Predicting CO2 Emissions in U.S. Ironmaking: A Data-Driven Approach for Long-Term Policy and Process Optimization
Abstract
1. Introduction
2. Methodology
2.1. The Economic Model for Predicting Iron Production
2.2. Modeling Energy Consumption and CO2 Emissions
- The U.S. economy will continue to grow steadily without significant economic disruptions.
- Demand is assumed to equal production.
- Under current conditions, energy requirements for BF and DR processes are approximately 12.4 and 9.2 GJ/ton, respectively [14]. Furthermore, they consume approximately 575 and 256 kWh of electrical energy per ton, respectively. Employing modern technologies (e.g., using hydrogen as a reductant) may reduce these values.
- The production of each kilowatt-hour (kWh) of electrical energy emits approximately 0.4 kg of CO2 [42].
2.2.1. Consumption of Energy
2.2.2. Carbon Dioxide Emission
3. Results and Discussion
3.1. Model Verification and Production Trends Analysis for the U.S. Crude Iron Production
3.2. Considering Thermodynamic and Kinetic Aspects of Crude Iron Production
3.3. Realistic Scenario for 2050
3.4. Forecast Accuracy Using LSTM-Based Time Series Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keller, D.P.; Lenton, A.; Littleton, E.W.; Oschlies, A.; Scott, V.; Vaughan, N.E. The effects of carbon dioxide removal on the carbon cycle. Curr. Clim. Chang. Rep. 2018, 4, 250–265. [Google Scholar] [CrossRef] [PubMed]
- Edo, G.I.; Itoje-akpokiniovo, L.O.; Obasohan, P.; Ikpekoro, V.O.; Samuel, P.O.; Jikah, A.N.; Nosu, L.C.; Ekokotu, H.A.; Ugbune, U.; Oghroro, E.E.A.; et al. Impact of environmental pollution from human activities on water, air quality and climate change. Ecol. Front. 2024, 44, 874–889. [Google Scholar] [CrossRef]
- Seydi, S.; Haghighatjoo, F.; Rahimpour, M.R. Non-CO2 Greenhouse Gases. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Deknatel, N.; van der Loos, A. The intangible technological innovation system: The role and influence of voluntary and compliance carbon markets on carbon dioxide removal in the European Union. Energy Res. Soc. Sci. 2025, 119, 103851. [Google Scholar] [CrossRef]
- van Asselt, H.; Fragkos, P.; Peterson, L.; Fragkiadakis, K. The environmental and economic effects of international cooperation on restricting fossil fuel supply. Int. Environ. Agreem. Politics Law Econ. 2024, 24, 141–166. [Google Scholar] [CrossRef]
- Raabe, D. The materials science behind sustainable metals and alloys. Chem. Rev. 2023, 123, 2436–2608. [Google Scholar] [CrossRef]
- Bui, H.H.; Wang, L.; Tran, K.Q.; Skreiberg, Ø.; Luengnaruemitchai, A. CO2 gasification of charcoals in the context of metallurgical application. Energy Procedia 2017, 105, 316–321. [Google Scholar] [CrossRef]
- Suer, J.; Traverso, M.; Ahrenhold, F. Carbon footprint of scenarios towards climate-neutral steel according to ISO 14067. J. Clean. Prod. 2021, 318, 128588. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, J.; Wei, C.; Cao, C.; Zhang, Z. Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction. Energy 2022, 239, 122543. [Google Scholar] [CrossRef]
- Zhong, Y.; Xu, S.; Zhang, B.; Cheng, H.; Wang, M.; Niu, Y.; Li, R. A study on carbon dioxide emissions of high-polymer road maintenance technology based on life cycle assessment evaluation. J. Clean. Prod. 2023, 426, 138944. [Google Scholar] [CrossRef]
- Boldrini, A.; Koolen, D.; Crijns-Graus, W.; Worrell, E.; van den Broek, M. Flexibility options in a decarbonising iron and steel industry. Renew. Sustain. Energy Rev. 2024, 189, 113988. [Google Scholar] [CrossRef]
- Lei, T.; Wang, D.; Yu, X.; Ma, S.; Zhao, W.; Cui, C.; Meng, J.; Tao, S.; Guan, D. Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature 2023, 622, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Ramakgala, C.; Danha, G. A review of ironmaking by direct reduction processes: Quality requirements and sustainability. Procedia Manuf. 2019, 35, 242–245. [Google Scholar] [CrossRef]
- Sohn, H.Y. Energy consumption and CO2 emissions in ironmaking and development of a novel flash technology. Metals 2019, 10, 54. [Google Scholar] [CrossRef]
