Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,113)

Search Parameters:
Keywords = blue whiting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5537 KiB  
Article
Different Light Wavelengths Differentially Influence the Progression of the Hypersensitive Response Induced by Pathogen Infection in Tobacco
by Bao Quoc Tran, Anh Trung Nguyen and Sunyo Jung
Antioxidants 2025, 14(8), 954; https://doi.org/10.3390/antiox14080954 (registering DOI) - 3 Aug 2025
Viewed by 45
Abstract
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red [...] Read more.
Using light-emitting diodes (LEDs), we examined how different light wavelengths influence the hypersensitive response (HR) in tobacco plants infected with Pseudomonas syringae pv. tomato (Pst). Pst-infiltrated plants exhibited greater resistance to Pst infection under green and blue light compared to white and red light, as indicated by reduced HR-associated programmed cell death, lower H2O2 production, and up to 64% reduction in membrane damage. During the late stage of HR, catalase and ascorbate peroxidase activities peaked under green and blue LEDs, with 5- and 10-fold increases, respectively, while superoxide dismutase activity was higher under white and red LEDs. Defense-related genes CHS1, PALa, PR1, and PR2 were more strongly induced by white and red light. The plants treated with green or blue LEDs during Pst infection prompted faster degradation of phototoxic Mg-porphyrins and exhibited smaller declines in Fv/Fm, electron transport rate, chlorophyll content, and LHCB expression compared to those treated with white or red LEDs. By contrast, the induction of the chlorophyll catabolic gene SGR was 54% and 77% lower in green and blue LEDs, respectively, compared to white LEDs. This study demonstrates that light quality differentially affects Pst-mediated HR, with green and blue light more effectively suppressing HR progression, mainly by reducing oxidative stress through enhanced antioxidative capacity and mitigation of photosynthetic impairments. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

23 pages, 3283 KiB  
Article
Light-Driven Optimization of Exopolysaccharide and Indole-3-Acetic Acid Production in Thermotolerant Cyanobacteria
by Antonio Zuorro, Roberto Lavecchia, Karen A. Moncada-Jacome, Janet B. García-Martínez and Andrés F. Barajas-Solano
Sci 2025, 7(3), 108; https://doi.org/10.3390/sci7030108 - 3 Aug 2025
Viewed by 123
Abstract
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic [...] Read more.
Cyanobacteria are a prolific source of bioactive metabolites with expanding applications in sustainable agriculture and biotechnology. This work explores, for the first time in thermotolerant Colombian isolates, the impact of light spectrum, photoperiod, and irradiance on the co-production of exopolysaccharides (EPS) and indole-3-acetic acid (IAA). Six strains from hot-spring environments were screened under varying blue:red (B:R) LED ratios and full-spectrum illumination. Hapalosiphon sp. UFPS_002 outperformed all others, reaching ~290 mg L−1 EPS and 28 µg mL−1 IAA in the initial screen. Response-surface methodology was then used to optimize light intensity and photoperiod. EPS peaked at 281.4 mg L−1 under a B:R ratio of 1:5 LED, 85 µmol m−2 s−1, and a 14.5 h light cycle, whereas IAA was maximized at 34.4 µg mL−1 under cool-white LEDs at a similar irradiance. The quadratic models exhibited excellent predictive power (R2 > 0.98) and a non-significant lack of fit, confirming the light regime as the dominant driver of metabolite yield. These results demonstrate that precise photonic tuning can selectively steer carbon flux toward either EPS or IAA, providing an energy-efficient strategy to upscale thermotolerant cyanobacteria for climate-resilient biofertilizers, bioplastics precursors, and other high-value bioproducts. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

