Disclosing Topographical and Chemical Patterns in Confined Films of High-Molecular-Weight Block Copolymers under Controlled Solvothermal Annealing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. Floating of the Films
2.4. Annealing Experiments
2.5. Characterization of the Films
2.6. Metallization of the Microphase Separated Structures
2.7. Pattern Transfer
3. Results and Discussions
3.1. Swelling under Controlled Solvothermal Conditions
3.2. Effect of Solvothermal Conditions and Annealing Time on the Microphase Separation Behavior of PS-PVP in Thin Films
3.3. Characterization of the Patterns
3.4. Morphological Phase Transition on a Short Time Scale
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gottlieb, E.R.; Guliyeva, A.; Epps, T.H., III. From Lab to Fab: Enabling Enhanced Control of Block Polymer Thin-Film Nanostructures. ACS Appl. Polym. Mater. 2021, 3, 4288–4303. [Google Scholar] [CrossRef]
- Cummins, C.; Lundy, R.; Walsh, J.J.; Ponsinet, V.; Fleury, G.; Morris, M.A. Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today 2020, 35, 100936. [Google Scholar] [CrossRef]
- Gunkel, I. Directing Block Copolymer Self-Assembly on Patterned Substrates. Small 2018, 14, 1802872. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.A.; Gartner, T.E.; Epps, T.H. Tuning Block Polymer Structure, Properties, and Processability for the Design of Efficient Nanostructured Materials Systems. Macromol. Chem. Phys. 2017, 218, 1600513. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Doerk, G.S. Thin film block copolymer self-assembly for nanophotonics. Nanotechnology 2022, 33, 292001. [Google Scholar] [CrossRef] [PubMed]
- Rasappa, S.; Hulkkonen, H.; Schulte, L.; Ndoni, S.; Reuna, J.; Salminen, T.; Niemi, T. High molecular weight block copolymer lithography for nanofabrication of hard mask and photonic nanostructures. J. Colloid Interface Sci. 2019, 534, 420–429. [Google Scholar] [CrossRef]
- Mokarian-Tabari, P.; Senthamaraikannan, R.; Glynn, C.; Collins, T.W.; Cummins, C.; Nugent, D.; O’Dwyer, C.; Morris, M.A. Large Block Copolymer Self-Assembly for Fabrication of Subwavelength Nanostructures for Applications in Optics. Nano Lett. 2017, 17, 2973–2978. [Google Scholar] [CrossRef] [PubMed]
- Stefik, M.; Guldin, S.; Vignolini, S.; Wiesner, U.; Steiner, U. Block copolymer self-assembly for nanophotonics. Chem. Soc. Rev. 2015, 44, 5076–5091. [Google Scholar] [CrossRef]
- Liu, S.; Yang, Y.; Zhang, L.; Xu, J.; Zhu, J. Recent progress in responsive photonic crystals of block copolymers. J. Mater. Chem. C 2020, 8, 16633–16647. [Google Scholar] [CrossRef]
- Lequieu, J.; Quah, T.; Delaney, K.T.; Fredrickson, G.H. Complete Photonic Band Gaps with Nonfrustrated ABC Bottlebrush Block Polymers. ACS Macro Lett. 2020, 9, 1074–1080. [Google Scholar] [CrossRef]
- Mir, S.H.; Rydzek, G.; Nagahara, L.A.; Khosla, A.; Mokarian-Tabari, P. Review—Recent Advances in Block-Copolymer Nanostructured Subwavelength Antireflective Surfaces. J. Electrochem. Soc. 2019, 167, 037502. [Google Scholar] [CrossRef]
- Song, D.P.; Jacucci, G.; Dundar, F.; Naik, A.; Fei, H.F.; Vignolini, S.; Watkins, J.J. Photonic Resins: Designing Optical Appearance via Block Copolymer Self-Assembly. Macromolecules 2018, 51, 2395–2400. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chan, C.L.C.; Zhao, T.H.; Parker, R.M.; Vignolini, S. Recent Advances in Block Copolymer Self-Assembly for the Fabrication of Photonic Films and Pigments. Adv. Opt. Mater. 2021, 9, 2100519. [Google Scholar] [CrossRef]
