Extending the Vase Life of Vanda Orchid Cut Flowers Using Plasma Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Cold Plasma System Preparation
2.2. Plant Materials
2.3. Experimental Design
2.4. Determination of Weight Loss and Water Uptake
2.5. Determination of Floret Color
2.6. Determination of Ethylene Production and Respiration Rates
- free volume (L) = Volume of glass jar—volume of Vanda cut flower;
- ppm ethylene measured = Ethylene concentration (from gas chromatography machine);
- sample wt (kg) = Sample weight;
- seal time (hr) = Duration of placing the inflorescences in a gas-tight glass jar.
- V (mL) = Volume of glass jar;
- W (g) = Sample weight;
- V-W = Y = Gap volume;
- T (time (min)/60) = Inflorescence placement duration in a gas-tight glass jar;
- A = CO2 production = % CO2 − 0.03.
2.7. Evaluation of Percentage of Flower Abscission and Vanda Cut Flower Vase Life
2.8. Statistical Analysis
3. Results and Discussions
3.1. Weight Loss and Water Uptake
3.2. Discoloration
3.3. Ethylene Production and Respiration Rate
3.4. Percentage of Flower Abscission and Vanda Cut Flower Vase Life
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laroque, D.A.; Seó, S.T.; Valencia, G.A.; Laurindo, J.B.; Carciofi, B.A.M. Cold plasma in food processing: Design, mechanisms, and application. J. Food Eng. 2022, 312, 110748. [Google Scholar] [CrossRef]
- Asl, P.J.; Rajulapati, V.; Gavahian, M.; Kapusta, I.; Putnik, P.; Khaneghah, A.M.; Marszałek, K. Non-thermal plasma technique for preservation of fresh foods: A review. Food Control 2022, 134, 108560. [Google Scholar] [CrossRef]
- Zaharah, S.; Singh, Z. Mode of action of nitric oxide in inhibiting ethylene biosynthesis and fruit softening during ripening and cool storage of ‘Kensington Pride’ mango. Postharvest Biol. Technol. 2011, 3, 258–266. [Google Scholar] [CrossRef]
- Joshi Suresh, G.; Cooper, M.; Yost, A.; Paff, M.; Ercan Utku, K.; Fridman, G.; Friedman, G.; Fridman, A.; Brooks Ari, D. Nonthermal Dielectric-Barrier Discharge Plasma-Induced Inactivation Involves Oxidative DNA Damage and Membrane Lipid Peroxidation in Escherichia coli. Antimicrob. Agents Chemother. 2011, 3, 1053–1062. [Google Scholar] [CrossRef]
- Andrabi, S.M.; Sharma, N.S.; Karan, A.; Shahriar, S.S.; Cordon, B.; Ma, B.; Xie, J. Nitric oxide: Physiological functions, delivery, and Biomedical Applications. Adv. Sci. 2023, 30, 2303259. [Google Scholar] [CrossRef]
- Merouani, S.; Hamdaoui, O.; Kerabchi, N. On the sonochemical production of nitrite and nitrate in water: A computational study. In Water Engineering Modeling and Mathematic Tools; Elsevier: Amsterdam, The Netherlands, 2021; pp. 429–452. [Google Scholar]
- Mišík, V.; Riesz, P. Nitric oxide formation by ultrasound in aqueous solutions. J. Phys. Chem. 1996, 45, 17986–17994. [Google Scholar] [CrossRef]
- Okitsu, K.; Itano, Y. Formation of NO2− and NO3− in the sonolysis of water: Temperature-and pressure-dependent reactions in collapsing air bubbles. Chem. Eng. J. 2022, 427, 131517. [Google Scholar] [CrossRef]
- Schüttler, S.; Schöne, A.L.; Jeß, E.; Gibson, A.R.; Golda, J. Production and transport of plasma-generated hydrogen peroxide from gas to liquid. Phys. Chem. Chem. Phys. 2024, 10, 8255–8272. [Google Scholar] [CrossRef]
- Perni, S.; Liu, D.W.; Shama, G.; Kong, M.G. Cold atmospheric plasma decontamination of the pericarps of fruit. J. Food Prot. 2008, 2, 302–308. [Google Scholar] [CrossRef]
- Saremnezhad, S.; Soltani, M.; Faraji, A.; Hayaloglu, A.A. Chemical changes of food constituents during cold plasma processing: A review. Food Res. Int. 2021, 147, 110552. [Google Scholar] [CrossRef]
- Okyere, A.Y.; Rajendran, S.; Annor, G.A. Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Curr. Res. Food Sci. 2022, 5, 451–463. [Google Scholar] [CrossRef]
