Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (287)

Search Parameters:
Keywords = blue flowers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1171 KiB  
Review
Current Context of Cannabis sativa Cultivation and Parameters Influencing Its Development
by Andreia Saragoça, Ana Cláudia Silva, Carla M. R. Varanda, Patrick Materatski, Alfonso Ortega, Ana Isabel Cordeiro and José Telo da Gama
Agriculture 2025, 15(15), 1635; https://doi.org/10.3390/agriculture15151635 - 29 Jul 2025
Viewed by 442
Abstract
Cannabis sativa L. is a versatile plant with significant medicinal, industrial, and recreational applications. Its therapeutic potential is attributed to cannabinoids like THC and CBD, whose production is influenced by environmental factors, such as radiation, temperature, and humidity. Radiation, for instance, is essential [...] Read more.
Cannabis sativa L. is a versatile plant with significant medicinal, industrial, and recreational applications. Its therapeutic potential is attributed to cannabinoids like THC and CBD, whose production is influenced by environmental factors, such as radiation, temperature, and humidity. Radiation, for instance, is essential for photosynthetic processes, acting as both a primary energy source and a regulator of plant growth and development. This review covers key factors affecting C. sativa cultivation, including photoperiod, light spectrum, cultivation methods, environmental controls, and plant growth regulators. It highlights how these elements influence flowering, biomass, and cannabinoid production across different growing systems, offering insights for optimizing both medicinal and industrial cannabis cultivation. Studies indicate that photoperiod sensitivity varies among cultivars, with some achieving optimal flowering and cannabinoid production under extended light periods rather than the traditional 12/12 h cycle. Light spectrum adjustments, especially red, far-red, and blue wavelengths, significantly impact photosynthesis, plant morphology, and secondary metabolite accumulation. Advances in LED technology allow precise spectral control, enhancing energy efficiency and cannabinoid profiles compared to conventional lighting. The photoperiod plays a vital role in the cultivation of C. sativa spp., directly impacting the plant’s developmental cycle, biomass production, and the concentration of cannabinoids and terpenes. The response to photoperiod varies among different cannabis cultivars, as demonstrated in studies comparing cultivars of diverse genetic origins. On the other hand, indoor or in vitro cultivation may serve as an excellent alternative for plant breeding programs in C. sativa, given the substantial inter-cultivar variability that hinders the fixation of desirable traits. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

14 pages, 3077 KiB  
Article
Effects of LED Applications on Dahlia (Dahlia sp.) Seedling Quality
by Gamze Gündoğdu, Murat Zencirkıran and Ümran Ertürk
Plants 2025, 14(15), 2319; https://doi.org/10.3390/plants14152319 - 27 Jul 2025
Viewed by 256
Abstract
This study aimed to determine the effects of LED applications and application periods on seedling development. To this end, four different LED applications (blue 100%, red 100%, green 100%, and full-spectrum 100% (control)) were applied to different star flower varieties (Figaro Violet shades—flower [...] Read more.
This study aimed to determine the effects of LED applications and application periods on seedling development. To this end, four different LED applications (blue 100%, red 100%, green 100%, and full-spectrum 100% (control)) were applied to different star flower varieties (Figaro Violet shades—flower color: purple, Figaro Orange shades—flower color: orange, Figaro White shades—flower color: white, and Figaro Red shades—flower color: red) for 15 and 30 days. These applications were repeated over two years (two vegetation periods). The results revealed that the red-flowered and white-flowered varieties exhibited higher values in terms of root length, root number, stem diameter, 2nd and 4th leaf petiole length, 2nd and 4th leaf width, and leaf number under full-spectrum and red LED applications. We also observed that red LED application for 30 days is suitable for seedling height development in the Figaro Orange shades variety. Conversely, the results showed that the effects of LED application durations on root length and stem diameter did not show a statistically significant difference, while the 15-day application yielded the best results for root number. In the Figaro Red shades and Figaro White shades varieties, the use of red LED applications for 30 days yielded results similar to those of full-spectrum applications, indicating that both applications can be used for seedling cultivation. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