18 pages, 1481 KiB  
Article
Ambiguities, Built-In Biases, and Flaws in Big Data Insight Extraction
by Serge Galam
Information 2025, 16(8), 661; https://doi.org/10.3390/info16080661 - 2 Aug 2025
Viewed by 62
Abstract
I address the challenge of extracting reliable insights from large datasets using a simplified model that illustrates how hierarchical classification can distort outcomes. The model consists of discrete pixels labeled red, blue, or white. Red and blue indicate distinct properties, while white represents [...] Read more.
I address the challenge of extracting reliable insights from large datasets using a simplified model that illustrates how hierarchical classification can distort outcomes. The model consists of discrete pixels labeled red, blue, or white. Red and blue indicate distinct properties, while white represents unclassified or ambiguous data. A macro-color is assigned only if one color holds a strict majority among the pixels. Otherwise, the aggregate is labeled white, reflecting uncertainty. This setup mimics a percolation threshold at fifty percent. Assuming that directly accessing the various proportions from the data of colors is infeasible, I implement a hierarchical coarse-graining procedure. Elements (first pixels, then aggregates) are recursively grouped and reclassified via local majority rules, ultimately producing a single super-aggregate for which the color represents the inferred macro-property of the collection of pixels as a whole. Analytical results supported by simulations show that the process introduces additional white aggregates beyond white pixels, which could be present initially; these arise from groups lacking a clear majority, requiring arbitrary symmetry-breaking decisions to attribute a color to them. While each local resolution may appear minor and inconsequential, their repetitions introduce a growing systematic bias. Even with complete data, unavoidable asymmetries in local rules are shown to skew outcomes. This study highlights a critical limitation of recursive data reduction. Insight extraction is shaped not only by data quality but also by how local ambiguity is handled, resulting in built-in biases. Thus, the related flaws are not due to the data but to structural choices made during local aggregations. Although based on a simple model, these findings expose a high likelihood of inherent flaws in widely used hierarchical classification techniques. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 140
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

14 pages, 1769 KiB  
Article
The Effect of Colors and Light Intensity on the Growth and Biochemical Compounds of the Chlorophyceae Nephroselmis sp.
by Ichrak Sekri, Wassim Guermazi, Mohamad El-khateeb, George N. Hotos and Habib Ayadi
J. Mar. Sci. Eng. 2025, 13(8), 1452; https://doi.org/10.3390/jmse13081452 - 29 Jul 2025
Viewed by 262
Abstract
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. [...] Read more.
Light intensity and spectral quality play crucial roles in microalgal growth and biochemical biosynthesis. This study investigates the effects of different light intensities (3000, 8000 and 15,000 lux) and colors (red, white, yellow and green) on the growth and metabolites of Nephroselmis sp. Moderate intensity (8000 lux) of white light is sufficient to produce this microalga. The colors of light strongly affect the parameters of the growth of Nephroselmis under each light intensity (p < 0.05). The yellow and green light supported the highest growth rates for the three intensities. Blue and green light at 15,000 Lux stimulates high levels of chl-a corresponding to antenna size 2.80 and 2.46. Nephroselmis illuminated with red light synthesizes carotenoids reaching 13 µg mL−1 at 15,000 lux. This latter for each color stops the proliferation of Nephroselmis, and cells shift their metabolism towards the accumulation of protein. Nephroselmis accumulates more protein, followed by carbohydrates, lipids and polyphenols. Nephroselmis exhibited the highest protein (64% D.W) content when cultured under white light, and the green at 15,000 lux enhanced their production. Nephroselmis is rich in carbohydrates, which accounted for more than 20% D.W under all combinations of light intensities and colors. The accumulation of polyphenols and carotenoids under high-intensity red and white light may reflect an oxidative stress response, suggesting their role as protective antioxidants. The capacity of Nephroselmis sp. to thrive and synthesize valuable metabolites under variable light regimes underscores its potential as a robust candidate for the production of various molecules. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