- Jung, J.M.; Yoon, H.K.; Jung, C.J.; Jo, S.Y.; Hwang, S.G.; Lee, H.J.; Lee, W.J.; Chang, S.E.; Won, C.H. Cold plasma treatment promotes full-thickness healing of skin wounds in murine models. Int. J. Lower Extrem. Wounds 2023, 1, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Sani, I.K.; Aminoleslami, L.; Mirtalebi, S.S.; Sani, M.A.; Mansouri, E.; Eghbaljoo, H.; Jalil, A.T.; Thanoon, R.D.; Khodaei, S.M.; Mohammadi, F.; et al. Cold plasma technology: Applications in improving edible films and food packaging. Food Packag. Shelf Life 2023, 37, 101087. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Sinclair, A.J.; Cahill, D.M.; Wang, X.; Dai, X.J. Nitrate and hydrogen peroxide generated in water by electrical discharges stimulate wheat seedling growth. Plasma Chem. Plasma Process. 2017, 37, 1393–1404. [Google Scholar] [CrossRef]
- Mitra, A.; Li, Y.-F.; Klämpfl, T.G.; Shimizu, T.; Jeon, J.; Morfill, G.E.; Zimmermann, J.L. Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioprocess Technol. 2014, 7, 645–653. [Google Scholar] [CrossRef]
- Perinban, S.; Orsat, V.; Raghavan, V. Nonthermal plasma–liquid interactions in food processing: A review. Compr. Rev. Food Sci. Food Saf. 2019, 6, 1985–2008. [Google Scholar] [CrossRef] [PubMed]
- Sarinont, T.; Katayama, R.; Wada, Y.; Koga, K.; Shiratani, M. Plant growth enhancement of seeds immersed in plasma activated water. MRS Adv. 2017, 18, 995–1000. [Google Scholar] [CrossRef]
- Shen, J.; Tian, Y.; Li, Y.; Ma, R.; Zhang, Q.; Zhang, J.; Fang, J. Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures. Sci. Rep. 2016, 1, 28505. [Google Scholar] [CrossRef]
- Su, L.; Lan, Q.; Pritchard, H.W.; Xue, H.; Wang, X. Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiol. Biochem. 2016, 109, 406–415. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Y.; Ma, R.; Liu, Q.; Zhang, J. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chem. 2016, 197, 436–444. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, R.; Tian, Y.; Su, B.; Wang, K.; Yu, S.; Zhang, J.; Fang, J. Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 2016, 6, 3184–3192. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Wang, J.; Xiang, Y.; Yun, Z.; Pan, Y.; Jiang, Y.; Zhang, Z. Physiological and quality changes in fresh-cut mango fruit as influenced by cold plasma. Postharvest Biol. Technol. 2022, 194, 112105. [Google Scholar] [CrossRef]
- Jin, T.; Dai, C.; Xu, Y.; Chen, Y.; Xu, Q.; Wu, Z. Applying cold atmospheric plasma to preserve the postharvest qualities of winter jujube (Ziziphus jujuba Mill. cv. Dongzao) during cold storage. Front. Nutr. 2022, 9, 934841. [Google Scholar] [CrossRef]
- Sruthi, N.; Josna, K.; Pandiselvam, R.; Kothakota, A.; Gavahian, M.; Khaneghah, A.M. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chem. 2022, 368, 130809. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Arora, A.; Singh, V.P.; Sairam, R.; Bhattacharya, R.C. Effect of sodium nitroprusside on differential activity of antioxidants and expression of SAGs in relation to vase life of gladiolus cut flower. Sci. Hortic. 2016, 210, 158–165. [Google Scholar] [CrossRef]
- Hemati, E.; Salmi, M.; Daneshvar, M.; Heidari, M. The roles of sodium nitropusside, salicylic acid, and methyl jasmonate as hold solutions on vase life of Gerbera jamesonii ‘Sun Spot’. Adv. Hortic. Sci. 2019, 33, 187–195. [Google Scholar]
- Somporn, S. Guidelines for Solving the Problem of Depressed Orchid Product Prices. In Proceedings of the Meeting of the Commission on Agricultural Product Price Solutionn, Bangkok, Thailand, 17–19 July 2020. [Google Scholar]
- Volza Grow Global. Orchid Plant Exports from Thailand. Available online: https://www.volza.com/ (accessed on 25 November 2024).
