Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (163)

Search Parameters:
Keywords = block copolymer films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2337 KiB  
Article
Thermoplastic and Biocompatible Materials Based on Block Copolymers of Chitosan and Poly(ε-caprolactone)
by Ivan Lednev, Sergey Zaitsev, Ekaterina Maltseva, Roman Kovylin and Larisa Smirnova
Polysaccharides 2025, 6(3), 63; https://doi.org/10.3390/polysaccharides6030063 - 16 Jul 2025
Viewed by 451
Abstract
The development of materials based on chitosan and polyesters that possess thermoplastic, biocompatible, and biodegradable properties is a perspective for additive technologies in biomedicine. Research on obtaining such compositions is constrained because the polysaccharide content does not exceed 5 wt.%, which cannot ensure [...] Read more.
The development of materials based on chitosan and polyesters that possess thermoplastic, biocompatible, and biodegradable properties is a perspective for additive technologies in biomedicine. Research on obtaining such compositions is constrained because the polysaccharide content does not exceed 5 wt.%, which cannot ensure effective tissue regeneration. Herein, we propose a method for obtaining thermoplastic block copolymers based on chitosan and poly(ε-caprolactone) by ultrasonic irradiation of a homogeneous solution of a homopolymer mixture in dimethyl sulfoxide as a common solvent, achieving a yield of 99%. The distinctive feature of the method is the interaction between the components at the molecular level and provides obtaining copolymers at any component ratio. SEM images revealed a homogeneous structure without structural defects in both solvent-cast films and extruded filaments. The block copolymers were characterized by high mechanical property tensile strength of up to 60–70 MPa and elasticity of up to 35% for films and 25–40 MPa and elasticity of up to 50% for filaments. Cell adhesion of composition investigated on fibroblast cells (hTERT BJ-5TA) is at the level of chitosan and demonstrated the absence of cytotoxicity. Full article
Show Figures

Figure 1

24 pages, 7568 KiB  
Article
Developing a Superhydrophilic/Underwater Superoleophobic Plasma-Modified PVDF Microfiltration Membrane with Copolymer Hydrogels for Oily Water Separation
by Hasan Ali Hayder, Peng Shi and Sama M. Al-Jubouri
Appl. Sci. 2025, 15(12), 6654; https://doi.org/10.3390/app15126654 - 13 Jun 2025
Viewed by 559
Abstract
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust [...] Read more.
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust potential to mitigate oil fouling. However, developing a controllable thickness of a stable hydrogel layer to prevent the blocking of membrane pores remains a critical issue. In this work, atmospheric pressure low-temperature plasma was used to prepare the surface of a PVDF membrane to improve its wettability and adhesion properties for coating with a thin hydrophilic film of an AM-NaA copolymer hydrogel. The AM-NaA/PVDF membrane exhibited superhydrophilic and underwater superoleophobic properties, along with exceptional anti-crude oil-fouling characteristics and a self-cleaning function. The AM-NaA/PVDF membrane achieved high separation efficiency, exceeding 99% for various oil-in-water emulsions, with residual oil content in the permeate of less than 10 mg/L after a single-step separation. Additionally, it showed a high-water flux of 5874 L/m2·h for crude oil-in-water emulsions. The AM-NaA/PVDF membrane showed good stability and easy cleaning by water washing over multiple crude oil-in-water emulsion separation and regeneration cycles. Adding CaCl2 destabilized emulsions by promoting oil droplet coalescence, further boosting flux. This strategy provides a practical pathway for the development of highly reusable and oil-fouling-resistant membranes for the efficient separation of emulsified oily water. Full article
Show Figures