14 pages, 3077 KiB  
Article
Effects of LED Applications on Dahlia (Dahlia sp.) Seedling Quality
by Gamze Gündoğdu, Murat Zencirkıran and Ümran Ertürk
Plants 2025, 14(15), 2319; https://doi.org/10.3390/plants14152319 - 27 Jul 2025
Viewed by 240
Abstract
This study aimed to determine the effects of LED applications and application periods on seedling development. To this end, four different LED applications (blue 100%, red 100%, green 100%, and full-spectrum 100% (control)) were applied to different star flower varieties (Figaro Violet shades—flower [...] Read more.
This study aimed to determine the effects of LED applications and application periods on seedling development. To this end, four different LED applications (blue 100%, red 100%, green 100%, and full-spectrum 100% (control)) were applied to different star flower varieties (Figaro Violet shades—flower color: purple, Figaro Orange shades—flower color: orange, Figaro White shades—flower color: white, and Figaro Red shades—flower color: red) for 15 and 30 days. These applications were repeated over two years (two vegetation periods). The results revealed that the red-flowered and white-flowered varieties exhibited higher values in terms of root length, root number, stem diameter, 2nd and 4th leaf petiole length, 2nd and 4th leaf width, and leaf number under full-spectrum and red LED applications. We also observed that red LED application for 30 days is suitable for seedling height development in the Figaro Orange shades variety. Conversely, the results showed that the effects of LED application durations on root length and stem diameter did not show a statistically significant difference, while the 15-day application yielded the best results for root number. In the Figaro Red shades and Figaro White shades varieties, the use of red LED applications for 30 days yielded results similar to those of full-spectrum applications, indicating that both applications can be used for seedling cultivation. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

17 pages, 1941 KiB  
Article
Blue–Red LED Light Modulates Morphophysiological and Metabolic Responses in the Medicinal Plant Nepeta nuda
by Miroslava Zhiponova, Grigor Zehirov, Krasimir Rusanov, Mila Rusanova, Miroslava Stefanova, Tsveta Ganeva, Momchil Paunov, Valentina Ganeva, Kiril Mishev, Petre I. Dobrev, Roberta Vaculíková, Václav Motyka, Zhenya Yordanova, Ganka Chaneva and Valya Vassileva
Plants 2025, 14(15), 2285; https://doi.org/10.3390/plants14152285 - 24 Jul 2025
Viewed by 327
Abstract
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda [...] Read more.
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda L.) grown under controlled in vitro conditions. White light (W) was used as a control and compared with two blue–red intensities: BR (high-intensity blue–red light) and BRS (low-intensity blue–red light or “BR with shadow”). BR-treated plants showed increased leaf area, mesophyll thickness, biomass and starch content but reduced levels of plastid pigments. BR also modified the oxidative state of plants by inducing lipid peroxidation while simultaneously activating ROS scavenging mechanisms and enhancing phenolic antioxidants. Interestingly, BR decreased the accumulation of the Nepeta sp.-specific iridoid, nepetalactone. These effects appear to be regulated by the phytohormones auxin, abscisic acid and jasmonates. BRS treatment produced effects similar to the W control but led to increased plant height and reduced leaf area and thickness. Both BR and BRS regimes induced the accumulation of proteins and amino acids. We conclude that blue–red light can enhance the survival capacity of micropropagated N. nuda during subsequent soil adaptation, suggesting that similar light pre-treatment could improve plant performance under stress conditions. Full article
Show Figures