17 pages, 7928 KiB  
Article
Light–Nutrient Optimization Enhances Cherry Tomato Yield and Quality in Greenhouses
by Jianglong Li, Zhenbin Xie, Tiejun Zhao, Hongjun Li, Riyuan Chen, Shiwei Song and Yiting Zhang
Horticulturae 2025, 11(8), 874; https://doi.org/10.3390/horticulturae11080874 - 25 Jul 2025
Viewed by 387
Abstract
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: [...] Read more.
To ensure the year-round efficient production of high-quality cherry tomatoes, this study evaluated how four cherry tomato cultivars can enhance yield and quality through optimized nutrient solution and supplementary lighting. Nutrient solutions (N1 and N2) were adjusted, with EC at 1.6 dS/m (N1: nitrogen 10.7 me/L, phosphorus 2.7 me/L, potassium 5.3 me/L) during flowering stage, and 2.4 dS/m (N1: nitrogen 16 me/L, phosphorus 4 me/L, potassium 8 me/L; N2: nitrogen 10.7 me/L, phosphorus 5.4 me/L, potassium 10.8 me/L) from fruit setting to harvest. N1 used standard adjustments, while N2 was optimized by adding solely with KCl and KH2PO4. Lighting treatments included L1 (natural light) and L2 (supplemental red/blue light). The application of N2 effectively decreased nitrate levels while it significantly enhanced the content of soluble sugars, flavor, and overall palatability, especially fruit coloring in cherry tomatoes, irrespective of supplementary lighting conditions. However, such optimization also increased sourness or altered the sugar–acid ratio. Supplementary lighting generally promoted the accumulation of soluble sugars, sweetness, and tomato flavor, although its effects varied markedly among different fruit clusters. The combination of optimized nutrient solutions and supplementary lighting exhibited synergistic effects, improving the content of soluble sugars, vitamin C, proteins, and flavor. N1 combined with L2 achieved the highest plant yield. Among the cultivars, ‘Linglong’ showed the greatest overall quality improvement, followed by ‘Baiyu’, ‘Miying’, and ‘Moka’. In conclusion, supplementary lighting can enhance the effect of nitrogen on yield and amplify the influence of phosphorus and potassium on fruit quality improvement in cherry tomatoes. The findings of this study may serve as a theoretical basis for the development of year-round production techniques for high-quality cherry tomatoes. Full article
Show Figures

Figure 1

31 pages, 3043 KiB  
Article
Physiological and Phytochemical Responses of Calendula officinalis L. to End-of-Day Red/Far-Red and Green Light
by Luisa F. Lozano-Castellanos, Giuseppina Pennisi, Luis Manuel Navas-Gracia, Francesco Orsini, Eva Sánchez-Hernández, Pablo Martín-Ramos and Adriana Correa-Guimaraes
Biology 2025, 14(8), 935; https://doi.org/10.3390/biology14080935 - 24 Jul 2025
Viewed by 317
Abstract
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile [...] Read more.
Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown C. officinalis under a constant red/blue light background, compared with a red/blue control without EOD treatment. Morphological, physiological (gas exchange, chlorophyll fluorescence), biochemical (chlorophyll, anthocyanin), and chemical composition (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS)) were evaluated. EOD G 2 h enhanced photosynthetic pigments, anthocyanins, and biomass, while control plants showed higher phenolic content. EOD R:FR induced stem elongation but reduced pigment and metabolite accumulation. GC-MS revealed organ-specific metabolic specialization, with flowers displaying greater chemical diversity than leaves. EOD G favored sesquiterpene diversity in flowers, while EOD R:FR increased nitrogen-containing compounds and unsaturated fatty acids. Vibrational data supported these shifts, with spectral signatures of esters, phenolics, and lipid-related structures. Bioactive compounds, including α-cadinol and carboxylic acids, were identified across treatments. These findings demonstrate that EOD light modulates physiological and metabolic traits in C. officinalis, highlighting EOD G as an enhancer of biomass and phytochemical richness for pharmaceutical applications under controlled conditions. Full article
Show Figures