Figure 1

26 pages, 11179 KiB  
Article
Surface Morphology and Degradation of Poly[(R)-3-Hydroxybutyrate]-block-Poly(ε-Caprolactone) and Poly[(R)-3-Hydroxybutyrate]-block-Poly(l-Lactide) Biodegradable Diblock Copolymers
by Ayan Bartels-Ellis, Senri Hayashi, Tomohiro Hiraishi, Takeharu Tsuge and Hideki Abe
Polymers 2025, 17(11), 1558; https://doi.org/10.3390/polym17111558 - 3 Jun 2025
Viewed by 585
Abstract
Bacterially produced poly[(R)-3-hydroxybutyrate] (P3HB) was subjected to an alcoholysis reaction to produce low-molecular-weight (Mn ≈ 10,000 g mol−1) hydroxy-terminated P3HB (LMPHB). Using diethyl zinc as a catalyst, LMPHB was reacted with the cyclic monomers ε-caprolactone and l [...] Read more.
Bacterially produced poly[(R)-3-hydroxybutyrate] (P3HB) was subjected to an alcoholysis reaction to produce low-molecular-weight (Mn ≈ 10,000 g mol−1) hydroxy-terminated P3HB (LMPHB). Using diethyl zinc as a catalyst, LMPHB was reacted with the cyclic monomers ε-caprolactone and l-lactide in separate ring-opening polymerization (ROP) reactions to produce PHB-b-PCL (PHBCL) and PHB-b-PLA (PHBLA) AB-type crystalline–crystalline diblock copolymers with varying PCL and PLA block lengths. 1H NMR and GPC were used to confirm the structure of the polymers. DSC was used to measure the thermal properties as well as assessing crystallization. A single-shifting Tg for PHBLA showed the two blocks to be miscible in the melt. The TGA results indicate enhanced thermal stability over the homopolymer P3HB. A study of the crystallization was undertaken by combining WAXD, a second DSC heating regime, and POM. POM showed that the crystallization in PHBCL to be dependent on the crystallization temperature more so than PHBLA, whose composition appeared to be the more definitive factor determining the spherulitic morphology. The results informed the crystallization temperatures used in the production of the melt-crystallized thin films that were imaged using AFM. AFM images showed unique surface morphologies dependent on the diblock copolymer composition, block length, and crystallization temperature. Finally, the enzymatic degradation studies showed these unique surface morphologies to influence how these block copolymers were degraded by enzymes. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

23 pages, 8618 KiB  
Article
MWCNT Localization and Electrical Percolation in Thin Films of Semifluorinated PMMA Block Copolymers
by Ulrike Staudinger, Andreas Janke, Frank Simon, Lothar Jakisch, Eva Bittrich, Petr Formanek, Lukas Mielke, Hendrik Schlicke, Qiong Li, Kathrin Eckstein and Doris Pospiech
Polymers 2025, 17(9), 1271; https://doi.org/10.3390/polym17091271 - 6 May 2025
Viewed by 447
Abstract
Diblock copolymers (BCP) consisting of poly(methyl methacrylate) (PMMA) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate) (PsfMA) blocks are employed as templates for controlled dispersion and localization of multi-walled carbon nanotubes (MWCNT). Short MWCNT are modified with perfluoroalkyl groups to increase the compatibility between MWCNT and the semifluorinated [...] Read more.
Diblock copolymers (BCP) consisting of poly(methyl methacrylate) (PMMA) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate) (PsfMA) blocks are employed as templates for controlled dispersion and localization of multi-walled carbon nanotubes (MWCNT). Short MWCNT are modified with perfluoroalkyl groups to increase the compatibility between MWCNT and the semifluorinated (PsfMA) phase and to promote a defined arrangement of MWCNT in the BCP morphology. Thin BCP and BCP/MWCNT composite films are prepared by dip-coating using tetrahydrofuran as solvent with dispersed MWCNT. Atomic force microscopy, scanning and transmission electron microscopy reveal a strong tendency of the BCP to form micelle-like domains consisting of a PMMA shell and a semifluorinated PsfMA core, embedded in a soft phase, containing also semifluorinated blocks. MWCNT preferentially localized in the embedding phase outside the micelles. Perfluoroalkyl-modification leads to significant improvement in the dispersion of MWCNT, both in the polymer solution and the resulting nanocomposite film due to increased interaction of MWCNT with the semifluorinated side chains in the soft phase outside the micelle domains. As a result, reliable electrical conductivity is observed in contrast to films with non-modified MWCNT. Thus, well-dispersed, modified MWCNT provide a defined electrical conduction path at the micrometer level, which is interesting for applications in electronics and vapor sensing. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