Figure 1

13 pages, 2793 KiB  
Article
Upconversion and Color Tunability in Er3+–Tm3+–Yb3+ Tri-Doped Fluorophosphate Glasses
by Fernando Rivera-López, Palamandala Babu, Vemula Venkatramu and Víctor Lavín
Photonics 2025, 12(8), 745; https://doi.org/10.3390/photonics12080745 - 24 Jul 2025
Viewed by 244
Abstract
A series of Er3+–Tm3+–Yb3+ tri-doped fluorophosphate glasses with different molar compositions were synthesized using the conventional melt-quenching technique, and their optical properties were measured and analyzed. Under laser excitation at 980 nm, blue, green and red upconverted emissions [...] Read more.
A series of Er3+–Tm3+–Yb3+ tri-doped fluorophosphate glasses with different molar compositions were synthesized using the conventional melt-quenching technique, and their optical properties were measured and analyzed. Under laser excitation at 980 nm, blue, green and red upconverted emissions were observed at around 475, 545 and 660 nm, respectively. Based on the results and the energy level diagrams, energy transfer processes were proposed to explain the population mechanisms of the emitting levels. A final characterization was developed within the framework of the CIE 1931 chromaticity coordinate diagram. Varying the doping concentrations of the optically active rare-earth ions, as well as the laser pumping power, enabled modulation of the three primary colors, resulting in blue, green and relatively close to white light emissions. This tunability of the upconverted emissions highlights the potential of these fluorophosphate glasses as tunable optical devices, laser systems and visual show effects. Full article
Show Figures

Figure 1

14 pages, 2822 KiB  
Article
Accuracy and Reliability of Smartphone Versus Mirrorless Camera Images-Assisted Digital Shade Guides: An In Vitro Study
by Soo Teng Chew, Suet Yeo Soo, Mohd Zulkifli Kassim, Khai Yin Lim and In Meei Tew
Appl. Sci. 2025, 15(14), 8070; https://doi.org/10.3390/app15148070 - 20 Jul 2025
Viewed by 342
Abstract
Image-assisted digital shade guides are increasingly popular for shade matching; however, research on their accuracy remains limited. This study aimed to compare the accuracy and reliability of color coordination in image-assisted digital shade guides constructed using calibrated images of their shade tabs captured [...] Read more.
Image-assisted digital shade guides are increasingly popular for shade matching; however, research on their accuracy remains limited. This study aimed to compare the accuracy and reliability of color coordination in image-assisted digital shade guides constructed using calibrated images of their shade tabs captured by a mirrorless camera (Canon, Tokyo, Japan) (MC-DSG) and a smartphone camera (Samsung, Seoul, Korea) (SC-DSG), using a spectrophotometer as the reference standard. Twenty-nine VITA Linearguide 3D-Master shade tabs were photographed under controlled settings with both cameras equipped with cross-polarizing filters. Images were calibrated using Adobe Photoshop (Adobe Inc., San Jose, CA, USA). The L* (lightness), a* (red-green chromaticity), and b* (yellow-blue chromaticity) values, which represent the color attributes in the CIELAB color space, were computed at the middle third of each shade tab using Adobe Photoshop. Specifically, L* indicates the brightness of a color (ranging from black [0] to white [100]), a* denotes the position between red (+a*) and green (–a*), and b* represents the position between yellow (+b*) and blue (–b*). These values were used to quantify tooth shade and compare them to reference measurements obtained from a spectrophotometer (VITA Easyshade V, VITA Zahnfabrik, Bad Säckingen, Germany). Mean color differences (∆E00) between MC-DSG and SC-DSG, relative to the spectrophotometer, were compared using a independent t-test. The ∆E00 values were also evaluated against perceptibility (PT = 0.8) and acceptability (AT = 1.8) thresholds. Reliability was evaluated using intraclass correlation coefficients (ICC), and group differences were analyzed via one-way ANOVA and Bonferroni post hoc tests (α = 0.05). SC-DSG showed significantly lower ΔE00 deviations than MC-DSG (p < 0.001), falling within acceptable clinical AT. The L* values from MC-DSG were significantly higher than SC-DSG (p = 0.024). All methods showed excellent reliability (ICC > 0.9). The findings support the potential of smartphone image-assisted digital shade guides for accurate and reliable tooth shade assessment. Full article
(This article belongs to the Special Issue Advances in Dental Materials, Instruments, and Their New Applications)
Show Figures