Graphical abstract

17 pages, 1941 KiB  
Article
Blue–Red LED Light Modulates Morphophysiological and Metabolic Responses in the Medicinal Plant Nepeta nuda
by Miroslava Zhiponova, Grigor Zehirov, Krasimir Rusanov, Mila Rusanova, Miroslava Stefanova, Tsveta Ganeva, Momchil Paunov, Valentina Ganeva, Kiril Mishev, Petre I. Dobrev, Roberta Vaculíková, Václav Motyka, Zhenya Yordanova, Ganka Chaneva and Valya Vassileva
Plants 2025, 14(15), 2285; https://doi.org/10.3390/plants14152285 - 24 Jul 2025
Viewed by 347
Abstract
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda [...] Read more.
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda L.) grown under controlled in vitro conditions. White light (W) was used as a control and compared with two blue–red intensities: BR (high-intensity blue–red light) and BRS (low-intensity blue–red light or “BR with shadow”). BR-treated plants showed increased leaf area, mesophyll thickness, biomass and starch content but reduced levels of plastid pigments. BR also modified the oxidative state of plants by inducing lipid peroxidation while simultaneously activating ROS scavenging mechanisms and enhancing phenolic antioxidants. Interestingly, BR decreased the accumulation of the Nepeta sp.-specific iridoid, nepetalactone. These effects appear to be regulated by the phytohormones auxin, abscisic acid and jasmonates. BRS treatment produced effects similar to the W control but led to increased plant height and reduced leaf area and thickness. Both BR and BRS regimes induced the accumulation of proteins and amino acids. We conclude that blue–red light can enhance the survival capacity of micropropagated N. nuda during subsequent soil adaptation, suggesting that similar light pre-treatment could improve plant performance under stress conditions. Full article
Show Figures

Figure 1

25 pages, 1781 KiB  
Article
Light Down-Conversion Technology Improves Vegetative Growth, Berry Production, and Postharvest Quality in Tunnel-Cultivated Blueberry
by Hafsa El Horri, Susanna Bartolini, Damiano Remorini, Costanza Ceccanti, Marta Florio, Lorenzo D’Asaro, Gagandeep Jain, Rossano Massai, Marco Landi and Lucia Guidi
Agronomy 2025, 15(7), 1708; https://doi.org/10.3390/agronomy15071708 - 16 Jul 2025
Viewed by 388
Abstract
This study examined three innovative ‘light-converting films’ that convert green light (−23%) into red light (+8%; Red film), ultraviolet light (−80%) into blue light (+9%; Blue film), and green light (−5.7%) into red light (+4%; Pink film) but also ultraviolet light (−76%) into [...] Read more.
This study examined three innovative ‘light-converting films’ that convert green light (−23%) into red light (+8%; Red film), ultraviolet light (−80%) into blue light (+9%; Blue film), and green light (−5.7%) into red light (+4%; Pink film) but also ultraviolet light (−76%) into blue light (+5.6%; Pink film). These films were used for growing blueberry plants under cover under controlled tunnel conditions (27.3 ± 11.7 °C, 51.9 ± 21.6% RH). The use of Red film led to increases in the total plant biomass (+54.2%), and Red and Pink films enhanced the leaf thickness (+17.1% and +14.4%, respectively) as compared to the control (a transparent polyethylene film). No differences in the photosynthetic rate (Pn) were observed at the flowering stage, but a decrease (−25.9%) was observed in plants grown under the Pink film during the green fruit stage. The plants grown under Blue film boosted flower production, leading to +86.8% increase in the total yield. The Blue film improved the total phenolic content (+15.2%) in the fruit, and a +25.3% greater total antioxidant capacity was observed in fruit grown under Pink film. Freshly harvested blueberries were subjected to postharvest experiments (4 °C; in dark conditions; 90–95% RH). The results suggest the importance of Red film in enhancing plant biomass and Red and Blue films in improving fruit yield and maintaining nutraceutical postharvest quality in blueberry fruit. Full article
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications
by Thangamani Kaliraja, Reddi Mohan Naidu Kalla, Fatimah Ali M. Al-Zahrani, Surya Veerendra Prabhakar Vattikuti and Jaewoong Lee
Nanomaterials 2025, 15(14), 1087; https://doi.org/10.3390/nano15141087 - 14 Jul 2025
Viewed by 383
Abstract
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well [...] Read more.
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well as their further development at the nanoscale, is the most economical, environmentally friendly, and rapid synthesis process compared to physical and chemical processes. Ligustrum ovalifolium flower extract was used for the preparation of AgNPs. The synthesized AgNPs were examined by using UV–visible spectroscopy, XRD, SEM, and TEM analysis. It indicates that AgNPs were formed in good size. AgNPs were applied as a catalyst for the degradation of pollutants, such as methyl orange, Congo red, and methylene blue, which were degraded within 8–16 min. Additionally, the reduction of para-nitrophenol (PNP) to para-aminophenol (PAP) was achieved within 2 min. This work demonstrates a practical, reproducible, and efficient method for synthesizing cost-effective and stable AgNPs, which serve as active catalysts for the rapid degradation of hazardous organic dyes in an aqueous environment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

