Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (215)

Search Parameters:
Keywords = blast furnace (BF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2332 KiB  
Article
Evaluation of Spent Catalyst from Fluid Catalytic Cracking in Fly Ash and Blast Furnace Slag Based Alkali Activated Materials
by Yolanda Luna-Galiano, Domigo Cabrera-Gallardo, Mónica Rodríguez-Galán, Rui M. Novais, João A. Labrincha and Carlos Leiva Fernández
Recycling 2025, 10(4), 149; https://doi.org/10.3390/recycling10040149 - 1 Aug 2025
Viewed by 227
Abstract
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a [...] Read more.
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a AAM matrix offers several advantages: valorization of the material, reducing its disposal in landfills and the landfill cost, and minimizing the environmental impact. Mineralogical, physical and mechanical characterization were carried out. The durability of the specimens was studied by performing acid attack and thermal stability tests. Mass variation, compressive strength and porosity parameters were determined to assess the durability. BFS- and FA-based AAMs have a different chemical composition, which contribute to variations in microstructure and physical and mechanical properties. Acid neutralization capacity was also determined to analyse the acid attack results. Porosity, including the pore size distribution, and the acid neutralization capacity are crucial in explaining the resistance of the AAMs to sulfuric acid attack and thermal degradation. Herein, a novel route was explored, the use of SCFCC to enhance the durability of AAMs under harsh operating conditions since results show that the compositions containing SCFCC showed lower strength decay due to the lower macroporosity proportions in these compositions. Full article
Show Figures

Figure 1

27 pages, 565 KiB  
Review
Review of the Use of Waste Materials in Rigid Airport Pavements: Opportunities, Benefits and Implementation
by Loretta Newton-Hoare, Sean Jamieson and Greg White
Sustainability 2025, 17(15), 6959; https://doi.org/10.3390/su17156959 - 31 Jul 2025
Viewed by 171
Abstract
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies [...] Read more.
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies is the lack of guidance relating to the opportunities, potential benefits, associated risks and an implementation plan specific to airport pavements. This research reviewed opportunities to incorporate waste materials into rigid airport pavements, focusing on concrete base slabs. Commonly used supplementary cementitious materials (SCMs), such as fly ash and ground granulated blast furnace slag (GGBFS) were considered, as well as recycled aggregates, including recycled concrete aggregate (RCA), recycled crushed glass (RCG), and blast furnace slag (BFS). Environmental Product Declarations (EPDs) were also used to quantify the potential for environmental benefit associated with various concrete mixtures, with findings showing 23% to 50% reductions in embodied carbon are possible for selected theoretical concrete mixtures that incorporate waste materials. With considered evaluation and structured implementation, the integration of waste materials into rigid airport pavements offers a practical and effective route to improve environmental outcomes in aviation infrastructure. It was concluded that a Triple Bottom Line (TBL) framework—assessing financial, environmental, and social factors—guides material selection and can support sustainable decision-making, as does performance-based specifications that enable sustainable technologies to be incorporated into airport pavement. The study also proposed a consequence-based implementation hierarchy to facilitate responsible adoption of waste materials in airside pavements. The outcomes of this review will assist airport managers and pavement designers to implement practical changes to achieve more sustainable rigid airport pavements in the future. Full article
Show Figures