12 pages, 3536 KiB  
Article
Rapid Assembly of Block Copolymer Thin Films via Accelerating the Swelling Process During Solvent Annealing
by Tian-en Shui, Tongxin Chang, Zhe Wang and Haiying Huang
Polymers 2025, 17(9), 1242; https://doi.org/10.3390/polym17091242 - 2 May 2025
Viewed by 609
Abstract
Block copolymer (BCP) lithography is widely regarded as a promising next-generation nanolithography technique. However, achieving rapid assembly with defect-free morphology remains a significant challenge for its practical application. In this study, we presented a facile and efficient solvent annealing method for fabricating well-ordered [...] Read more.
Block copolymer (BCP) lithography is widely regarded as a promising next-generation nanolithography technique. However, achieving rapid assembly with defect-free morphology remains a significant challenge for its practical application. In this study, we presented a facile and efficient solvent annealing method for fabricating well-ordered BCP thin films within minutes on both flat and topographically patterned substrates. By accelerating the swelling process, rapid film swelling was observed within just 10 s of annealing, leading to well-ordered morphologies in 1~3 min. Furthermore, we systematically investigated the influence of swelling ratio (SR) on film morphology by precisely tuning solvent vapor pressure. For cylinder-forming poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) films, we identified three distinct SR-dependent ordering regimes: (I) Excessive SR led to a disordered morphology; (II) near-optimal SR balanced long-range and short-range orders, and a slight increase in SR enhanced the long-range order but introduced short-range defects. (III) Insufficient SR failed to provide adequate chain mobility, limiting long-range order development. These findings highlight the critical role of SR in controlling defect density in nanopatterned surfaces. Long-range-ordered BCP nanopatterns can only be achieved under optimal SR conditions that ensure sufficient chain mobility. We believe this rapid annealing strategy, which is also applicable to other solvent-based annealing systems for BCP films, may contribute to next-generation nanolithography for microfabrication. Full article
Show Figures

Figure 1

16 pages, 11834 KiB  
Article
Self-Assembly of Lamellar/Micellar Block Copolymers Induced Through Their Rich Exposure to Various Solvent Vapors: An AFM Study
by Iulia Babutan, Leonard Ionut Atanase and Ioan Botiz
Materials 2025, 18(8), 1759; https://doi.org/10.3390/ma18081759 - 11 Apr 2025
Cited by 1 | Viewed by 588
Abstract
In this work, we have employed an advanced method of solvent vapor annealing to expose spin-cast thin films made from various lamellar and micellar block copolymers to generous amounts of different types of solvent vapors, with the final goal of stimulating the films’ [...] Read more.
In this work, we have employed an advanced method of solvent vapor annealing to expose spin-cast thin films made from various lamellar and micellar block copolymers to generous amounts of different types of solvent vapors, with the final goal of stimulating the films’ self-assembly into (hierarchically) ordered structures. As revealed by atomic force microscopy measurements, periodic lamellar nanostructures of molecular dimensions based on poly(4-vinylpyridine)-b-polybutadiene and poly(2-vinylpyridine)-b-polybutadiene, as well as micellar structures further packed into either (parallel) stripe-like or honeycomb-resembling configurations based on poly(2-vinylpyridine)-b-poly(tert-butyl methacrylate)-b-poly(methacrylate cyclohexyl), were successfully produced through processing. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