Figure 1

11 pages, 1354 KiB  
Article
Source of Explant and Light Spectrum Influence in Adventitious Shoot Regeneration of Prunus salicina Lindl. (Japanese plum)
by Carmen López-Sierra, José E. Cos-Terrer, Miriam Romero-Muñoz and Margarita Pérez-Jiménez
Plants 2025, 14(14), 2230; https://doi.org/10.3390/plants14142230 - 18 Jul 2025
Viewed by 347
Abstract
Light influence on shoot regeneration in Prunus salicina is a complex interaction that has been studied for the first time. Japanese plum plants were regenerated from calli and seeds of the scion cultivar ‘Victoria’. The effect of four different light spectra (white, blue, [...] Read more.
Light influence on shoot regeneration in Prunus salicina is a complex interaction that has been studied for the first time. Japanese plum plants were regenerated from calli and seeds of the scion cultivar ‘Victoria’. The effect of four different light spectra (white, blue, red, and mixed), along with three 6-benzyladenine (BA) concentrations (1, 1.5, and 2 mg L−1), was studied in these two sources of explants. Organogenic calli were derived from the base of stem explants of the scion cultivar ‘Victoria’, whereas cotyledons and embryogenic axis slices were used as seed explants. Calli cultured with 2 mg L−1 of BA and mixed light or 2.5 mg L−1 of BA and control light showed the highest regeneration rates, with no significant differences compared to other treatments. Seed explants exposed to 2.5 mg L−1 of BA and red light exhibited significantly higher organogenesis. In comparison, those in 1.5 mg L−1 of BA with blue light or 2.5 mg L−1 of BA with mixed/control light showed no regeneration. BA concentration did not have a significant effect in the induction of somatic shoots from any explant source. In contrast, a strong interaction between light and BA was noticed. This work presents a protocol that can be applied in transformation and editing research as light spectrum studies continue to advance. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration)
Show Figures

Figure 1

18 pages, 5293 KiB  
Article
Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS
by Maria Lucia Protopapa, Emiliano Burresi, Martino Palmisano and Emanuela Pesce
ChemEngineering 2025, 9(4), 73; https://doi.org/10.3390/chemengineering9040073 - 18 Jul 2025
Viewed by 200
Abstract
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as [...] Read more.
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as oxidative debris (OD)—via alkaline treatment of graphene oxide (GO) using KOH solutions ranging from 0.04 M to 1.78 M. The resulting OD, isolated from the supernatant after acid precipitation, exhibits strong and tunable photoluminescence (PL) across the visible spectrum. Emission peaks shift from blue (~440 nm) to green (~500 nm) and yellow (~565 nm) as a function of treatment conditions, with excitation wavelengths between 300 and 390 nm. Optical, morphological. and compositional analyses were performed using UV-Vis, AFM, FTIR, and Raman spectroscopy, confirming the presence of highly oxidized aromatic domains. The blue-emitting (S2) and green/yellow-emitting (R2) fractions were successfully separated and characterized, demonstrating potential color tuning by adjusting KOH concentration and treatment time. This study highlights the feasibility of reusing GO-derived byproducts as sustainable phosphor alternatives in wLEDs, reducing reliance on CRMs and aligning with green chemistry principles. Full article
Show Figures