- Ndaya, D.; Bosire, R.; Kasi, R.M. Spherical Photonic Nanostructures from High Molecular Weight Liquid Crystalline Brush-like Block Copolymers. ACS Appl. Polym. Mater. 2020, 2, 5511–5520. [Google Scholar] [CrossRef]
- Mapas, J.K.D.; Thomay, T.; Cartwright, A.N.; Ilavsky, J.; Rzayev, J. Ultrahigh Molecular Weight Linear Block Copolymers: Rapid Access by Reversible-Deactivation Radical Polymerization and Self-Assembly into Large Domain Nanostructures. Macromolecules 2016, 49, 3733–3738. [Google Scholar] [CrossRef]
- Appold, M.; Grune, E.; Frey, H.; Gallei, M. One-Step Anionic Copolymerization Enables Formation of Linear Ultrahigh-Molecular-Weight Block Copolymer Films Featuring Vivid Structural Colors in the Bulk State. ACS Appl. Mater. Interfaces 2018, 10, 18202–18212. [Google Scholar] [CrossRef]
- Olson, R.A.; Lott, M.E.; Garrison, J.B.; Davidson Iv, C.L.G.; Trachsel, L.; Pedro, D.I.; Sawyer, W.G.; Sumerlin, B.S. Inverse Miniemulsion Photoiniferter Polymerization for the Synthesis of Ultrahigh Molecular Weight Polymers. Macromolecules 2022, 55, 8451–8460. [Google Scholar] [CrossRef]
- Hofman, A.H.; Reza, M.; Ruokolainen, J.; ten Brinke, G.; Loos, K. The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double-Comb Diblock Copolymers. Macromol. Rapid Commun. 2017, 38, 1700288. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.B.; Walsh, D.J.; Kim, D.H.; Kwok, J.; Lee, B.; Guironnet, D.; Diao, Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Sci. Adv. 2020, 6, eaaz7202. [Google Scholar] [CrossRef]
- Matsushita, Y.; Takano, A.; Vayer, M.; Sinturel, C. Nonclassical Block Copolymer Self-Assembly Resulting from a Constrained Location of Chains and Junctions. Adv. Mater. Interfaces 2020, 7, 1902007. [Google Scholar] [CrossRef]
- Moriceau, G.; Kilchoer, C.; Djeghdi, K.; Weder, C.; Steiner, U.; Wilts, B.D.; Gunkel, I. Photonic Particles Made by the Confined Self-Assembly of a Supramolecular Comb-Like Block Copolymer. Macromol. Rapid Commun. 2021, 42, 2100522. [Google Scholar] [CrossRef]
- Cummins, C.; Alvarez-Fernandez, A.; Bentaleb, A.; Hadziioannou, G.; Ponsinet, V.; Fleury, G. Strategy for Enhancing Ultrahigh-Molecular-Weight Block Copolymer Chain Mobility to Access Large Period Sizes (>100 nm). Langmuir 2020, 36, 13872–13880. [Google Scholar] [CrossRef] [PubMed]
- Hnatchuk, N.; Hathaway, E.; Cui, J.; Li, X. Nonequilibrium Self-Assembly of Ultrahigh-Molecular-Weight Block Copolymers into an Asymmetric Nanostructure. ACS Appl. Polym. Mater. 2022, 4, 7311–7320. [Google Scholar] [CrossRef]
- Sperschneider, A.; Hund, M.; Schoberth, H.G.; Schacher, F.H.; Tsarkova, L.; Müller, A.H.E.; Böker, A. Going beyond the Surface: Revealing Complex Block Copolymer Morphologies with 3D Scanning Force Microscopy. ACS Nano 2010, 4, 5609–5616. [Google Scholar] [CrossRef] [PubMed]
- Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M.A. Solvent vapor annealing of block polymer thin films. Macromolecules 2013, 46, 5399–5415. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, W.I.; Choi, Y.J.; Jung, Y.K.; Kim, K.H. Ultra-rapid pattern formation of block copolymers with a high-χ parameter in immersion annealing induced by a homopolymer. RSC Adv. 2016, 6, 21105–21110. [Google Scholar] [CrossRef]