Figure 1

16 pages, 9499 KiB  
Article
Durability Assessment of Alkali-Activated Geopolymers Matrices for Organic Liquid Waste Immobilization
by Rosa Lo Frano, Salvatore Angelo Cancemi, Eleonora Stefanelli and Viktor Dolin
Materials 2025, 18(13), 3181; https://doi.org/10.3390/ma18133181 - 4 Jul 2025
Viewed by 318
Abstract
This study investigates the mechanical and microstructural performance of three alkali-activated geopolymer formulations, constituted of metakaolin (MK), blast furnace slag (BFS), and a ternary blend of MK, BFS, and fly ash (MIX), for the immobilization of simulated radioactive liquid organic waste (RLOW). Thermal [...] Read more.
This study investigates the mechanical and microstructural performance of three alkali-activated geopolymer formulations, constituted of metakaolin (MK), blast furnace slag (BFS), and a ternary blend of MK, BFS, and fly ash (MIX), for the immobilization of simulated radioactive liquid organic waste (RLOW). Thermal ageing tests were performed to evaluate geopolymer durability, including fire exposure (800 °C) and climatic chamber cycles (from −20 to 40 °C). Characterization through thermogravimetric analysis (TGA), compression tests, and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) was carried out to assess material degradation after thermal ageing. Preliminary results showed substantial strength and microstructural degradation in oil-loaded specimens after cyclic climatic ageing, while fire-exposed blank matrices retained partial mechanical integrity. BFS matrices exhibited the best thermal resistance, attributable to the formation of Ca-Al-Si-hydrate (C-A-S-H) gels. These findings support the use of optimized geopolymer formulations for safe RLOW immobilization, while contributing to the advancement of knowledge on sustainable and regulatory-compliant direct conditioning technology. Full article
Show Figures

Figure 1

15 pages, 4286 KiB  
Article
Numerical Modeling and Thermovision Camera Measurement of Blast Furnace Raceway Dynamics
by Sailesh Kesavan, Joakim Eck, Lars-Erik From, Maria Lundgren, Lena Sundqvist Öqvist and Martin Kjellberg
Materials 2025, 18(13), 3061; https://doi.org/10.3390/ma18133061 - 27 Jun 2025
Viewed by 350
Abstract
The blast furnace (BF) and basic oxygen route account for approximately 70% of the global steel production and create 1.8 tons of CO2 per ton of steel, produced primarily due to the use of coke and pulverized coal (PC) at the BF. [...] Read more.
The blast furnace (BF) and basic oxygen route account for approximately 70% of the global steel production and create 1.8 tons of CO2 per ton of steel, produced primarily due to the use of coke and pulverized coal (PC) at the BF. With global pressure to reduce CO2 emissions, optimization of BF operation is crucial, which is possible through optimizing fuel consumption, and improving process stability. Understanding the complex combustion and flow dynamics in the raceway region is essential for enhancing reducing agent utilization. Modeling plays a key role in predicting these behaviors and providing insights into the process; however, validation of these models is crucial for their reliability but difficult in the complex and hostile BF raceway region. In this study, a validated raceway model developed at Swerim was used to evaluate four different cases, namely R1 (Reference), R2 (Low oxygen to blast), R3 (High blast moisture), and R4 (High PC) using an injection coal from SSAB Oxelösund. During actual experiments, the temperature distribution in the raceway was measured using a thermovision camera (TVC) to validate the CFD simulation results. The combined use aims to cross-validate the results simultaneously to establish a reliable framework for future parametric studies of raceway behavior under varying operational conditions using CFD simulations The results indicated that it is possible to measure the temperature within the raceway region using TVC at depths indicated to be 0.5–0.7 m, when not obscured by the coal plume, or <0.5 m, when obscured. TVC measurements are clearly quantitatively affected when obscured, indicated by considerably lower temperatures in the order of 200 °C between similar process conditions. A decrease of O2 injection results in an extended raceway region as the conditions become less chemically favorable for combustion due to a lower reactant content offsetting the ignition point and reducing the reaction rate in the raceway. An increased moisture content in the blast results in a reduced size of the race-way region as energy is consumed as latent energy and cracks water. An increase in PC rate results in a larger/wider raceway region, as more PC is devolatilized and combusted early on, resulting in larger gas volumes expanding the raceway region outwards, perpendicular to the injection. Full article
(This article belongs to the Special Issue Fundamental Metallurgy: From Impact Solutions to New Insight)
Show Figures