18 pages, 1870 KiB  
Article
Flowering and Morphology Responses of Greenhouse Ornamentals to End-of-Day Blue-Dominant Lighting with Different Phytochrome Photostationary States
by Yun Kong, Qingming Li, David Llewellyn and Youbin Zheng
Agronomy 2025, 15(7), 1649; https://doi.org/10.3390/agronomy15071649 - 7 Jul 2025
Viewed by 344
Abstract
To investigate whether blue-dominant spectra from end-of-day (EOD) lighting can regulate crop morphological and flowering responses, chrysanthemum (Chrysanthemum × morifolium; obligate short day), geranium (Pelargonium × hortorum; day neutral), calibrachoa (Calibrachoa × hybrida; facultative long day), and gerbera ( [...] Read more.
To investigate whether blue-dominant spectra from end-of-day (EOD) lighting can regulate crop morphological and flowering responses, chrysanthemum (Chrysanthemum × morifolium; obligate short day), geranium (Pelargonium × hortorum; day neutral), calibrachoa (Calibrachoa × hybrida; facultative long day), and gerbera (Gerbera jamesonii; facultative short day) plants were grown under different light-emitting diode (LED) spectrum treatments from January to April 2020, in Guelph, Canada. The spectrum treatments were (1) no EOD lighting, (2) narrowband blue from LEDs (B), (3) a combination of narrowband blue, red, and far-red LEDs with a photon flux ratio of 47:3:1 (blue:red:far-red; BRFR). The B and BRFR treatments ran daily from 0.5 h to 4.5 h after dusk. Compared to the control without EOD lighting, chrysanthemum flower initiation was completely inhibited under BRFR. Flowering time was slightly delayed, but flower bud number increased under B. Side branch number, leaf area, and main stem length and diameter increased under B and BRFR. In the geranium B and BRFR did not affect flowering, but increased side branch number and length and diameter of the main stem. Both spectrum treatments promoted earlier flowering in the calibrachoa, but BRFR produced more flower buds. The calibrachoa aerial dry biomass and main stem length increased under B and BRFR. The gerbera leaf chlorophyll index and leaf thickness increased under BRFR. Both spectrum treatments increased the gerbera flower bud size, despite having little effect on flowering time. In all species, at least one of the LED treatments increased canopy size. Therefore, low levels of B or BRFR can be potentially used for EOD lighting to regulate the flowering and morphology of potted ornamentals. Full article
Show Figures