- Kim, E.; Ahn, H.; Park, S.; Lee, H.; Lee, M.; Lee, S.; Kim, T.; Kwak, E.A.; Lee, J.H.; Lei, X.; et al. Directed Assembly of High Molecular Weight Block Copolymers: Highly Ordered Line Patterns of Perpendicularly Oriented Lamellae with Large Periods. ACS Nano 2013, 7, 1952–1960. [Google Scholar] [CrossRef]
- Cheng, X.; Böker, A.; Tsarkova, L. Temperature-Controlled Solvent Vapor Annealing of Thin Block Copolymer Films. Polymers 2019, 11, 1312. [Google Scholar] [CrossRef]
- Pula, P.; Leniart, A.; Majewski, P.W. Solvent-assisted self-assembly of block copolymer thin films. Soft Matter 2022, 18, 4042–4066. [Google Scholar] [CrossRef]
- Cao, W.; Xia, S.; Appold, M.; Saxena, N.; Biessmann, L.; Grott, S.; Li, N.; Gallei, M.; Bernstorff, S.; Mueller-Buschbaum, P. Self-Assembly in ultrahigh molecular weight sphere-forming diblock copolymer thin films under strong confinement. Sci. Rep. 2019, 9, 18269. [Google Scholar] [CrossRef]
- Lundy, R.; Flynn, S.P.; Cummins, C.; Kelleher, S.M.; Collins, M.N.; Dalton, E.; Daniels, S.; Morris, M.A.; Enright, R. Controlled solvent vapor annealing of a high χ block copolymer thin film. Phys. Chem. Chem. Phys. 2017, 19, 2805–2815. [Google Scholar] [CrossRef] [PubMed]
- Knoll, A.; Magerle, R.; Krausch, G. Phase behavior in thin films of cylinder-forming ABA block copolymers: Experiments. J. Chem. Phys. 2004, 120, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Albert, J.N.L.; Bogart, T.D.; Lewis, R.L.; Beers, K.L.; Fasolka, M.J.; Hutchison, J.B.; Vogt, B.D.; Epps, T.H. Gradient Solvent Vapor Annealing of Block Copolymer Thin Films Using a Microfluidic Mixing Device. Nano Lett. 2011, 11, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Stenbock-Fermor, A.; Knoll, A.W.; Böker, A.; Tsarkova, L. Enhancing Ordering Dynamics in Solvent-Annealed Block Copolymer Films by Lithographic Hard Mask Supports. Macromolecules 2014, 47, 3059–3067. [Google Scholar] [CrossRef]
- Jin, C.; Olsen, B.C.; Luber, E.J.; Buriak, J.M. Nanopatterning via Solvent Vapor Annealing of Block Copolymer Thin Films. Chem. Mater. 2017, 29, 176–188. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.; Ahn, H.; Kim, J.H.; Yoo, P.J.; Ryu, D.Y. Giant Gyroid and Templates from High-Molecular-Weight Block Copolymer Self-assembly. Sci. Rep. 2016, 6, 36326. [Google Scholar] [CrossRef]
- Selkirk, A.; Prochukhan, N.; Lundy, R.; Cummins, C.; Gatensby, R.; Kilbride, R.; Parnell, A.; Vasquez, J.B.; Morris, M.; Mokarian-Tabari, P. Optimization and Control of Large Block Copolymer Self-Assembly via Precision Solvent Vapor Annealing. Macromolecules 2021, 54, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Cheng, X.; Böker, A.; Tsarkova, L. Hierarchical Manipulation of Block Copolymer Patterns on 3D Topographic Substrates: Beyond Graphoepitaxy. Adv. Mater. 2016, 28, 6900–6905. [Google Scholar] [CrossRef]
- Weller, D.W.; Galuska, L.; Wang, W.; Ehlenburg, D.; Hong, K.; Gu, X. Roll-to-Roll Scalable Production of Ordered Microdomains Through Nonvolatile Additive Solvent Annealing of Block Copolymers. Macromolecules 2019, 52, 5026–5032. [Google Scholar] [CrossRef]
- Doerk, G.S.; Li, R.; Fukuto, M.; Yager, K.G. Wet Brush Homopolymers as “Smart Solvents” for Rapid, Large Period Block Copolymer Thin Film Self-Assembly. Macromolecules 2020, 53, 1098–1113. [Google Scholar] [CrossRef]