20 pages, 10269 KiB  
Article
Viscoelasticity of PPA/SBS/SBR Composite Modified Asphalt and Asphalt Mixtures Under Pressure Aging Conditions
by Zongjie Yu, Xinpeng Ling, Ze Fan, Yueming Zhou and Zhu Ma
Polymers 2025, 17(5), 698; https://doi.org/10.3390/polym17050698 - 6 Mar 2025
Cited by 1 | Viewed by 788
Abstract
The viscoelastic behavior of asphalt mixtures is a crucial consideration in the analysis of pavement mechanical responses and structural design. This study aims to elucidate the molecular structure and component evolution trends of polyphosphoric acid (PPA)/styrene butadiene styrene block copolymer (SBS)/styrene butadiene rubber [...] Read more.
The viscoelastic behavior of asphalt mixtures is a crucial consideration in the analysis of pavement mechanical responses and structural design. This study aims to elucidate the molecular structure and component evolution trends of polyphosphoric acid (PPA)/styrene butadiene styrene block copolymer (SBS)/styrene butadiene rubber copolymer (SBR) composite modified asphalt (CMA) under rolling thin film oven test (RTFOT) and pressure aging (PAV) conditions, as well as to analyze the viscoelastic evolution of CMA mixtures. First, accelerated aging was conducted in the laboratory through RTFOT, along with PAV tests for 20 h and 40 h. Next, the microscopic characteristics of the binder at different aging stages were explored using Fourier-transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) tests. Additionally, fundamental rheological properties and temperature sweep tests were performed to reveal the viscoelastic evolution characteristics of CMA. Ultimately, the viscoelastic properties of CMA mixtures under dynamic loading at different aging stages were clarified. The results indicate that the incorporation of SBS and SBR increased the levels of carbonyl and sulfoxide factors while decreasing the level of long-chain factors, which slowed down the rate of change of large molecule content and reduced the rate of change of LMS by more than 6%, with the rate of change of overall molecular weight distribution narrowing to below 50%. The simultaneous incorporation of SBS and SBR into CMA mixtures enhanced the dynamic modulus in the 25 Hz and −10 °C range by 24.3% (AC-13), 15.4% (AC-16), and reduced the φ by 55.8% (AC-13), 40% (AC-16). This research provides a reference for the application of CMA mixtures in the repair of pavement pothole damage. Full article
Show Figures

Figure 1

24 pages, 56372 KiB  
Article
Structure–Properties Correlations in Novel Copoly(urethane-imide) Films Selectively Destructed Under Thermolysis and Hydrolysis in Alkaline Media
by Andrei L. Didenko, Tatyana E. Sukhanova, Anna S. Nesterova, Gleb V. Vaganov, Viktor K. Lavrentiev, Ilya A. Kabykhno, Natalia A. Grozova, Elena N. Popova, Almaz M. Kamalov, Konstantin S. Polotnyanshchikov, Tatyana S. Anokhina, I. L. Borisov and Vladislav V. Kudryavtsev
Polymers 2025, 17(3), 329; https://doi.org/10.3390/polym17030329 - 25 Jan 2025
Viewed by 885
Abstract
The paper describes changes in the structure, morphology, mechanical and thermal properties of porous film samples of poly(4,4′-oxidiphenylene)pyromellitimide prepared as a result of selective destruction of urethane blocks in copolymers composed of pyromellitimide blocks and polyurethane blocks. The initial samples of the new [...] Read more.
The paper describes changes in the structure, morphology, mechanical and thermal properties of porous film samples of poly(4,4′-oxidiphenylene)pyromellitimide prepared as a result of selective destruction of urethane blocks in copolymers composed of pyromellitimide blocks and polyurethane blocks. The initial samples of the new composition of statistical copoly(urethane-imide)s (CoPUIs) were prepared via polycondensation methods using pyromellitic dianhydride (PMDA), 4,4′-oxidyaniline (ODA), 2,4-toluylenediisocyanate (TDI), as well as polycaprolactone (PCL) and poly(1,6-hexanediol/neopentylglycol-alt-adipic acid) (ALT) as monomers. The molar ratio of imide and polyurethane blocks in CoPUI was 10:1. The initial films were heated up to 170 °C to complete the polycondensation processes, after which they were subjected to thermolysis and hydrolysis. The thermolysis (thermal degradation) of copolymers was carried out by heating the initial samples to temperatures of 300 °C or 350 °C. Then, the thermolized films were subjected to chemical degradation in hydrolytic baths containing an aqueous solution of potassium hydroxide. As a result, urethane blocks were destroyed and removed from the polymer. The resulting products practically did not contain polyurethane links and, in chemical composition, were practically identical to poly(4,4′-oxidiphenylene)pyromellitimide. NMR and IR spectroscopy, atomic force microscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis and mechanical properties testing were used to determine the differences in the structure and properties of the initial copolymers and targeted products. The effect of the conditions of destructive processes on the structure, morphology and mechanical properties of the obtained porous polyimide films was determined. From a practical point of view, the final porous films are promising as membranes for filtering aggressive amide solvents at high temperatures. Full article
Show Figures