Figure 1

30 pages, 25636 KiB  
Article
Cluster-Based Flight Path Construction for Drone-Assisted Pear Pollination Using RGB-D Image Processing
by Arata Kuwahara, Tomotaka Kimura, Sota Okubo, Rion Yoshioka, Keita Endo, Hiroyuki Shimizu, Tomohito Shimada, Chisa Suzuki, Yoshihiro Takemura and Takefumi Hiraguri
Drones 2025, 9(7), 475; https://doi.org/10.3390/drones9070475 - 4 Jul 2025
Viewed by 352
Abstract
This paper proposes a cluster-based flight path construction method for automated drone-assisted pear pollination systems in orchard environments. The approach uses RGB-D (Red-Green-Blue-Depth) sensing through an observation drone equipped with RGB and depth cameras to detect blooming pear flowers. Flower detection is performed [...] Read more.
This paper proposes a cluster-based flight path construction method for automated drone-assisted pear pollination systems in orchard environments. The approach uses RGB-D (Red-Green-Blue-Depth) sensing through an observation drone equipped with RGB and depth cameras to detect blooming pear flowers. Flower detection is performed using a YOLO (You Only Look Once)-based object detection algorithm, and three-dimensional flower positions are estimated by integrating depth information with the drone’s positional and orientation data in the east-north-up coordinate system. To enhance pollination efficiency, the method applies the OPTICS (Ordering Points To Identify the Clustering Structure) algorithm to group detected flowers based on spatial proximity that correspond to branch-level distributions. The cluster centroids then construct a collision-free flight path, with offset vectors ensuring safe navigation and appropriate nozzle orientation for effective pollen spraying. Field experiments conducted using RTK-GNSS-based flight control confirmed the accuracy and stability of generated flight trajectories. The drone hovered in front of each flower cluster and performed uniform spraying along the planned path. The method achieved a fruit set rate of 62.1%, exceeding natural pollination at 53.6% and compared to the 61.9% of manual pollination. These results demonstrate the effectiveness and practicability of the method for real-world deployment in pear orchards. Full article
(This article belongs to the Special Issue UAS in Smart Agriculture: 2nd Edition)
Show Figures

Figure 1

28 pages, 2166 KiB  
Review
Advancing Light-Mediated Technology in Plant Growth and Development: The Role of Blue Light
by Qiong Su, Yoo Gyeong Park, Rohit Dilip Kambale, Jeffrey Adelberg, Raghupathy Karthikeyan and Byoung Ryong Jeong
Horticulturae 2025, 11(7), 795; https://doi.org/10.3390/horticulturae11070795 - 4 Jul 2025
Viewed by 360
Abstract
In controlled environment agriculture (CEA), supplementary lighting, particularly light-emitting diode (LED) technology, is essential for optimizing plant growth and development. Among the spectral components, blue light (400–500 nm) plays an important role in affecting plant morphogenesis, photosynthesis, and key physiological processes. However, species-specific [...] Read more.
In controlled environment agriculture (CEA), supplementary lighting, particularly light-emitting diode (LED) technology, is essential for optimizing plant growth and development. Among the spectral components, blue light (400–500 nm) plays an important role in affecting plant morphogenesis, photosynthesis, and key physiological processes. However, species-specific guidelines for optimizing blue light parameters such as intensity, duration, and spectral ratios remain insufficiently developed. Furthermore, plant spectral requirements shift across developmental stages, highlighting distinct blue light management strategies for each phase. This review synthesizes existing knowledge on the impacts of blue light on morphological adaptation, photosynthetic efficiency, flowering, and secondary metabolism, with an emphasis on differential responses across diverse plant species. We emphasize the need for growth-stage-specific lighting protocols and scalable strategies applicable to commercial CEA systems. Interdisciplinary collaboration, integrating molecular biology, genomics, and horticultural engineering, is necessary to enhance understanding of blue light-driven regulatory networks, optimize photoreceptor responses, and facilitate systematic validation of adaptive lighting approaches, ultimately advancing sustainable horticulture and next-generation CEA innovations. Full article
(This article belongs to the Special Issue Management of Artificial Light in Horticultural Crops)
Show Figures