- International Trade. Fact Sheet Orchid. Available online: https://ditp.go.th (accessed on 20 October 2024).
- Selina Wamucii. Thailand Orchids Prices. Available online: https://www.selinawamucii.com (accessed on 1 November 2024).
- Global $30+ Bn Cut Flowers Markets, 2018–2022 & 2023–2031. Available online: https://www.businesswire.com/news/home/20231114044231/en/Global-30-Bn-Cut-Flowers-Markets-2018-2022-2023-2031---ResearchAndMarkets.com (accessed on 16 October 2024).
- Khunmuang, S.; Kanlayanarat, S.; Wongchaochant, S.; Wongs-Aree, C.; Meir, S.; Buanong, M. Development of means for delaying senescence and prolonging the vase life of cut flowers of Vanda orchid ‘Sansai Blue’. In Proceedings of the III Asia Pacific Symposium on Postharvest Research, Education and Extension: APS2014 1213, Hochiminh City, Vietnam, 8–11 December 2014. [Google Scholar]
- Khunmuang, S.; Kanlayanarat, S.; Wongs-Aree, C.; Meir, S.; Philosoph-Hadas, S.; Buanong, M. Effect of ethephon and 1-MCP treatment on the vase life of cut ‘Sansai blue’ Vanda. Acta Hortic. 2016, 1131, 119–125. [Google Scholar] [CrossRef]
- Motes, M.R. Unraveling a Rainbow. Am. Orchid Soc. Bull. 1988, 57, 709–854. [Google Scholar]
- Mayak, S. Flower Senescence; Senescence in Petals: Boca Raton, FL, USA, 1980; pp. 131–156. [Google Scholar]
- Mayak, S. Senescence of cut flowers. HortScience 1987, 5, 863–865. [Google Scholar] [CrossRef]
- Rogers, H.J. From models to ornamentals: How is flower senescence regulated? Plant Mol. Biol. 2013, 82, 563–574. [Google Scholar] [CrossRef]
- Khunmuang, S.; Kanlayanarat, S.; Wongs-Aree, C.; Meir, S.; Philosoph-Hadas, S.; Buanong, M. Variability in the response to ethylene of three cultivars of cut Vanda orchid flowers. Acta Hortic. 2019, 1262, 241–249. [Google Scholar] [CrossRef]
- Waithaka, K.; Reid, M.; Dodge, L. Cold storage and flower keeping quality of cut tuberose (Polianthes tuberosa L.). J. Hortic. Sci. Biotechnol. 2001, 3, 271–275. [Google Scholar] [CrossRef]
- Bieleski, R.L.; Reid, M.S. Physiological changes accompanying senescence in the ephemeral daylily flower. Plant Physiol. 1992, 3, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, L.M.; Gislerød, H.R. Effect of air humidity variation on powdery mildew and keeping quality of cut roses. Sci. Hortic. 2005, 1, 49–55. [Google Scholar] [CrossRef]
- van Doom, W.G.; Woltering, E.J. Developments in the use of growth regulators for the maintenance of post-harvest quality in cut flowers and potted plants. Acta Hortic. 1991, 298, 195–210. [Google Scholar] [CrossRef]
- Naidu, S.N.; Reid, M.S. Postharvest handling of tuberose (Polianthes tuberosa L.). Acta Hortic. 1988, 216, 313–318. [Google Scholar] [CrossRef]
- Reid, M. Handling of cut flowers for air transport, In IATA Perishable Cargo Manual Flowers; IATA: Montreal, QC, Canada, 2000; pp. 1–24. [Google Scholar]