- Isozaki, Y.; Higashiharaguchi, S.; Kaneko, N.; Yamazaki, S.; Taniguchi, T.; Karatsu, T.; Ueda, Y.; Motokawa, R. Polymer Photonic Crystals Prepared by Triblock Copolymerization-induced in situ Microphase Separation. Chem. Lett. 2022, 51, 625–628. [Google Scholar] [CrossRef]
- Ogieglo, W.; Stenbock-Fermor, A.; Juraschek, T.M.; Bogdanova, Y.; Benes, N.; Tsarkova, L.A. Synergic Swelling of Interactive Network Support and Block Copolymer Films during Solvent Vapor Annealing. Langmuir 2018, 34, 9950–9960. [Google Scholar] [CrossRef] [PubMed]
- Modi, A.; Bhaway, S.M.; Vogt, B.D.; Douglas, J.F.; Al-Enizi, A.; Elzatahry, A.; Sharma, A.; Karim, A. Direct Immersion Annealing of Thin Block Copolymer Films. ACS Appl. Mater. Interfaces 2015, 7, 21639–21645. [Google Scholar] [CrossRef] [PubMed]
- Takano, K.; Nyu, T.; Maekawa, T.; Seki, T.; Nakatani, R.; Komamura, T.; Hayakawa, T.; Hayashi, T. Real-time and in situ observation of structural evolution of giant block copolymer thin film under solvent vapor annealing by atomic force microscopy. RSC Adv. 2020, 10, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.A.; Doerk, G.S. Hierarchical, Self-Assembled Metasurfaces via Exposure-Controlled Reflow of Block Copolymer-Derived Nanopatterns. ACS Appl. Mater. Interfaces 2022, 14, 27466–27475. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhou, X.; Ma, J.; Yang, X.; Deng, Y. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: Assembly engineering and applications. Chem. Soc. Rev. 2020, 49, 1173–1208. [Google Scholar] [CrossRef]
- Subramanian, A.; Doerk, G.; Kisslinger, K.; Yi, D.H.; Grubbs, R.B.; Nam, C.Y. Three-dimensional electroactive ZnO nanomesh directly derived from hierarchically self-assembled block copolymer thin films. Nanoscale 2019, 11, 9533–9546. [Google Scholar] [CrossRef] [PubMed]
- Esmeraldo Paiva, A.; Baez Vasquez, J.F.; Selkirk, A.; Prochukhan, N.; Medeiros Borsagli, F.G.L.; Morris, M. Highly Ordered Porous Inorganic Structures via Block Copolymer Lithography: An Application of the Versatile and Selective Infiltration of the “Inverse” P2VP-b-PS System. ACS Appl. Mater. Interfaces 2022, 14, 35265–35275. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Liu, R.; Su, T.; Sun, Z.; Ross, C.A. Reversible Morphology Locking via Metal Infiltration in a Block Copolymer. ACS Nano 2023, 17, 12225–12233. [Google Scholar] [CrossRef]
- Ginige, G.; Song, Y.; Olsen, B.C.; Luber, E.J.; Yavuz, C.T.; Buriak, J.M. Solvent Vapor Annealing, Defect Analysis, and Optimization of Self-Assembly of Block Copolymers Using Machine Learning Approaches. ACS Appl. Mater. Interfaces 2021, 13, 28639–28649. [Google Scholar] [CrossRef]
- Lodge, T.P.; Hanley, K.J.; Pudil, B.; Alahapperuma, V. Phase Behavior of Block Copolymers in a Neutral Solvent. Macromolecules 2003, 36, 816–822. [Google Scholar] [CrossRef]
- Fredrickson, G.H.; Leibler, L. Theory of block copolymer solutions. Macromolecules 1989, 22, 1238–1250. [Google Scholar] [CrossRef]
- Delacruz, M.O. Theory of Microphase Separation in Block Copolymer Solutions. J. Chem. Phys. 1989, 90, 1995–2002. [Google Scholar]
- Gotrik, K.W.; Ross, C.A. Solvothermal Annealing of Block Copolymer Thin Films. Nano Lett. 2013, 13, 5117–5122. [Google Scholar] [CrossRef]