Figure 1

28 pages, 7600 KiB  
Review
Probing Functional Thin Films with Grazing Incidence X-Ray Scattering: The Power of Indexing
by Detlef-M. Smilgies
Crystals 2025, 15(1), 63; https://doi.org/10.3390/cryst15010063 - 9 Jan 2025
Cited by 1 | Viewed by 1942
Abstract
Grazing incidence small- and wide-angle X-ray scattering (GISAXS, GIWAXS) has been widely applied for the study of functional thin films, be it for the characterization of nanostructured morphologies in block copolymers, nanocomposites, and nanoparticle assemblies, or for the packing and orientation of aromatic [...] Read more.
Grazing incidence small- and wide-angle X-ray scattering (GISAXS, GIWAXS) has been widely applied for the study of functional thin films, be it for the characterization of nanostructured morphologies in block copolymers, nanocomposites, and nanoparticle assemblies, or for the packing and orientation of aromatic molecules or conjugated polymers. Solution-processed thin films are typically uniaxial powders, with a specific crystallographic plane oriented parallel to the substrate surface while ordered domains assume random orientations laterally. The convenient GISAXS/GIWAXS scattering geometry facilitates obtaining complete information about thin film structure as well as the ability to study samples in well-defined sample environments, as controlled by temperature, exposure to solvent vapor and drying, or coating processes. Moreover, with suitable X-ray sources and detectors, information about the ordering kinetics and phase transitions can be obtained down to the millisecond scale. The scattering geometry and an interactive graphical tool to index such scattering patterns will be discussed here. Furthermore, it will be demonstrated that proper indexing of the X-ray scattering patterns can provide deep insight into thin film structure–property relationships and the kinetics of structure formation. Recent examples of nanostructures and molecular organization in thin films will be discussed, as well as self-assembly processes leading to such structures. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Graphical abstract

19 pages, 9963 KiB  
Article
Polystyrene–Poly(acrylic acid) Block Copolymers for Encapsulation of Butyrylcholinesterase into Injectable Nanoreactors
by Petr A. Fetin, Ivan M. Zorin, Zukhra M. Shaihutdinova, Patrick Masson and Tatiana N. Pashirova
Biomolecules 2024, 14(12), 1555; https://doi.org/10.3390/biom14121555 - 5 Dec 2024
Viewed by 1315
Abstract
The article is devoted to the creation of enzymatic nanoreactors based on polystyrene–block–poly(acrylic acid) (PS-b-PAA) copolymers containing bioscavengers capable of neutralizing toxic esters both in the body and in the environment. Block copolymers of different amphiphilicity, hydrophilicity and molecular weights were synthesized and [...] Read more.
The article is devoted to the creation of enzymatic nanoreactors based on polystyrene–block–poly(acrylic acid) (PS-b-PAA) copolymers containing bioscavengers capable of neutralizing toxic esters both in the body and in the environment. Block copolymers of different amphiphilicity, hydrophilicity and molecular weights were synthesized and characterized using gel permeation chromatography, NMR and UV spectroscopy. Polymeric nanocontainers in the absence and presence of human butyrylcholinesterase were made by film hydration and characterized by dynamic light scattering and microscopy methods. Enzyme activity was determined using the Ellman method. For the first time, factors that need to be taken into account for the creation of effective enzymatic nanoreactors based on PS-b-PAA are presented. The data obtained open up the possibility of PS-b-PAA nanoreactor use for future in vivo bioscavenger studies. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

