 1990, 54, 180–181, discussion 182. [Google Scholar] [CrossRef]
- Batlle, D.C.; Hizon, M.; Cohen, E.; Gutterman, C.; Gupta, R. The Use of the Urinary Anion Gap in the Diagnosis of Hyperchloremic Metabolic Acidosis. N. Engl. J. Med. 1988, 318, 594–599. [Google Scholar] [CrossRef]
- Oh, M.; Carroll, H.J. Value and Determinants of Urine Anion Gap. Nephron 2002, 90, 252–255. [Google Scholar] [CrossRef]
- Batlle, D.; Chin-Theodorou, J.; Tucker, B.M. Metabolic Acidosis or Respiratory Alkalosis? Evaluation of a Low Plasma Bicarbonate Using the Urine Anion Gap. Am. J. Kidney Dis. 2017, 70, 440–444. [Google Scholar] [CrossRef]
- Halperin, M.L.; Vasuvattakul, S.; Bayoumi, A. A Modified Classification of Metabolic Acidosis: A Pathophysiologic Approach. Nephron 1992, 60, 129–133. [Google Scholar] [CrossRef]
- Carlisle, E.J.; Donnelly, S.M.; Vasuvattakul, S.; Kamel, K.S.; Tobe, S.; Halperin, M.L. Glue-Sniffing and Distal Renal Tubular Acidosis: Sticking to the Facts. J. Am. Soc. Nephrol. 1991, 1, 1019–1027. [Google Scholar] [CrossRef]
- Kim, G.H.; Han, J.S.; Kim, Y.S.; Joo, K.W.; Kim, S.; Lee, J.S. Evaluation of Urine Acidification by Urine Anion Gap and Urine Osmolal Gap in Chronic Metabolic Acidosis. Am. J. Kidney Dis. 1996, 27, 42–47. [Google Scholar] [CrossRef]
- Dyck, R.F.; Asthana, S.; Kalra, J.; West, M.L.; Massey, K.L. A Modification of the Urine Osmolal Gap: An Improved Method for Estimating Urine Ammonium. Am. J. Nephrol. 1990, 10, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Meregalli, P.; Luthy, C.; Oetliker, O.H.; Bianchetti, M.G. Modified Urine Osmolal Gap: An Accurate Method for Estimating the Urinary Ammonium Concentration? Nephron 1995, 69, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.A.; Silva, P.H.I.; Bourgeois, S. Molecular Pathophysiology of Acid-Base Disorders. Semin. Nephrol. 2019, 39, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Hamm, L.L.; Nakhoul, N.; Hering-Smith, S. Acid-Base Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 2232–2242. [Google Scholar] [CrossRef]
- Kurtz, I. Molecular Mechanisms and Regulation of Urinary Acidification. Compr. Physiol. 2014, 4, 1737–1774. [Google Scholar] [CrossRef]
- Richardson, R.M.; Halperin, M.L. The Urine Ph: A Potentially Misleading Diagnostic Test in Patients with Hyperchloremic Metabolic Acidosis. Am. J. Kidney Dis. 1987, 10, 140–143. [Google Scholar] [CrossRef]
- Diaz-Anadon, L.; Cardo, L.; Santos, F.; Gil-Pena, H. Evaluation of Urinary Acidification in Children: Clinical Utility. Front. Pediatr. 2022, 10, 1051481. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Soriano, J. Renal Tubular Acidosis: The Clinical Entity. J. Am. Soc. Nephrol. 2002, 13, 2160–2170. [Google Scholar] [CrossRef]
- Sakhaee, K.; Maalouf, N.M. Metabolic Syndrome and Uric Acid Nephrolithiasis. Semin. Nephrol. 2008, 28, 174–180. [Google Scholar] [CrossRef]
- Abate, N.; Chandalia, M.; Cabo-Chan, A.V., Jr.; Moe, O.W.; Sakhaee, K. The Metabolic Syndrome and Uric Acid Nephrolithiasis: Novel Features of Renal Manifestation of Insulin Resistance. Kidney Int. 2004, 65, 386–392. [Google Scholar] [CrossRef]
- Lee, J.; Chang, H.K.; Lee, S. Association of Low Urine Ph as a Metabolic Feature with Abdominal Obesity. J. Int. Med. Res. 2020, 48, 300060519898615. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, N.M.; Cameron, M.A.; Moe, O.W.; Adams-Huet, B.; Sakhaee, K. Low Urine Ph: A Novel Feature of the Metabolic Syndrome. Clin. J. Am. Soc. Nephrol. 2007, 2, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Shimodaira, M.; Okaniwa, S.; Nakayama, T. Fasting Single-Spot Urine Ph Is Associated with Metabolic Syndrome in the Japanese Population. Med. Princ. Pract. 2017, 26, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, N.M.; Cameron, M.A.; Moe, O.W.; Sakhaee, K. Metabolic Basis for Low Urine Ph in Type 2 Diabetes. Clin. J. Am. Soc. Nephrol. 2010, 5, 1277–1281. [Google Scholar] [CrossRef]