Graphical abstract

21 pages, 5633 KiB  
Article
Duck Egg Crack Detection Using an Adaptive CNN Ensemble with Multi-Light Channels and Image Processing
by Vasutorn Chaowalittawin, Woranidtha Krungseanmuang, Posathip Sathaporn and Boonchana Purahong
Appl. Sci. 2025, 15(14), 7960; https://doi.org/10.3390/app15147960 - 17 Jul 2025
Viewed by 314
Abstract
Duck egg quality classification is critical in farms, hatcheries, and salted egg processing plants, where cracked eggs must be identified before further processing or distribution. However, duck eggs present a unique challenge due to their white eggshells, which make cracks difficult to detect [...] Read more.
Duck egg quality classification is critical in farms, hatcheries, and salted egg processing plants, where cracked eggs must be identified before further processing or distribution. However, duck eggs present a unique challenge due to their white eggshells, which make cracks difficult to detect visually. In current practice, human inspectors use standard white light for crack detection, and many researchers have focused primarily on improving detection algorithms without addressing lighting limitations. Therefore, this paper presents duck egg crack detection using an adaptive convolutional neural network (CNN) model ensemble with multi-light channels. We began by developing a portable crack detection system capable of controlling various light sources to determine the optimal lighting conditions for crack visibility. A total of 23,904 images were collected and evenly distributed across four lighting channels (red, green, blue, and white), with 1494 images per channel. The dataset was then split into 836 images for training, 209 images for validation, and 449 images for testing per lighting condition. To enhance image quality prior to model training, several image pre-processing techniques were applied, including normalization, histogram equalization (HE), and contrast-limited adaptive histogram equalization (CLAHE). The Adaptive MobileNetV2 was employed to evaluate the performance of crack detection under different lighting and pre-processing conditions. The results indicated that, under red lighting, the model achieved 100.00% accuracy, precision, recall, and F1-score across almost all pre-processing methods. Under green lighting, the highest accuracy of 99.80% was achieved using the image normalization method. For blue lighting, the model reached 100.00% accuracy with the HE method. Under white lighting, the highest accuracy of 99.83% was achieved using both the original and HE methods. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

24 pages, 3120 KiB  
Article
Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh.
by Thanakorn Wongsa, Jittra Piapukiew, Kanlaya Kuenkaew, Chatchaya Somsanook, Onrut Sapatee, Julaluk Linjikao, Boworn Kunakhonnuruk and Anupan Kongbangkerd
Plants 2025, 14(14), 2212; https://doi.org/10.3390/plants14142212 - 17 Jul 2025
Viewed by 364
Abstract
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and [...] Read more.
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and blue light for 24 weeks. Blue and red light significantly accelerated seed development, allowing progression to stage 5 within 24 weeks. For protocorm proliferation, six semi-solid culture media were tested. Half-strength Murashige and Skoog (½MS) medium yielded the best results after 8 weeks, producing the highest numbers of shoots (1.0), leaves (1.1), and roots (4.2) per protocorm, with 100% survival. The effects of organic additives were also evaluated using coconut water and potato extract. A combination of 200 mL L−1 coconut water and 50 g L−1 potato extract enhanced shoot formation (1.7 shoots), while 150 mL L−1 coconut water with 50 g L−1 potato extract increased both leaf (1.9) and root (8.8) numbers. The effects of cytokinins (benzyladenine (BA), kinetin (6-furfurylaminopurine), and thidiazuron (TDZ)) and auxins (indole-3-acetic acid (IAA), α-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) were investigated using ½MS medium supplemented with each plant growth regulator individually at concentrations of 0, 0.1, 0.5, 1.0, and 2.0 mg L−1. Among the cytokinins, 0.1 mg L−1 BA produced the highest survival rate (96%), while 1.0 mg L−1 BA induced the greatest shoot formation (93%, 2.3 shoots). Among the auxins, 0.1 mg L−1 IAA resulted in the highest survival (96%), and 1.0 mg L−1 IAA significantly enhanced root induction (4.2 roots per protocorm). Acclimatization in pots containing a 1:1:1 (v/v) mixture of pumice, sand, and soil resulted in 100% survival. This protocol provides a reliable and effective approach for the mass propagation and ex situ conservation of E. bicallosa. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