26 pages, 6642 KiB  
Review
Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films
by Jungwook Choi and Byung Hyo Kim
Nanomaterials 2024, 14(20), 1685; https://doi.org/10.3390/nano14201685 - 21 Oct 2024
Cited by 12 | Viewed by 4923
Abstract
Nanoparticle-based thin films are increasingly being used in various applications. One of the key factors that determines the properties and performances of these films is the type of ligands attached to the nanoparticle surfaces. While long-chain surfactants, such as oleic acid, are commonly [...] Read more.
Nanoparticle-based thin films are increasingly being used in various applications. One of the key factors that determines the properties and performances of these films is the type of ligands attached to the nanoparticle surfaces. While long-chain surfactants, such as oleic acid, are commonly employed to stabilize nanoparticles and ensure high monodispersity, these ligands often hinder charge transport due to their insulating nature. Although thermal annealing can remove the long-chain ligands, the removal process often introduces defects such as cracks and voids. In contrast, the use of short-chain organic or inorganic ligands can minimize interparticle distance, improving film conductivity, though challenges such as incomplete ligand exchange and residual barriers remain. Polymeric ligands, especially block copolymers, can also be employed to create films with tailored porosity. This review discusses the effects of various ligand types on the morphology and performance of nanoparticle-based films, highlighting the trade-offs between conductivity, structural integrity, and functionality. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

17 pages, 6456 KiB  
Article
Preparation and Characterization of Fluorinated Acrylate and Epoxy Co-Modified Waterborne Polyurethane
by Yufei Zhao, Shuai Yang, Jianjun Zhang, Shaoxiong Xu, Jinhui Han and Sude Ma
Polymers 2024, 16(18), 2576; https://doi.org/10.3390/polym16182576 - 12 Sep 2024
Cited by 3 | Viewed by 1641
Abstract
Conventional waterborne polyurethane (WPU) has poor water resistance and poor overall performance, which limits its application in outdoor coatings. A solution to this problem is urgently needed. The introduction of fluorine-containing groups can effectively improve the water resistance of WPU. In this study, [...] Read more.
Conventional waterborne polyurethane (WPU) has poor water resistance and poor overall performance, which limits its application in outdoor coatings. A solution to this problem is urgently needed. The introduction of fluorine-containing groups can effectively improve the water resistance of WPU. In this study, a new fluorinated chain extender (HFBMA-HPA) synthesized by free radical copolymerization and epoxy resin (E-44) were used to co-modify WPU, and five waterborne fluorinated polyurethane (WFPU) emulsions with different fluorine contents were prepared by the self-emulsification method. The effects of HFBMA-HPA content on the emulsion particle properties, coating surface properties, mechanical properties, water resistance, thermal stability, and corrosion resistance were investigated. The results showed that the WFPU coating had excellent thermal stability, corrosion resistance, and mechanical properties. As the content of HFBMA-HPA increased from 0 wt% to 14 wt%, the water resistance of the WFPU coating gradually increased, the water contact angle (WCA) increased from 73° to 98°, the water absorption decreased from 7.847% to 3.062%, and the surface energy decreased from 32.8 mN/m to 22.6 mN/m. The coatings also showed impressive performances in the adhesion and flexibility tests in extreme conditions. This study provides a waterborne fluorinated polyurethane material with excellent comprehensive performance that has potential application value in the field of outdoor waterproof and anticorrosion coatings. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

10 pages, 2585 KiB  
Article
The Effect of Hydrophobic Modified Block Copolymers on Water–Oil Interfacial Properties and the Demulsification of Crude Oil Emulsions
by Juan Zhang, Ping Liu, Yuan Gao and Qingping Yu
Polymers 2024, 16(17), 2392; https://doi.org/10.3390/polym16172392 - 23 Aug 2024
Viewed by 1002
Abstract
The demulsification effect of three types of block copolymers, BP123, BPF123, and H123, with the same PEO and PPO segments but different hydrophobic modification groups on crude oil emulsions and the properties of oil–water interfaces were investigated using demulsification experiments, an interfacial tensiometer, [...] Read more.
The demulsification effect of three types of block copolymers, BP123, BPF123, and H123, with the same PEO and PPO segments but different hydrophobic modification groups on crude oil emulsions and the properties of oil–water interfaces were investigated using demulsification experiments, an interfacial tensiometer, and surface viscoelastic and zeta potential instruments in this paper. The results showed that the hydrophobic modification group of the block copolymers had great effects on the demulsification performance. The H123 block copolymers with the strongest hydrophobicity had the best demulsification effect on the crude oil emulsions. The properties of the oil–water interfaces indicated that the modified block copolymers achieved the demulsification of crude oil emulsions by reducing the strength of the oil–water interfacial film and the interfacial tension. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