- Sacalis, J.N.; Seals, J.L. Cut Flowers: Prolonging Freshness: Postproduction Care and Handling; Subsequent Edition; Ball Pub: West Chicago, IL, USA, 1993; 110p. [Google Scholar]
- Li, J.; Cao, S.; Zhang, P.; Yan, T.; Chen, S. Effects of preharvest 1-MCP treatments on postharvest quality and related enzyme activities of grapes. Food Sci. 2014, 22, 270–275. [Google Scholar]
- Yan, T.; Shao, D.; Li, J.; Zhang, P.; Chen, S. Effects of 1-MCP on quality and volatile components of grapes during shelf life. Food Sci. 2015, 20, 258–263. [Google Scholar]
- Ahmed, S.; Roberto, S.R.; Domingues, A.R.; Shahab, M.; Junior, O.J.C.; Sumida, C.H.; De Souza, R.T. Effects of different sulfur dioxide pads on Botrytis mold in ‘Italia’ table grapes under cold storage. Horticulturae 2018, 4, 29. [Google Scholar] [CrossRef]
- Chen, R.; Wu, P.; Cao, D.; Tian, H.; Chen, C.; Zhu, B. Edible coatings inhibit the postharvest berry abscission of table grapes caused by sulfur dioxide during storage. Postharvest Biol. Technol. 2019, 152, 1–8. [Google Scholar] [CrossRef]
- Cui, H.; Abdel-Samie, M.A.S.; Lin, L. Novel packaging systems in grape storage—A review. J. Food Process Eng. 2019, 6, e13162. [Google Scholar] [CrossRef]
- De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis cinerea and table grapes: A review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods 2020, 9, 1138. [Google Scholar] [CrossRef]
- Youssef, K.; Junior, O.J.C.; Mühlbeier, D.T.; Roberto, S.R. Sulphur dioxide pads can reduce gray mold while maintaining the quality of clamshell-packaged ‘brs nubia’ seeded table grapes grown under protected cultivation. Horticulturae 2020, 2, 20. [Google Scholar] [CrossRef]
- DudleyáSully, B. The analysis of solutions of per-acids and hydrogen peroxide. Analyst 1962, 87, 653–657. [Google Scholar]
- Jia, S.; Zhang, N.; Ji, H.; Zhang, X.; Dong, C.; Yu, J.; Yan, S.; Chen, C.; Liang, L. Effects of Atmospheric Cold Plasma Treatment on the Storage Quality and Chlorophyll Metabolism of Postharvest Tomato. Foods 2022, 24, 4088. [Google Scholar] [CrossRef]
- Wustman, R.; Struik, P. The Canon of Potato Science: 35. Seed and Ware Potato Storage. Potato Res. 2007, 50, 351–355. [Google Scholar] [CrossRef]
- Li, Y.; Sun, K.; Ye, G.; Liang, Y.; Pan, H.; Wang, G.; Zhao, Y.; Pan, J.; Zhang, J.; Fang, J. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal Enterococcus faecalis biofilm in vitro. J. Endod. 2015, 8, 1325–1330. [Google Scholar] [CrossRef]
- Jangra, S.; Mishra, A.; Pandey, S.; Prakash, R. Analysis of short-term treatment effects of dielectric barrier discharge plasma to improve germination characteristics of wheat seeds. Radiat. Eff. Defects Solids 2024, 179, 1023–1031. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Wemlinger, E.; Pedrow, P.; Barbosa-Cánovas, G.; Garcia-Perez, M. Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 2013, 1, 149–157. [Google Scholar] [CrossRef]