Figure 1

15 pages, 1359 KiB  
Article
Predicting CO2 Emissions in U.S. Ironmaking: A Data-Driven Approach for Long-Term Policy and Process Optimization
by Mohammad Meysami, Alex Meisami, Mohammad Merhi, Hassan Dehghanpour and Amirhossein Meysami
Sustainability 2025, 17(13), 5859; https://doi.org/10.3390/su17135859 - 25 Jun 2025
Viewed by 399
Abstract
The U.S. ironmaking sector plays a key role in global greenhouse gas emissions, mainly due to long-standing practices such as blast furnaces (BFs) and direct reduction (DR). In this work, we develop a new mathematical approach to estimate future CO2 emissions from [...] Read more.
The U.S. ironmaking sector plays a key role in global greenhouse gas emissions, mainly due to long-standing practices such as blast furnaces (BFs) and direct reduction (DR). In this work, we develop a new mathematical approach to estimate future CO2 emissions from the U.S. ironmaking industry through 2050. Our approach uses historical data from 2005 to 2021 and incorporates economic and energy use indicators to explore how emissions might change over time. According to our results, unless significant technological improvements and stronger energy policies are implemented, the industry is likely to continue producing large amounts of CO2. These findings highlight the pressing need to adopt cleaner alternatives—such as hydrogen-based direct reduction—to help meet international climate goals. Supporting the transition to low-emission technologies contributes to broader efforts in sustainable industrial development and long-term climate resilience. Full article
Show Figures

Figure 1

24 pages, 11363 KiB  
Article
Investigation of Mechanical Properties of Recycled Aggregate Concrete Incorporating Basalt Fiber, Copper Slag, and Ground Granulated Blast Furnace Slag
by Jinglei Liu, Guoliang Guo, Xiangfei Wang, Chun Lv, Dandan Wang and Hongliang Geng
Buildings 2025, 15(13), 2214; https://doi.org/10.3390/buildings15132214 - 24 Jun 2025
Cited by 1 | Viewed by 445
Abstract
Facing sand and gravel shortages, construction waste accumulation, and the “double carbon” goals, improving the performance of recycled aggregate concrete (RAC) and utilizing mineral waste slag are key to the development of green, low-carbon building materials. To enhance the mechanical performance of RAC [...] Read more.
Facing sand and gravel shortages, construction waste accumulation, and the “double carbon” goals, improving the performance of recycled aggregate concrete (RAC) and utilizing mineral waste slag are key to the development of green, low-carbon building materials. To enhance the mechanical performance of RAC and facilitate the sustainable utilization of mineral waste, this study innovatively incorporated copper slag (CS), ground granulated blast furnace slag (GGBS), and basalt fiber (BF) into RAC. The modified RAC’s compressive, split tensile, and flexural strengths were systematically investigated. Experimental results indicated that incorporating appropriate amounts of CS or GGBS as single admixtures could effectively enhance the mechanical properties of RAC, with 20% (w) GGBS showing the most pronounced improvement. Compared with RAC, its 28 d compressive strength, split tensile strength and flexural strength were improved by 21.3%, 9.7% and 8.1%, respectively. As opposed to single admixture, 10% CS + 10% GGBS admixture can further improve the mechanical properties of recycled concrete. Compared with RAC, its 28 d compressive strength, split tensile strength, and flexural strength were improved by 25.6%, 29.7%, and 16.6%. The study also showed that 0.2% BF admixed on top of 10% CS + 10% GGBS could still significantly improve the mechanical properties of recycled concrete, and its 28 d compressive strength, split tensile strength, and flexural strength were improved by 31.3%, 35.9%, and 31.2%, compared with RAC, respectively. By XRF, SEM, and EDS techniques, the underlying mechanisms governing the mechanical behavior of RAC were elucidated from the microscale perspective of basalt fiber and industrial waste residues. These findings provide a solid theoretical foundation and a viable technical pathway for the widespread application of recycled aggregate concrete in civil engineering projects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