- Higashiura, Y.; Tanaka, M.; Furuhashi, M.; Koyama, M.; Ohnishi, H.; Numata, K.; Hisasue, T.; Hanawa, N.; Moniwa, N.; Miura, T. Low Urine Ph Predicts New Onset of Diabetes Mellitus During a 10-Year Period in Men: Boreas-Dm1 Study. J. Diabetes Investig. 2020, 11, 1490–1497. [Google Scholar] [CrossRef]
- Dunn, W.J.; Shimizu, T.; Santamaria, N.; Underwood, R.J.; Woods, T.L. The Effect of Urinary and Arterial Blood Ph on the Progression of Acute Kidney Injury in Critically Ill Patients with Systemic Inflammatory Response Syndrome or Sepsis and Oliguria. Aust. Crit. Care 2016, 29, 41–45. [Google Scholar] [CrossRef]
- Aslan, G.; Afsar, B.; Sag, A.A.; Camkiran, V.; Erden, N.; Yilmaz, S.; Siriopol, D.; Incir, S.; You, Z.; Garcia, M.L.; et al. The Effect of Urine Ph and Urinary Uric Acid Levels on the Development of Contrast Nephropathy. Kidney Blood Press. Res. 2020, 45, 131–141. [Google Scholar] [CrossRef]
- Briguori, C.; Roscigno, G. Low Urine Ph: A New Marker for Contrast-Associated Acute Kidney Injury? EuroIntervention 2022, 18, 527–528. [Google Scholar] [CrossRef]
- Bosch, X.; Poch, E.; Grau, J.M. Rhabdomyolysis and Acute Kidney Injury. N. Engl. J. Med. 2009, 361, 62–72. [Google Scholar] [CrossRef]
- Segawa, H.; Higashi, A.; Masuda, I.; Yoshii, K.; Iwahori, T.; Ueshima, H. Urinary Sodium/Potassium Ratio as a Screening Tool for Hyperaldosteronism in Men with Hypertension. Hypertens. Res. 2021, 44, 1129–1137. [Google Scholar] [CrossRef]
- Iwahori, T.; Miura, K.; Ueshima, H.; Chan, Q.; Dyer, A.R.; Elliott, P.; Stamler, J.; Intersalt Research Group. Estimating 24-H Urinary Sodium/Potassium Ratio from Casual (‘Spot’) Urinary Sodium/Potassium Ratio: The Intersalt Study. Int. J. Epidemiol. 2017, 46, 1564–1572. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, T.; Ueshima, H.; Torii, S.; Saito, Y.; Fujiyoshi, A.; Ohkubo, T.; Miura, K. Four to Seven Random Casual Urine Specimens Are Sufficient to Estimate 24-H Urinary Sodium/Potassium Ratio in Individuals with High Blood Pressure. J. Hum. Hypertens. 2016, 30, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Omura, M.; Saito, J.; Yamaguchi, K.; Kakuta, Y.; Nishikawa, T. Prospective Study on the Prevalence of Secondary Hypertension among Hypertensive Patients Visiting a General Outpatient Clinic in Japan. Hypertens. Res. 2004, 27, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Intersalt Cooperative Research Group. Intersalt: An International Study of Electrolyte Excretion and Blood Pressure. Results for 24 Hour Urinary Sodium and Potassium Excretion. BMJ 1988, 297, 319–328. [Google Scholar] [CrossRef]
- Cook, N.R.; Obarzanek, E.; Cutler, J.A.; Buring, J.E.; Rexrode, K.M.; Kumanyika, S.K.; Appel, L.J.; Whelton, P.K.; Group Trials of Hypertension Prevention Collaborative Research. Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease: The Trials of Hypertension Prevention Follow-up Study. Arch. Intern. Med. 2009, 169, 32–40. [Google Scholar] [CrossRef]
- Okayama, A.; Okuda, N.; Miura, K.; Okamura, T.; Hayakawa, T.; Akasaka, H.; Ohnishi, H.; Saitoh, S.; Arai, Y.; Kiyohara, Y.; et al. Dietary Sodium-to-Potassium Ratio as a Risk Factor for Stroke, Cardiovascular Disease and All-Cause Mortality in Japan: The Nippon Data80 Cohort Study. BMJ Open 2016, 6, e011632. [Google Scholar] [CrossRef]
- Takase, H.; Kawakatsu, N.; Hayashi, K.; Kin, F.; Isogaki, T.; Dohi, Y. Urinary Na/K Ratio Is a Predictor of Developing Chronic Kidney Disease in the General Population. Hypertens. Res. 2024, 47, 225–232. [Google Scholar] [CrossRef]
- Matsukuma, Y.; Nakayama, M.; Tsuda, S.; Fukui, A.; Yoshitomi, R.; Tsuruya, K.; Nakano, T.; Kitazono, T. Association between the Urinary Sodium-to-Potassium Ratio and Renal Outcomes in Patients with Chronic Kidney Disease: A Prospective Cohort Study. Hypertens. Res. 2021, 44, 1492–1504. [Google Scholar] [CrossRef]