Figure 1

32 pages, 2080 KiB  
Review
Multiple Signals Can Be Integrated into Pathways of Blue-Light-Mediated Floral Transition: Possible Explanations on Diverse Flowering Responses to Blue Light Manipulation
by Yun Kong and Youbin Zheng
Agronomy 2025, 15(7), 1534; https://doi.org/10.3390/agronomy15071534 - 25 Jun 2025
Cited by 1 | Viewed by 462
Abstract
Blue light (BL) plays a crucial role in regulating floral transition and can be precisely manipulated in controlled-environment agriculture (CEA). However, previous studies on BL-mediated flowering in CEA have produced conflicting results, likely due to species-specific responses and variations in experimental conditions (such [...] Read more.
Blue light (BL) plays a crucial role in regulating floral transition and can be precisely manipulated in controlled-environment agriculture (CEA). However, previous studies on BL-mediated flowering in CEA have produced conflicting results, likely due to species-specific responses and variations in experimental conditions (such as light spectrum and intensity) as summarized in our recent systematic review. This speculation still lacks a mechanistic explanation at the molecular level. By synthesizing recent advances in our understanding of the signaling mechanisms underlying floral transition, this review highlights how both internal signals (e.g., hormones, carbohydrates, and developmental stage) and external cues (e.g., light spectrum, temperature, nutrients, stress, and magnetic fields) are integrated into the flowering pathway mediated by BL. Key signal integration nodes have been identified, ranging from photoreceptors (e.g., cryptochromes) to downstream components such as transcription factors and central flowering regulator, FLOWERING LOCUS T (FT). This signal integration offers a potential mechanistic explanation for the previously inconsistent findings, which may arise from interspecies differences in photoreceptor composition and variation in the expression of downstream components influenced by hormonal crosstalk, environmental conditions, and developmental stage, depending on the specific context. This review provides novel molecular insights into how BL modulates floral transition through interactions with other signals. By systematically compiling and critically assessing recent research findings, we identify key research gaps and outline future directions, particularly the need for more studies in agriculturally important crops. Furthermore, this review proposes a conceptual framework for optimizing BL-based lighting strategies and exploring underexamined interaction factors in the regulation of flowering. Full article
Show Figures