37 pages, 2520 KiB  
Review
Sustainable Transition Pathways for Steel Manufacturing: Low-Carbon Steelmaking Technologies in Enterprises
by Jinghua Zhang, Haoyu Guo, Gaiyan Yang, Yan Wang and Wei Chen
Sustainability 2025, 17(12), 5329; https://doi.org/10.3390/su17125329 - 9 Jun 2025
Viewed by 1357
Abstract
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization [...] Read more.
Amid escalating global climate crises and the urgent imperative to meet the Paris Agreement’s carbon neutrality targets, the steel industry—a leading contributor to global greenhouse gas emissions—confronts unprecedented challenges in driving sustainable industrial transformation through innovative low-carbon steelmaking technologies. This paper examines decarbonization technologies across three stages (source, process, and end-of-pipe) for two dominant steel production routes: the long process (BF-BOF) and the short process (EAF). For the BF-BOF route, carbon reduction at the source stage is achieved through high-proportion pellet charging in the blast furnace and high scrap ratio utilization; at the process stage, carbon control is optimized via bottom-blowing O2-CO2-CaO composite injection in the converter; and at the end-of-pipe stage, CO2 recycling and carbon capture are employed to achieve deep decarbonization. In contrast, the EAF route establishes a low-carbon production system by relying on green and efficient electric arc furnaces and hydrogen-based shaft furnaces. At the source stage, energy consumption is reduced through the use of green electricity and advanced equipment; during the process stage, precision smelting is realized through intelligent control systems; and at the end-of-pipe stage, a closed-loop is achieved by combining cascade waste heat recovery and steel slag resource utilization. Across both process routes, hydrogen-based direct reduction and green power-driven EAF technology demonstrate significant emission reduction potential, providing key technical support for the low-carbon transformation of the steel industry. Comparative analysis of industrial applications reveals varying emission reduction efficiencies, economic viability, and implementation challenges across different technical pathways. The study concludes that deep decarbonization of the steel industry requires coordinated policy incentives, technological innovation, and industrial chain collaboration. Accelerating large-scale adoption of low-carbon metallurgical technologies through these synergistic efforts will drive the global steel sector toward sustainable development goals. This study provides a systematic evaluation of current low-carbon steelmaking technologies and outlines practical implementation strategies, contributing to the industry’s decarbonization efforts. Full article
Show Figures

Figure 1

19 pages, 1980 KiB  
Article
Durability Assessment of Binary and Ternary Eco-Friendly Mortars with Low Cement Content
by Lucas Henrique Pereira Silva, Jacqueline Roberta Tamashiro, Fabio Friol Guedes de Paiva, João Henrique da Silva Rego, Miguel Angel de la Rubia, Angela Kinoshita and Amparo Moragues Terrades
Solids 2025, 6(2), 28; https://doi.org/10.3390/solids6020028 - 3 Jun 2025
Viewed by 505
Abstract
Global cement manufacturing generated 1.6 billion metric tons of CO2 in 2022 and relies heavily on non-renewable raw materials. Utilizing agro-industrial waste as supplementary cementitious material (SCM) can help mitigate the demand for these resources. SCMs have been integrated into cement production [...] Read more.
Global cement manufacturing generated 1.6 billion metric tons of CO2 in 2022 and relies heavily on non-renewable raw materials. Utilizing agro-industrial waste as supplementary cementitious material (SCM) can help mitigate the demand for these resources. SCMs have been integrated into cement production to deliver both technical and environmental benefits to mortars and concrete. This study examines mortar blends containing blast furnace slag (BFS), Brazilian calcined clay (BCC), and bamboo leaf ash (BLA). While BFS and BCC are already established in the cement industry, recent research has highlighted BLA as a promising pozzolanic material. The SCMs were characterized, and mortars were produced to assess their flexural and compressive strength, as well as durability indicators such as electrical resistivity, chloride diffusion, migration coefficient, and carbonation resistance. The findings reveal significant performance enhancements. Partial cement replacement (20% and 40%) maintained the strength of both binary and ternary mortars, demonstrating statistical equivalence to the reference mortar (p > 0.05). It also contributed to an improved pore structure, reducing the migration coefficient by up to four times in the 20BLA20BCC mix (which replaces 20% of cement with BLA and 20% with BCC) compared to the reference mix. Chemically, the SCMs enhanced the chloride-binding capacity of the cementitious matrix by up to seven times in the case of the 20BCC mortar, thereby improving its durability. Therefore, all tested compositions—binary and ternary—showed mechanical and durability advantages over the reference while also contributing to the reduction in environmental impacts associated with the cement industry. Full article
Show Figures