15 pages, 7156 KiB  
Article
Ferrocene-Modified Polyacrylonitrile-Containing Block Copolymers as Preceramic Materials
by Sebastian Heinz, Lea Gemmer, Oliver Janka and Markus Gallei
Polymers 2024, 16(15), 2142; https://doi.org/10.3390/polym16152142 - 28 Jul 2024
Cited by 1 | Viewed by 2839
Abstract
In the pursuit of fabricating functional ceramic nanostructures, the design of preceramic functional polymers has garnered significant interest. With their easily adaptable chemical composition, molecular structure, and processing versatility, these polymers hold immense potential in this field. Our study succeeded in focusing on [...] Read more.
In the pursuit of fabricating functional ceramic nanostructures, the design of preceramic functional polymers has garnered significant interest. With their easily adaptable chemical composition, molecular structure, and processing versatility, these polymers hold immense potential in this field. Our study succeeded in focusing on synthesizing ferrocene-containing block copolymers (BCPs) based on polyacrylonitrile (PAN). The synthesis is accomplished via different poly(acrylonitrile-block-methacrylate)s via atom transfer radical polymerization (ATRP) and activators regenerated by electron transfer ATRP (ARGET ATRP) for the PAN macroinitiators. The molecular weights of the BCPs range from 44 to 82 kDa with dispersities between 1.19 and 1.5 as determined by SEC measurements. The volume fraction of the PMMA block ranges from 0.16 to 0.75 as determined by NMR. The post-modification of the BCPs using 3-ferrocenyl propylamine has led to the creation of redox-responsive preceramic polymers. The thermal stabilization of the polymer film has resulted in stabilized morphologies based on the oxidative PAN chemistry. The final pyrolysis of the sacrificial block segment and conversion of the metallopolymer has led to the formation of a porous carbon network with an iron oxide functionalized surface, investigated by scanning electron microscopy (SEM), energy dispersive X-ray mapping (EDX), and powder X-ray diffraction (PXRD). These findings could have significant implications in various applications, demonstrating the practical value of our research in convenient ceramic material design. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

15 pages, 5829 KiB  
Article
Disclosing Topographical and Chemical Patterns in Confined Films of High-Molecular-Weight Block Copolymers under Controlled Solvothermal Annealing
by Xiao Cheng, Jenny Tempeler, Serhiy Danylyuk, Alexander Böker and Larisa Tsarkova
Polymers 2024, 16(13), 1943; https://doi.org/10.3390/polym16131943 - 8 Jul 2024
Cited by 2 | Viewed by 3312
Abstract
The microphase separation of high-molecular-weight block copolymers into nanostructured films is strongly dependent on the surface fields. Both, the chain mobility and the effective interaction parameters can lead to deviations from the bulk morphologies in the structures adjacent to the substrate. Resolving frustrated [...] Read more.
The microphase separation of high-molecular-weight block copolymers into nanostructured films is strongly dependent on the surface fields. Both, the chain mobility and the effective interaction parameters can lead to deviations from the bulk morphologies in the structures adjacent to the substrate. Resolving frustrated morphologies with domain period L0 above 100 nm is an experimental challenge. Here, solvothermal annealing was used to assess the contribution of elevated temperatures of the vapor Tv and of the substrate Ts on the evolution of the microphase-separated structures in thin films symmetric of polystyrene-b-poly(2vinylpyridine) block copolymer (PS-PVP) with L0 about 120 nm. Pronounced topographic mesh-like and stripe patterns develop on a time scale of min and are attributed to the perforated lamella (PL) and up-standing lamella phases. By setting Tv/Ts combinations it is possible to tune the sizes of the resulting PL patterns by almost 10%. Resolving chemical periodicity using selective metallization of the structures revealed multiplication of the topographic stripes, i.e., complex segregation of the component within the topographic pattern, presumably as a result of morphological phase transition from initial non-equilibrium spherical morphology. Reported results reveal approaches to tune the topographical and chemical periodicity of microphase separation of high-molecular-weight block copolymers under strong confinement, which is essential for exploiting these structures as functional templates. Full article
(This article belongs to the Special Issue Block Copolymers: Synthesis, Self-Assembly and Application)
Show Figures

Figure 1

Back to TopTop