- Brobak, K.M.; Melsom, T.; Eriksen, B.O.; Hoieggen, A.; Norvik, J.V.; Solbu, M.D. The Association between Urinary Sodium-Potassium Ratio, Kidney Function, Blood Pressure in a Cohort from the General Population. Kidney Blood Press. Res. 2024, 49, 184–195. [Google Scholar] [CrossRef]
Solute | Functional Marker | Method | Clinical Evidence | Ref. |
---|---|---|---|---|
Glucose | Glucosuria | Dipstick 24-h collection | ATIN Glomerulopathies | [17,18,19,20,21,22,23,24,25,26] |
Amino acids | Aminoaciduria | Urine collection | Monoclonal gammopathies | [49,50,51,52,53,54] |
Diabetes, AKI | ||||
Phosphate | FEP | uP × sCr sP × uCr | HF, HIV, pre-donation, SPT, CKD | [66,67,68,69] |
TRP | (1 − FEP) × 100 | |||
TmP/GFR | (α × sP) Where α = [0.3 × TRP]/1 − (0.8 × TRP) | |||
Uric Acid | FEUA | uUA × sCr sUA × uCr | Gout, AKI, hyponatremia, SPT, CKD | [82,83,84,85,86,87,88,89,90,91,92,93,94,95,96] |
Total uricosuria | 24-h collection | |||
Citrate | Total Citraturia | 24-h collection | SMA, Metabolic, syndrome, Lithiasis, CKD | [102,103,104] |
uCit/uCr | uUA × sCr sUA × uCr | |||
Potassium | Total kaliuresis | 24-h collection | Diet, HBP, AKI, Inherited tubulopathies | [106,107,108,109,110,111,112,113,114,115] |
uK/uCr | uPotassium uCreatinine | |||
FEK | uK × sCr sK × uCr | |||
Sodium | Total natriuresis | 24-h collection | Diet AKI HF Diuretic monitorization | [106,120,121,122,123,124,125,126,127,128,129,130,131,132,133] |
FENa | uNa × sCr sNa × uCr | |||
uNa | Spot urine sodium | |||
Calcium | Total calciuria | 24-h collection | Toxics Preclampsia Lithiasis | [139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154] |
uCa/uCr | uCalcium uCreatinine | |||
Magnesium | FEMg | uMg × sCr sMg × uCr | TIF, ATN, CKD, DKD, drug-induced hypoMg | [165,166,167,168,169,170,171,172,173,174] |
Osmolality | Estimated | Urine density × 325 | Water intake, CKD progression, ADPKD, polyuric syndromes | |
Calculated | 2 (uNa + uK) + (UUN/2.8) | [182,183,184,185] | ||
Measured | Osmometer | |||
Urine Anion Gap | UAG | (uNa + uK) − uCl | NAGMA, RTA, acidosis by unmeasured anions | [186,187,188,189,190,191,192,193] |
UOG | Measured − Calculated Osm | |||
pH | pH | Potentiometer | RTA, metabolic syndrome, AKI | [199,200,201,202,203,204,205,206,207,208,209,210,211] |
Urine Na+ to K+ ratio | uNa/uK | uSodium uPotassium | Diet, HBP, AKI, CKD | [212,213,214,215,216,217,218,219,220,221] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamilla-Sanchez, M.; Alcalá Salgado, M.A.; Ulloa Galván, V.M.; Yanez Salguero, V.; Yamá Estrella, M.B.; Morales López, E.F.; Ramos García, N.A.; Carbajal Zárate, M.O.; Salazar Hurtado, J.D.; Delgado Pineda, D.A.; et al. Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment. Pathophysiology 2025, 32, 33. https://doi.org/10.3390/pathophysiology32030033
Alamilla-Sanchez M, Alcalá Salgado MA, Ulloa Galván VM, Yanez Salguero V, Yamá Estrella MB, Morales López EF, Ramos García NA, Carbajal Zárate MO, Salazar Hurtado JD, Delgado Pineda DA, et al. Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment. Pathophysiology. 2025; 32(3):33. https://doi.org/10.3390/pathophysiology32030033
Chicago/Turabian StyleAlamilla-Sanchez, Mario, Miguel Angel Alcalá Salgado, Victor Manuel Ulloa Galván, Valeria Yanez Salguero, Martín Benjamin Yamá Estrella, Enrique Fleuvier Morales López, Nicte Alaide Ramos García, Martín Omar Carbajal Zárate, Jorge David Salazar Hurtado, Daniel Alberto Delgado Pineda, and et al. 2025. "Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment" Pathophysiology 32, no. 3: 33. https://doi.org/10.3390/pathophysiology32030033
APA StyleAlamilla-Sanchez, M., Alcalá Salgado, M. A., Ulloa Galván, V. M., Yanez Salguero, V., Yamá Estrella, M. B., Morales López, E. F., Ramos García, N. A., Carbajal Zárate, M. O., Salazar Hurtado, J. D., Delgado Pineda, D. A., López González, L., & Flores Garnica, J. M. (2025). Understanding Renal Tubular Function: Key Mechanisms, Clinical Relevance, and Comprehensive Urine Assessment. Pathophysiology, 32(3), 33. https://doi.org/10.3390/pathophysiology32030033