Figure 1

17 pages, 3003 KiB  
Article
Optimization and Mechanistic Investigation of Coal Gangue–Blast Furnace Slag Composite Geopolymers
by Shujie Zhao, Tian Ma, Dongwei Li and Ming Xia
Processes 2025, 13(6), 1703; https://doi.org/10.3390/pr13061703 - 29 May 2025
Viewed by 510
Abstract
Coal gangue (CG), a major solid waste generated during coal development, presents critical environmental challenges due to its large-scale accumulation and associated ecological impacts, thereby necessitating the development of efficient utilization strategies. This investigation developed a composite geopolymer system through the alkali-activated co-utilization [...] Read more.
Coal gangue (CG), a major solid waste generated during coal development, presents critical environmental challenges due to its large-scale accumulation and associated ecological impacts, thereby necessitating the development of efficient utilization strategies. This investigation developed a composite geopolymer system through the alkali-activated co-utilization of uncalcined CG and blast furnace slag (BFS), demonstrating an environmentally sustainable approach for industrial byproduct value addition. The effects of key parameters, including BFS content, liquid-to-solid ratio, alkali activator dosage, waterglass modulus, and curing regime, on the strength development were first investigated through single-factor experiments. Based on these results, response surface methodology was applied to optimize the preparation parameters and develop a quadratic regression model describing the relationship between compressive strength and the influencing factors. The optimal conditions (a waterglass modulus of 1.06, an alkali activator dosage of 13.81%, and an initial 24 h curing temperature of 30 °C) were determined to maximize compressive strength. The reaction mechanisms were further explored using XRD and SEM-EDS, which confirmed the existence of calcium silicate hydrate, calcium aluminum silicate hydrate, and geopolymer gel in the composite geopolymer matrix. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

26 pages, 8292 KiB  
Article
Low-Carbon Hybrid Constructed Wetland System for Rural Domestic Sewage: Substrate–Plant–Microbe Synergy and Annual Performance
by Jiawei Wang, Gang Zhang, Dejian Wang, Yuting Zhao, Lingyu Wu, Yunwen Zheng and Qin Liu
Water 2025, 17(10), 1421; https://doi.org/10.3390/w17101421 - 9 May 2025
Viewed by 708
Abstract
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen [...] Read more.
An integrated hybrid system was developed, incorporating sedimentation, anaerobic digestion, biological filtration, and a two-stage hybrid subsurface flow constructed wetland, horizontal subsurface flow constructed wetland (HSSFCW) and vertical subsurface flow constructed wetland (VSSFCW), to treat rural sewage in southern Jiangsu. To optimize nitrogen and phosphorus removal, the potential of six readily accessible industrial and agricultural waste byproducts—including plastic fiber (PF), hollow brick crumbs (BC), blast furnace steel slag (BFS), a zeolite–blast furnace steel slag composite (ZBFS), zeolite (Zeo), and soil—was systematically evaluated individually as substrates in vertical subsurface flow constructed wetlands (VSSFCWs) under varying hydraulic retention times (HRTs, 0–120 h). The synergy among substrates, plants, and microbes, coupled with the effects of hydraulic retention time (HRT) on pollutant degradation performance, was clarified. Results showed BFS achieved optimal comprehensive pollutant removal efficiencies (97.1% NH4+-N, 76.6% TN, 89.7% TP, 71.0% COD) at HRT = 12 h, while zeolite excelled in NH4+-N/TP removal (99.5%/94.5%) and zeolite–BFS specializing in COD reduction (80.6%). System-wide microbial analysis revealed organic load (sludges from the sedimentation tank [ST] and anaerobic tanks [ATs]), substrate type, and rhizosphere effects critically shaped community structure, driving specialized pathways like sulfur autotrophic denitrification (Nitrospira) and iron-mediated phosphorus removal. Annual engineering validation demonstrated that the optimized strategy of “pretreatment unit for phosphorus control—vertical wetland for enhanced nitrogen removal” achieved stable effluent quality compliance with Grade 1-A standard for rural domestic sewage discharge after treatment facilities, without the addition of external carbon sources or exogenous microbial inoculants. This low-carbon operation and long-term stability position it as an alternative to energy-intensive activated sludge or membrane-based systems in resource-limited settings. Full article
(This article belongs to the Special Issue Constructed Wetlands: Enhancing Contaminant Removal and Remediation)
Show Figures