Figure 1

18 pages, 1439 KiB  
Article
Study on the Response of Cotton Leaf Color to Plant Water Content Changes and Optimal Irrigation Thresholds
by Binbin Mao, Lulu Wang, Junhui Cheng, Bing Chen, Jiandong Wang, Kai Zhang and Xiaowei Liu
Agronomy 2025, 15(6), 1477; https://doi.org/10.3390/agronomy15061477 - 18 Jun 2025
Viewed by 460
Abstract
Real-time monitoring of cotton moisture status and determination of appropriate irrigation thresholds are essential for achieving precision irrigation. Currently employed diagnostic methods based on physiological indicators, remote sensing, or soil moisture measurements typically present limitations including cumbersome procedures, high labor intensity, requirements for [...] Read more.
Real-time monitoring of cotton moisture status and determination of appropriate irrigation thresholds are essential for achieving precision irrigation. Currently employed diagnostic methods based on physiological indicators, remote sensing, or soil moisture measurements typically present limitations including cumbersome procedures, high labor intensity, requirements for specialized technical expertise, and delayed results. To address these challenges, this study investigated the relationship between plant water content and leaf RGB color values (red, green, and blue color values measured using LScolor technology) during the bud, flowering, and boll development stages, with the objective of establishing a predictive model for rapid, real-time moisture status monitoring. Given that leaf position and color values (R, G, and B) of different functional leaves may influence the relationship between leaf color and plant water content, and this relationship varies across different temporal periods, a two-year experiment was conducted. In 2023, leaf color data from the top five functional leaves were measured at five time points daily throughout the irrigation cycle. In 2024, the following four irrigation treatments were established: one conventional irrigation control treatment (CK) and three irrigation treatments at 72% (T1), 70% (T2), and 68% (T3) plant water content thresholds. Results demonstrated that the following: (1) plant water content initially declined during the day and subsequently showed slight recovery, indicating cotton’s particular susceptibility to water stress between 2:30 p.m. and 7:00 p.m.; (2) plant water content continuously decreased across five measurement periods following irrigation during the bud, flowering, and boll development stages, with R and G color values of the five functional leaves showing declining trends between 2:30 p.m. and 7:00 p.m., while B color values exhibited no consistent pattern; (3) correlation analysis revealed significant positive correlations between plant water content and R and G color values of the five functional leaves during the 2:30 p.m. to 5:00 p.m. period, with highly significant correlations observed for the third and fourth leaves from the apex; (4) univariate and bivariate linear regression models were successfully established between cotton water content and R and G color values of the third and fourth leaves from the top; and (5) under 72% plant water content conditions, cotton achieved the highest yield and Irrigation Water Use Efficiency, indicating that 72% represents the optimal irrigation threshold. In conclusion, integrating leaf color–plant water content relationships with the 72% irrigation threshold enables rapid, non-destructive, large-scale diagnosis of cotton moisture status, providing a robust foundation for implementing effective precision irrigation strategies. Full article
(This article belongs to the Special Issue Water Saving in Irrigated Agriculture: Series II)
Show Figures

Figure 1

13 pages, 2658 KiB  
Article
Micropropagation of ‘Manacá-de-Cheiro’ (Brunfelsia uniflora (Pohl) D. Don), an Ornamental Species Native to Brazil
by Ana Victória Conde van den Broek, Mariana Pelais Leite and Jean Carlos Cardoso
Int. J. Plant Biol. 2025, 16(2), 69; https://doi.org/10.3390/ijpb16020069 - 17 Jun 2025
Viewed by 571
Abstract
The introduction of new ornamental species and cultivars is one of the hallmarks of innovation in global floriculture. Brunfelsia uniflora, a subshrub native to Brazil, has white, lilac, and blue flowers on the same plant, in addition to a distinctive fragrance. As [...] Read more.
The introduction of new ornamental species and cultivars is one of the hallmarks of innovation in global floriculture. Brunfelsia uniflora, a subshrub native to Brazil, has white, lilac, and blue flowers on the same plant, in addition to a distinctive fragrance. As it is a wild species, technologies such as large-scale clonal propagation of superior genotypes are still scarce, limiting its supply to the flower market. Therefore, a successful micropropagation protocol was developed for B. uniflora using nodal segments and shoot tips as initial explants. In the multiplication phase, the use of 6-benzylaminopurine produced the highest multiplication rates (10.3–10.9 shoots/explant) and the number of leaves in the shoots. In vitro shoot rooting using MS medium with reduced macronutrient concentrations and supplemented with IBA resulted in a 91.7% rooting rate. The greatest difficulty in micropropagating this species was the high percentage of shoots that developed calli. The highest percentage of callus formation occurred with the addition of auxins at high concentrations (1.0 and 1.5 mg L−1). Even so, the shoots and plantlets were acclimatized, demonstrating the effectiveness of this technique for the production of B. uniflora plantlets. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