- Knoll, A.; Horvat, A.; Lyakhova, K.S.; Krausch, G.; Sevink, G.J.A.; Zvelindovsky, A.V.; Magerle, R. Phase behavior in thin films of cylinder-forming block copolymers. Phys. Rev. Lett. 2002, 89, 035501. [Google Scholar] [CrossRef]
- Neppalli, S.N.; Collins, T.W.; Gholamvand, Z.; Cummins, C.; Morris, M.A.; Mokarian-Tabari, P. Defining Swelling Kinetics in Block Copolymer Thin Films: The Critical Role of Temperature and Vapour Pressure Ramp. Polymers 2021, 13, 4238. [Google Scholar] [CrossRef] [PubMed]
- Rasappa, S.; Schulte, L.; Borah, D.; Morris, M.A.; Ndoni, S. Rapid, Brushless Self-assembly of a PS-b-PDMS Block Copolymer for Nanolithography. Colloid Interface Sci. Commun. 2014, 2, 1–5. [Google Scholar] [CrossRef]
- Ludwigs, S.; Böker, A.; Abetz, V.; Müller, A.H.; Krausch, G. Phase behavior of linear polystyrene-block-poly(2-vinylpyridine)-block-poly(tert-butyl methacrylate) triblock terpolymers. Polymer 2003, 44, 6815–6823. [Google Scholar] [CrossRef]
- Max, E.; Hund, M.; Potemkin, I.I.; Tsarkova, L. Floated Lamella Films of Styrenic Block Copolymers: Local Shearing Deformations and Heterogeneous Layer at the Substrate. Macromolecules 2014, 47, 316–323. [Google Scholar] [CrossRef]
- Vayer, M.; Vital, A.; Sinturel, C. New Insights into Polymer-Solvent Affinity in Thin Films. Eur. Polym. J. 2017, 93, 132–139. [Google Scholar] [CrossRef]
- Gensel, J.; Liedel, C.; Schoberth, H.G.; Tsarkova, L. “Micro-structure-macro-response” relationship in swollen block copolymer films. Soft Matter 2009, 5, 2534–2537. [Google Scholar] [CrossRef]
- Horvat, A.; Sevink, G.J.A.; Zvelindovsky, A.V.; Krekhov, A.; Tsarkova, L. Specific Features of Defect Structure and Dynamics in the Cylinder Phase of Block Copolymers. ACS Nano 2008, 2, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Tsarkova, L. Distortion of a Unit Cell versus Phase Transition to Nonbulk Morphology in Frustrated Films of Cylinder-Forming Polystyrene-b-polybutadiene Diblock Copolymers. Macromolecules 2012, 45, 7985–7994. [Google Scholar] [CrossRef]
Ds = hsw/hdry | 1.66 | 1.73 | 2.47 | 2.45 |
---|---|---|---|---|
Tv/Ts °C | 14/20 | 24/30 | 19/20 | 29/30 |
CCD, nm | 125 ± 29 | 115 ± 22 | 120 ± 32 | 111 ± 42 |
Depth, nm | 6.2 ± 1.5 | 5.0 ± 1.0 | 4.7 ± 0.6 | 6.8 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Tempeler, J.; Danylyuk, S.; Böker, A.; Tsarkova, L. Disclosing Topographical and Chemical Patterns in Confined Films of High-Molecular-Weight Block Copolymers under Controlled Solvothermal Annealing. Polymers 2024, 16, 1943. https://doi.org/10.3390/polym16131943
Cheng X, Tempeler J, Danylyuk S, Böker A, Tsarkova L. Disclosing Topographical and Chemical Patterns in Confined Films of High-Molecular-Weight Block Copolymers under Controlled Solvothermal Annealing. Polymers. 2024; 16(13):1943. https://doi.org/10.3390/polym16131943
Chicago/Turabian StyleCheng, Xiao, Jenny Tempeler, Serhiy Danylyuk, Alexander Böker, and Larisa Tsarkova. 2024. "Disclosing Topographical and Chemical Patterns in Confined Films of High-Molecular-Weight Block Copolymers under Controlled Solvothermal Annealing" Polymers 16, no. 13: 1943. https://doi.org/10.3390/polym16131943
APA StyleCheng, X., Tempeler, J., Danylyuk, S., Böker, A., & Tsarkova, L. (2024). Disclosing Topographical and Chemical Patterns in Confined Films of High-Molecular-Weight Block Copolymers under Controlled Solvothermal Annealing. Polymers, 16(13), 1943. https://doi.org/10.3390/polym16131943