Figure 1

18 pages, 4764 KiB  
Article
Hydrothermal Carbonization of Biomass Waste for Solid Biofuel Production: Hydrochar Characterization and Its Application in Blast Furnace Injection
by Guangwei Wang, Junyi Wu, Haibo Li, Andrey Karasev, Xiaojun Ning and Chuan Wang
Recycling 2025, 10(3), 89; https://doi.org/10.3390/recycling10030089 - 4 May 2025
Cited by 1 | Viewed by 811
Abstract
Hydrothermal carbonization (HTC) technology converts biomass into a carbon-rich, oxygen-containing solid fuel. Most studies have focused on hydrochar produced under laboratory conditions, leaving a gap in understanding the performance of industrially produced hydrochar. This study comprehensively analyzes three types of industrially produced hydrochar [...] Read more.
Hydrothermal carbonization (HTC) technology converts biomass into a carbon-rich, oxygen-containing solid fuel. Most studies have focused on hydrochar produced under laboratory conditions, leaving a gap in understanding the performance of industrially produced hydrochar. This study comprehensively analyzes three types of industrially produced hydrochar for blast furnace (BF) injection. The results indicate that hydrochar has a higher volatile and lower fixed carbon content. It has a lower high heating value (HHV) than coal and contains more alkali matter. Nevertheless, hydrochar exhibits a better grindability and combustion performance than coal. Blending hydrochar with anthracite significantly enhances the combustion reactivity of the mixture. The theoretical conversion rate calculations reveal a synergistic effect between hydrochar and anthracite during co-combustion. Environmental benefit calculations show that replacing 40% of bituminous coal with hydrochar can reduce CO2 emissions by approximately 145 kg/tHM, which is equivalent to an annual reduction of 528 kton of CO2 and 208 kton of coal in BF operations. While industrially produced hydrochar meets BF injection requirements, its low ignition point and high explosivity necessitate the careful control of the blending ratio. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

30 pages, 4728 KiB  
Article
An Econometric Analysis of CO2 Emission Intensity in Poland’s Blast Furnace–Basic Oxygen Furnace Steelmaking Process
by Bożena Gajdzik, Radosław Wolniak and Wiesław Grebski
Sustainability 2025, 17(9), 4045; https://doi.org/10.3390/su17094045 - 30 Apr 2025
Cited by 2 | Viewed by 909
Abstract
This study examines the carbon and energy intensity of steel production in Poland, with a particular focus on the Blast Furnace–Basic Oxygen Furnace (BF-BOF) process. Given its dominant role in the industry, decarbonizing this process is crucial for achieving the “Net Zero” targets [...] Read more.
This study examines the carbon and energy intensity of steel production in Poland, with a particular focus on the Blast Furnace–Basic Oxygen Furnace (BF-BOF) process. Given its dominant role in the industry, decarbonizing this process is crucial for achieving the “Net Zero” targets outlined in the Strategy 2050 climate policy. The transition toward deep decarbonization presents significant technological challenges, primarily the shift from high-carbon BF-BOF technology to low-carbon alternatives, such as hydrogen-based direct reduction iron in Electric Arc Furnaces (H2-DRI-EAF—Hydrogen-Based Direct Reduction Iron in Electric Arc Furnaces). Using time series analysis and econometric modeling, we assess the impact of technological innovation and investment on the emission intensity of BF-BOF technology. The findings highlight the necessity of radical technological transformation for deep decarbonization in the steel industry, reinforcing the urgency of adopting low-carbon solutions. A successful sustainable transition in the steel industry requires a holistic approach, integrating economic incentives, regulatory frameworks, and innovation-driven strategies to foster a competitive, resource-efficient, and environmentally responsible steel sector in the era of deep decarbonization. Full article
(This article belongs to the Special Issue Sustainable Production and Supply Chain Management)
Show Figures