- Khodabandeh, M.; Azizi, M.; Shokri, B.; Bahreini, M.; Rezadoost, H.; Salehi, M. Optimization of the radiofrequency low-pressure cold plasma conditions for decontamination of saffrons. Food Bioprocess Technol. 2024, 17, 271–297. [Google Scholar] [CrossRef]
- Zararchi, S.; Esatbeyoglu, T. Assessing the impact of cold plasma rotational dynamics on ginger’s total phenolic content, antioxidant activity, surface structure and color using response surface methodology. LWT 2024, 208, 116682. [Google Scholar] [CrossRef]
- Bagheri, H.; Abbaszadeh, S. Effect of Cold Plasma on Quality Retention of Fresh-Cut Produce. J. Food Qual. 2020, 2020, 8866369. [Google Scholar] [CrossRef]
- Jackman, R.; Smith, J. Anthocyanins and betalains. In Natural Food Colorants; Springer: Berlin/Heidelberg, Germany, 1996; pp. 244–309. [Google Scholar]
- Zhu, Y.; Du, M.; Jiang, X.; Huang, M.; Zhao, J. Nitric Oxide Acts as an Inhibitor of Postharvest Senescence in Horticultural Products. Int. J. Mol. Sci. 2022, 19, 11512. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liu, M.; Zhou, J. Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage. Postharvest Biol. Technol. 2006, 1, 41–48. [Google Scholar] [CrossRef]
- Djioua, T.; Charles, F.; Lopez-Lauri, F.; Filgueiras, H.; Coudret, A.; Freire, M., Jr.; Ducamp-Collin, M.-N.; Sallanon, H. Improving the storage of minimally processed mangoes (Mangifera indica L.) by hot water treatments. Postharvest Biol. Technol. 2009, 2, 221–226. [Google Scholar] [CrossRef]
- Giannoglou, M.; Xanthou, Z.-M.; Chanioti, S.; Stergiou, P.; Christopoulos, M.; Dimitrakellis, P.; Efthimiadou, A.; Gogolides, Ε.; Katsaros, G. Effect of cold atmospheric plasma and pulsed electromagnetic fields on strawberry quality and shelf-life. Innov. Food Sci. Emerg. Technol. 2021, 68, 102631. [Google Scholar] [CrossRef]
- Guo, Q.; Lv, X.; Xu, F.; Zhang, Y.; Wang, J.; Lin, H.; Wu, B. Chlorine dioxide treatment decreases respiration and ethylene synthesis in fresh-cut ‘H ami’ melon fruit. Int. J. Food Sci. Technol. 2013, 9, 1775–1782. [Google Scholar] [CrossRef]
- Xu, F.; Yuan, S.; Zhang, D.-W.; Lv, X.; Lin, H.-H. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. J. Exp. Bot. 2012, 15, 5705–5716. [Google Scholar] [CrossRef]
- Chivasa, S.; Tomé, D.F.; Hamilton, J.M.; Slabas, A.R. Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase beta-subunit as a novel plant cell death regulator. Mol. Cell Proteom. 2011, 10, M110.003905. [Google Scholar] [CrossRef]
- Miyazaki, J.H.; Yang, S.F. The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol. Plant 1987, 69, 366–370. [Google Scholar] [CrossRef]
- Ravanel, S.; Gakière, B.; Job, D.; Douce, R. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA 1998, 95, 7805–7812. [Google Scholar] [CrossRef] [PubMed]