19 pages, 8784 KiB  
Article
Identification of Potential Key Genes for Stem Polysaccharide Synthesis Based on Transcriptome Analysis of Different Developmental Stages of Dendrobium officinale
by Tianwei Yang, Shiyu Huang, Shanshan Tian, Manrong Gao, Xiangjun Zhang, Longfei He and Shangwen Zhang
Horticulturae 2025, 11(6), 679; https://doi.org/10.3390/horticulturae11060679 - 13 Jun 2025
Viewed by 411
Abstract
Dendrobium officinale holds significant value as a traditional medicinal plant, with its stems serving as the primary medicinal component and polysaccharides acting as the key active ingredients. To systematically analyze the biosynthetic pathways of polysaccharides and identify key genes involved in polysaccharide synthesis, [...] Read more.
Dendrobium officinale holds significant value as a traditional medicinal plant, with its stems serving as the primary medicinal component and polysaccharides acting as the key active ingredients. To systematically analyze the biosynthetic pathways of polysaccharides and identify key genes involved in polysaccharide synthesis, this research assessed the water-soluble polysaccharide content and conducted transcriptome sequencing on stem tissues of D. officinale at different developmental stages. The findings revealed that the water-soluble polysaccharide level in D. officinale stems exhibited an increasing trend followed by a decrease, reaching its peak before flowering. Transcriptome analysis identified 5764, 6408, 4477, and 3809 differentially expressed genes (DEGs) in groups S1 vs. S2, S2 vs. S3, S3 vs. S4, and S4 vs. S5, respectively. The Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis (KEGG) demonstrated that the DEGs in the S1 vs. S2, S2 vs. S3, and S3 vs. S4 groups were enriched in the starch and sucrose metabolism pathways. Based on the transcriptome sequencing results, expression heat maps of genes correlated with the polysaccharide synthesis pathways of D. officinale clearly showed changes in the expression of polysaccharide synthesis-related genes at five stages. Using weighted gene co-expression network analysis (WGCNA), three co-expression modules were identified, showing a significant positive correlation with fluctuations in the water-soluble polysaccharide content. From the light blue module with the highest correlation coefficient, 15 key genes potentially closely related to polysaccharide synthesis were identified. This study provides gene resources for the genetic improvement of D. officinale and detailed reference data for further elucidating the molecular mechanisms of polysaccharide biosynthesis. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

16 pages, 2976 KiB  
Article
Extending the Vase Life of Vanda Orchid Cut Flowers Using Plasma Technology
by Choncharoen Sawangrat, Soraya Ruamrungsri, Dheerawan Boonyawan, Takron Opassuwan, Sa-nguansak Thanapornpoonpong, Suchanuch Jaipinta, Chaiartid Inkham and Kanokwan Panjama
Horticulturae 2025, 11(6), 669; https://doi.org/10.3390/horticulturae11060669 - 11 Jun 2025
Viewed by 711
Abstract
Flower senescence during transport is a major concern for exporters, as physiological disorders reduce quality and price. Extending vase life is crucial, and while 1-MCP is widely used, it requires low temperatures and is less effective in disease control. Cold plasma generated by [...] Read more.
Flower senescence during transport is a major concern for exporters, as physiological disorders reduce quality and price. Extending vase life is crucial, and while 1-MCP is widely used, it requires low temperatures and is less effective in disease control. Cold plasma generated by dielectric barrier discharge produces reactive oxygen and nitrogen species (RONS), offering an alternative method for preserving cut flowers. This study compared the effectiveness of cold plasma and 1-MCP treatments on the vase life of Vanda ‘Pachara Blue’ orchids. Flowers were treated with T1 (control at 25 °C), T2 (1-MCP), and T3 (cold plasma). Both 1-MCP and cold plasma significantly reduced ethylene production (26.15 and 25.20 µL C2H4/kg/hr, respectively) and respiration rate (63.92 and 57.44 mg CO2/kg/hr, respectively) compared to the control (40.93 µL C2H4/kg/hr and 118.21 mg CO2/kg/hr). Vase life was extended to 19.33 days in both treatments, an 87.12% increase over the control (10.33 days). Additionally, cold plasma slightly improved water uptake and reduced petal discoloration. These findings indicate that cold plasma is a promising alternative to 1-MCP, offering effective flower preservation without the need for low-temperature conditions and potential additional benefits in floral quality. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

Back to TopTop