Figure 1

19 pages, 16344 KiB  
Article
Evaluation of the Efficiency of Alkali-Activated Material Consisting of Rice Husk Ash by Physical and Mechanical Characteristics
by Seunghyun Na and Wenyang Zhang
Constr. Mater. 2025, 5(2), 21; https://doi.org/10.3390/constrmater5020021 - 1 Apr 2025
Viewed by 839
Abstract
Reducing the large amounts of carbon dioxide emitted during cement processing is crucial to control the adverse effects of greenhouse gases. This study provides a promising alternative technology to reduce such carbon dioxide emissions and investigate physical and mechanical characteristics of alkali-activated materials [...] Read more.
Reducing the large amounts of carbon dioxide emitted during cement processing is crucial to control the adverse effects of greenhouse gases. This study provides a promising alternative technology to reduce such carbon dioxide emissions and investigate physical and mechanical characteristics of alkali-activated materials with rice husk ash (RHA). To this end, compressive strength, drying shrinkage, and water penetration resistance of mortar made with RHA, blast furnace slag (BFS), and alkaline activator (sodium carbonate, NC) are investigated. Two RHA particle sizes of 45 and 150 µm types are used, thereby varying the RHA replacement ratio of 0, 7.5, 15.0 wt.%. Based on adiabatic hydration temperature, Archimedes porosity, pH, ignition loss, scanning electron microscopy, and energy-dispersive X-ray spectroscopy and X-ray diffraction results of paste, the effect of RHA on mechanical characteristics is examined. Experimental investigation reveals that compressive strengths of mortar sample made with the RHA replacement ratio of 15 wt.% to BFS were recorded between 48 and 51 MPa. When the RHA replacement ratio of 15 wt.% 150 µm was used, the length change was 1147 × 10−6 and the moisture penetration depth was less than 11 mm. Notably, water penetration resistance significantly improves with increasing RHA content; however, at high replacement ratios, the particle-size effect is not prominent. Furthermore, increasing the RHA replacement ratio decreases the porosity but increases the ignition loss and produces C-S-H gel. Full article
Show Figures