- Shojima, S.; Nishizawa, N.K.; Fushiya, S.; Nozoe, S.; Kumashiro, T.; Nagata, T.; Ohata, T.; Mori, S. Biosynthesis of nicotianamine in the suspension-cultured cells of tobacco (Nicotiana megalosiphon). Biometals 1989, 2, 142–145. [Google Scholar] [CrossRef]
- Alaey, M.; Babalar, M.; Naderi, R.; Kafi, M. Effect of pre-and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biol. Technol. 2011, 1, 91–94. [Google Scholar] [CrossRef]
- Gómez-Merino, F.C.; Ramírez-Martínez, M.; Castillo-González, A.M.; Trejo-Téllez, L.I. Lanthanum prolongs vase life of cut tulip flowers by increasing water consumption and concentrations of sugars, proteins and chlorophylls. Sci. Rep. 2020, 1, 4209. [Google Scholar] [CrossRef] [PubMed]
Discharge Time × Standing Time | The RONS Concentration (ppm) | ||
---|---|---|---|
NO2− | NO3− | H2O2 | |
30 × 30 | 0.31 ± 0.51 b | 9.16 ± 1.21 b | 0.57 ± 0.00 b |
30 × 60 | 0.36 ± 0.20 b | 10.41 ± 0.98 b | 0.95 ± 0.00 ab |
60 × 30 | 0.38 ± 0.11 b | 11.31 ± 1.11 b | 1.13 ± 0.03 ab |
60 × 60 | 0.46 ± 0.39 b | 16.79 ± 2.39 ab | 0.50 ± 0.00 ab |
90 × 30 | 1.38 ± 0.26 a | 21.25 ± 0.65 a | 0.76 ± 0.01 ab |
90 × 60 | 1.42 ± 0.67 a | 20.75 ± 1.06 a | 1.32 ± 0.00 a |
Sig. (LSD < 0.05) | * | * | * |
Treatments | Methods for Preserving Cut Flower |
---|---|
1 | Storage at 25 °C (control treatment) |
2 | The commercial 1-MCP 0.03% DP from Extico (Bangkok, Thailand) Co., Ltd. is used in a cold room with a temperature of around 15 °C for 5 h |
3 | Atmospheric cold plasma is discharged for 90 min combined with 30 min of standing time at a room temperature of 25 °C (Figure 4) |
Score (Points) | The Visualization of Vanda Florets |
---|---|
5 | Normal florets |
4 | Florets experience one type of deterioration, such as wilting or veination |
3 | Florets experience two types of deterioration, such as wilting and petal discoloration, or veination |
2 | Florets experience more than two types of deterioration, such as wilting, petal discoloration, veination, or necrosis |
1 | Floret abscission |
DAT (Day) | Treatment | Color Parameters | |||
---|---|---|---|---|---|
L* | a* | b* | |||
0 | Control | 30.28 ± 2.15 | 32.45 ± 3.44 | −25.81 ± 4.22 | - |
1-MCP | 31.10 ± 4.91 | 39.15 ± 3.71 | −29.56 ± 1.22 | - | |
Plasma discharge | 26.09 ± 2.09 | 36.95 ± 0.96 | −29.92 ± 0.47 | - | |
Sig. (LSD < 0.05) | ns | ns | ns | ||
3 | Control | 29.87 ± 0.46 | 31.93 ± 2.43 b | −25.54 ± 3.48 | 2.12 ± 0.95 b |
1-MCP | 30.95 ± 4.82 | 38.69 ± 3.34 a | −29.10 ± 3.34 | 1.44 ± 0.31 b | |
Plasma discharge | 28.67 ± 0.53 | 35.61 ± 1.69 ab | −29.43 ± 1.69 | 4.38 ± 1.60 a | |
Sig. (LSD < 0.05) | ns | * | ns | * | |
6 | Control | 30.96 ± 2.40 | 30.39 ± 3.82 | −30.39 ± 3.82 | 2.83 ± 0.87 |
1-MCP | 31.51 ± 4.01 | 37.87 ± 3.77 | −37.87 ± 3.77 | 1.82 ± 1.06 | |
Plasma discharge | 29.57 ± 1.67 | 34.50 ± 0.81 | −34.50 ± 0.81 | 4.89 ± 1.64 | |
Sig. (LSD < 0.05) | ns | ns | ns | ns | |
9 | Control | 32.89 ± 3.93 | 29.66 ± 3.38 | −29.66 ± 3.38 | 4.23 ± 1.58 |