16 pages, 1094 KiB  
Article
Study on the Selective Behavior of Brachymystax tsinlingensis Li, 1966 (Order: Saloniformes, Family: Salmonidae) on Substrate Color and Type
by Lin Zhang, Rongqun Song and Jian Shao
Animals 2025, 15(14), 2089; https://doi.org/10.3390/ani15142089 - 15 Jul 2025
Viewed by 199
Abstract
Substrate is an important component of a fish’s habitat environment. Fish preferences for substrate influence their growth and development, feeding, hiding, schooling, and reproduction. To explore the habitat preference of Brachymystax tsinlingensis, this study was conducted on the preferences of B. pre-smolts, [...] Read more.
Substrate is an important component of a fish’s habitat environment. Fish preferences for substrate influence their growth and development, feeding, hiding, schooling, and reproduction. To explore the habitat preference of Brachymystax tsinlingensis, this study was conducted on the preferences of B. pre-smolts, post-smolts, and juveniles for three substrate colors, white, blue, and black, and four substrate types, sand (<0.5 cm in diameter), small gravel (1–2 cm in diameter), medium gravel (5–7 cm in diameter), and large gravel (12–16 cm in diameter), which were investigated in light (10–60 lx) and dark (no light) environments. The results showed that the individual populations of B. tsinlingensis in three periods of time had a clear preference for substrate color, preferring black substrate and staying away from blue substrate under both light and dark environmental conditions; B. tsinlingensis pre-smolts and post-smolts preferred sandy substrate, and juveniles preferred medium gravel substrate. The choice of substrate color and substrate type by B. tsinlingensis is a manifestation of the living environment characteristics of this species, which is conducive to their hiding, better avoidance of enemies, and improvement of their survival rate. Based on the research results and the early biological characteristics of B. tsinlingensis, it is recommended to use black or dark substrate during the cultivation of B. tsinlingensis fry. During the larval fish stage, a sandy substrate environment should be provided. During the juvenile fish stage, a medium-gravel environment should be provided. Full article
(This article belongs to the Collection Behavioral Ecology of Aquatic Animals)
Show Figures

Figure 1

15 pages, 3505 KiB  
Article
Far-Red Component Enhances Paramylon Production in Photoautotrophic Euglena gracilis
by Zhaida I. Aguilar-Gonzalez, Anaiza Rico-Luna, Tóshiko Takahashi-Íñiguez and Héctor V. Miranda-Astudillo
Bioengineering 2025, 12(7), 763; https://doi.org/10.3390/bioengineering12070763 - 15 Jul 2025
Viewed by 455
Abstract
In recent years, microalgae have gained significant biotechnological importance as a sustainable source of various metabolites of industrial interest. Among these, paramylon, a polysaccharide produced by the microalga Euglena gracilis, stands out for its diverse applications in biomedicine and pharmaceuticals. E. gracilis [...] Read more.
In recent years, microalgae have gained significant biotechnological importance as a sustainable source of various metabolites of industrial interest. Among these, paramylon, a polysaccharide produced by the microalga Euglena gracilis, stands out for its diverse applications in biomedicine and pharmaceuticals. E. gracilis is an adaptable secondary eukaryote capable of growing photoautotrophically, heterotrophically and mixotrophically. During photoautotrophic growth, varying light conditions impact biomass and paramylon production. To investigate the effects of varying illumination more thoroughly, we designed and built a modular photobioreactor that allowed us to simultaneously evaluate the photoautotrophic growth of E. gracilis under twelve different light conditions: seven single-spectrum lights (ultraviolet, royal blue, blue, green, red, far-red, and infrared) and five composite-spectrum lights (3000 K, 10,000 K, and 30,000 K white lights, amber light, and “Full-spectrum” light). The 24-day growing kinetics were recorded, and the growth parameters were calculated for each light regime. Both growth curves and pigment composition present differences attributable to the light regime used for cell culture. Additionally, photosynthetic and respiratory machinery functionality were proven by oximetry. Finally, our results strongly suggest that the far-red component enhances paramylon production during the stationary phase. Full article
(This article belongs to the Special Issue Microalgae Biotechnology and Microbiology: Prospects and Applications)
Show Figures

Graphical abstract

Back to TopTop