Figure 1

28 pages, 10963 KiB  
Article
Optimization of Synergy Among Granulated Blast Furnace Slag, Magnesium Oxide, and Basalt Fiber for the Solidification of Soft Clay
by Henggang Ji, Xiang Fan and Fan Ding
Materials 2025, 18(7), 1577; https://doi.org/10.3390/ma18071577 - 31 Mar 2025
Viewed by 419
Abstract
In order to reuse granulated blast furnace slag (GBFS) and low-strength soft clay (SC), this study developed a curing material using magnesium oxide (MgO) as an alkali activator to excite the GBFS and basalt fiber (BF) as reinforcing material to prepare the SC. [...] Read more.
In order to reuse granulated blast furnace slag (GBFS) and low-strength soft clay (SC), this study developed a curing material using magnesium oxide (MgO) as an alkali activator to excite the GBFS and basalt fiber (BF) as reinforcing material to prepare the SC. The mixing ranges of GBFS, MgO, and BF were established as 9.48%~14.52%, 0.48%~5.52%, and 0%~1.00454% of the dry clay mass, respectively, and the mixing ratios of the three were optimized using the central composite design (CCD) test. Through the analysis of variance, factor interaction analysis, and parameter optimization of the CCD test, the optimal mass ratio of GBFS, MgO, and BF was determined to be 13.35:4.47:0.26. The curing material of this ratio was named GMBF and mixed with SC to prepare GMBF solidified clay. An equal amount of ordinary Portland cement (OPC) was taken and formed with SC to form OPC solidified clay. The mechanical properties, durability, and hydration products of GMBF solidified clay were clarified by the unconfined compressive strength (UCS) test, freeze–thaw cycle test, X-ray diffraction (XRD) test, and scanning electron microscopy (SEM) test. The UCS of the GMBF solidified clay was 1.08 MPa and 2.85 MPa at 7 and 91 days, respectively, which was 45.9% and 33.8% higher than that of the OPC solidified clay (0.74 MPa and 2.13 MPa) at the same curing time. After ten freeze–thaw cycles, the UCS of GMBF and OPC solidified clay decreased from the initial 2.85 MPa and 2.13 MPa to 1.59 MPa and 0.7 MPa, respectively, with decreases of 44.2% and 67.1%, respectively. By XRD and SEM, the hydration products of GMBF solidified clay were mainly calcium silicate hydrate gel and hydrotalcite. The interface bonding and bridging effect formed between BF and SC or hydration products, indicating that these interactions contributed to the solidified clay enhanced structural integrity. This study demonstrates that the CCD approach provides solution for recycling SC and GBFS. Laboratory tests confirm the potential of the optimized GMBF formulation for practical engineering applications. Full article
Show Figures

Figure 1

17 pages, 7093 KiB  
Article
Hydration Mechanism of Solid Waste Gelling Materials Containing Semi-Dry Desulfurization Ash
by Yunyun Li, Siqi Zhang, Meixiang Huang, Guodong Yang, Jiajie Li, Mengqi Ma, Wentao Hu and Wen Ni
Gels 2025, 11(3), 193; https://doi.org/10.3390/gels11030193 - 11 Mar 2025
Viewed by 812
Abstract
This study investigated the feasibility of using semi-dry desulfurization ash (DA) in combination with blast furnace slag (BFS) to prepare gelling materials, aiming to improve the resource utilization of DA. The effects of DA dosage and mechanical grinding on the compressive strength and [...] Read more.
This study investigated the feasibility of using semi-dry desulfurization ash (DA) in combination with blast furnace slag (BFS) to prepare gelling materials, aiming to improve the resource utilization of DA. The effects of DA dosage and mechanical grinding on the compressive strength and hydration mechanism of BFS-DA gelling materials were investigated. The results showed that the optimum BFS-DA ratio was 60:40, and the compressive strengths were 14.21 MPa, 20.24 MPa, 43.50 MPa, and 46.27 MPa at 3, 7, 28, and 56 days, respectively. Mechanical grinding greatly improved the activity of the gel materials, with the greatest increase in compressive strength at 3, 7, 28, and 90 days for the BFS and DA mixed milled for 30 min, with increases of 89.86%, 66.36%, 24.56%, and 25.68%, respectively, and compressive strength of 26.22 MPa, 35.6 MPa, 58.33 MPa, and 63.97 MPa, respectively. The cumulative heat of hydration of BFS-DA slurry was about 120 J/g. The hydration mechanism showed that the main hydration products formed were ettringite, C-S-H gel, AFm, and Friedel’s salt. Calcium sulfite in DA was participated in the hydration, and a new hydration product, Ca4Al2O6SO3·11H2O, was formed. DA can be effectively used to prepare BFS-based gelling materials, and its performance meets the requirements of GB/T 28294-2024 standard, which provides a potential solution for the utilization of DA resources and the reduction in the impact on the environment. Full article
(This article belongs to the Special Issue Innovative Gels: Structure, Properties, and Emerging Applications)
Show Figures

Figure 1

Back to TopTop