1-MCP | 34.60 ± 3.73 | 35.29 ± 3.39 | −35.29 ± 3.39 | 5.93 ± 3.01 | |
Plasma discharge | 29.46 ± 1.77 | 33.87 ± 1.31 | −33.87 ± 1.31 | 4.34 ± 1.37 | |
Sig. (LSD < 0.05) | ns | ns | ns | ns | |
12 | Control | 31.82 ± 2.92 | 25.74 ± 1.20 | −25.74 ± 1.20 | 8.25 ± 3.96 |
1-MCP | 34.05 ± 3.76 | 31.94 ± 7.00 | −31.94 ± 7.00 | 9.06 ± 7.13 | |
Plasma discharge | 28.19 ± 1.42 | 31.77 ± 1.28 | −31.77 ± 1.28 | 6.31 ± 2.09 | |
Sig. (LSD < 0.05) | ns | ns | ns | ns | |
15 | Control | 31.15 ± 3.50 | 24.99 ± 0.98 | −22.06 ± 3.08 | 8.74 ± 5.37 |
1-MCP | 33.60 ± 5.28 | 30.45 ± 7.80 | −23.66 ± 3.09 | 11.14 ± 7.32 | |
Plasma discharge | 27.69 ± 1.44 | 30.63 ± 1.64 | −26.51 ± 0.00 | 7.49 ± 3.12 | |
Sig. (LSD < 0.05) | ns | ns | ns | ns | |
18 | Control | 31.15 ± 3.50 | 24.99 ± 0.98 | −20.69 ± 2.21 | 9.42 ± 5.94 |
1-MCP | 33.60 ± 5.28 | 30.45 ± 7.80 | −23.51 ± 3.47 | 11.22 ± 7.32 | |
Plasma discharge | 27.69 ± 1.44 | 30.63 ± 1.64 | −25.93 ± 1.20 | 7.79 ± 2.95 | |
Sig. (LSD < 0.05) | ns | ns | ns | ns | |
21 | Control | 31.15 ± 3.50 | 24.99 ± 0.98 | −20.33 ± 2.11 | 9.61 ± 6.02 |
1-MCP | 33.60 ± 5.28 | 30.45 ± 7.80 | −23.24 ± 3.87 | 11.38 ± 7.58 | |
Plasma discharge | 27.69 ± 1.43 | 30.63 ± 1.64 | −25.83 ± 2.60 | 7.82 ± 3.31 | |
Sig. (LSD < 0.05) | ns | ns | ns | ns |
Treatment | Ethylene Production (µL C2H4/kg/hr) | Respiration Rate (mg CO2/kg/hr) | Vase Life (Days) |
---|---|---|---|
25 °C | 40.93 ± 5.34 a | 118.21 ± 15.41 a | 10.33 ± 1.70 b |
1-MCP | 26.15 ± 4.51 b | 63.92 ± 11.02 b | 19.33 ± 1.25 a |
Plasma discharge | 25.20 ± 1.20 b | 57.44 ± 2.72 b | 19.33 ± 0.94 a |
Sig. (LSD < 0.05) | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawangrat, C.; Ruamrungsri, S.; Boonyawan, D.; Opassuwan, T.; Thanapornpoonpong, S.-n.; Jaipinta, S.; Inkham, C.; Panjama, K. Extending the Vase Life of Vanda Orchid Cut Flowers Using Plasma Technology. Horticulturae 2025, 11, 669. https://doi.org/10.3390/horticulturae11060669
Sawangrat C, Ruamrungsri S, Boonyawan D, Opassuwan T, Thanapornpoonpong S-n, Jaipinta S, Inkham C, Panjama K. Extending the Vase Life of Vanda Orchid Cut Flowers Using Plasma Technology. Horticulturae. 2025; 11(6):669. https://doi.org/10.3390/horticulturae11060669
Chicago/Turabian StyleSawangrat, Choncharoen, Soraya Ruamrungsri, Dheerawan Boonyawan, Takron Opassuwan, Sa-nguansak Thanapornpoonpong, Suchanuch Jaipinta, Chaiartid Inkham, and Kanokwan Panjama. 2025. "Extending the Vase Life of Vanda Orchid Cut Flowers Using Plasma Technology" Horticulturae 11, no. 6: 669. https://doi.org/10.3390/horticulturae11060669
APA StyleSawangrat, C., Ruamrungsri, S., Boonyawan, D., Opassuwan, T., Thanapornpoonpong, S.-n., Jaipinta, S., Inkham, C., & Panjama, K. (2025). Extending the Vase Life of Vanda Orchid Cut Flowers Using Plasma Technology. Horticulturae, 11(6), 669. https://doi.org/10.3390/horticulturae11060669