- Moziraji, M.R.; Tehrani, A.A.; Reshadi, M.A.M.; Bazargan, A. Natural gas as a relatively clean substitute for coal in the MIDREX process for producing direct reduced iron. Energy Sustain. Dev. 2024, 78, 101356. [Google Scholar]
- Dutta, S.K.; Chokshi, Y.B. Basic Concepts of Iron and Steel Making; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Jeong, S.J. System dynamics approach for the impacts of FINEX technology and carbon taxes on steel demand: Case study of the POSCO. Int. J. Precis. Eng. Manuf.-Green Technol. 2015, 2, 85–93. [Google Scholar] [CrossRef]
- Zhan, W.l.; Wu, K.; He, Z.j.; Liu, Q.h.; Wu, X.j. Estimation of energy consumption in COREX process using a modified rist operating diagram. J. Iron Steel Res. Int. 2015, 22, 1078–1084. [Google Scholar] [CrossRef]
- Kovtun, O.; Levchenko, M.; Ilatovskaia, M.O.; Aneziris, C.G.; Volkova, O. Results of hydrogen reduction of iron ore pellets at different temperatures. Steel Res. Int. 2024, 96, 2300707. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, Y.; Babich, A.; Senk, D.; Fan, X. Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities. J. Clean. Prod. 2021, 329, 129797. [Google Scholar] [CrossRef]
- Choisez, L.; Hemke, K.; Özgün, Ö.; Pistidda, C.; Jeppesen, H.; Raabe, D.; Ma, Y. Hydrogen-based direct reduction of combusted iron powder: Deep pre-oxidation, reduction kinetics and microstructural analysis. Acta Mater. 2024, 268, 119752. [Google Scholar] [CrossRef]
- Jovičević-Klug, M.; Souza Filho, I.R.; Springer, H.; Adam, C.; Raabe, D. Green steel from red mud through climate-neutral hydrogen plasma reduction. Nature 2024, 625, 703–709. [Google Scholar] [CrossRef]
- Pfeiffer, A.; Wimmer, G.; Schenk, J. Investigations on the interaction behavior between direct reduced iron and various melts. Materials 2022, 15, 5691. [Google Scholar] [CrossRef] [PubMed]
- Irawan, A.; Kurniawan, T.; Alwan, H.; Muslim, Z.A.; Akhmal, H.; Firdaus, M.A.; Bindar, Y. An energy optimization study of the electric arc furnace from the steelmaking process with hot metal charging. Heliyon 2022, 8, e11448. [Google Scholar] [CrossRef] [PubMed]
- Bailera, M.; Lisbona, P.; Peña, B.; Romeo, L.M. A review on CO2 mitigation in the Iron and Steel industry through Power to X processes. J. CO2 Util. 2021, 46, 101456. [Google Scholar] [CrossRef]
- Metius, G.; McClelland, J.; Hornby-Anderson, S. Comparing CO2 emissions and energy demands for alternative ironmaking routes. Steel Times Int. 2006, 30, 32. [Google Scholar]
- Hasanbeigi, A.; Arens, M.; Price, L. Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review. Renew. Sustain. Energy Rev. 2014, 33, 645–658. [Google Scholar] [CrossRef]
- Tian, S.; Di, Y.; Dai, M.; Chen, W.; Zhang, Q. Comprehensive assessment of energy conservation and CO2 emission reduction in future aluminum supply chain. Appl. Energy 2022, 305, 117796. [Google Scholar] [CrossRef]
- Benjamin, N.I.; Lin, B. Quantile analysis of carbon emissions in China metallurgy industry. J. Clean. Prod. 2020, 243, 118534. [Google Scholar] [CrossRef]
- Rumsa, M.; John, M.; Biswas, W. Global steel decarbonisation roadmaps: Near-zero by 2050. Environ. Impact Assess. Rev. 2025, 112, 107807. [Google Scholar] [CrossRef]
- Yamada, K.; Ii, R.; Yamamoto, M.; Ueda, H.; Sakai, S. Japan’s greenhouse gas reduction scenarios toward net zero by 2050 in the material cycles and waste management sector. J. Mater. Cycles Waste Manag. 2023, 25, 1807–1823. [Google Scholar] [CrossRef]
- Suer, J.; Traverso, M.; Jäger, N. Review of life cycle assessments for steel and environmental analysis of future steel production scenarios. Sustainability 2022, 14, 14131. [Google Scholar] [CrossRef]
- Yu, S.; Lehne, J.; Blahut, N.; Charles, M. 1.5 C steel: Decarbonizing the Steel Sector in Paris-Compatible Pathways. Pacific Northwest National Laboratory. 2021. Available online: https://www.e3g.org/wp-content/uploads/1.5C-Steel-Report_E3G-PNNL-1.pdf (accessed on 19 April 2025).
- Morfeldt, J.; Nijs, W.; Silveira, S. The impact of climate targets on future steel production–An analysis based on a global energy system model. J. Clean. Prod. 2015, 103, 469–482. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Q.; Xu, L.; Tian, S.; Wang, P. Future CO2 emission trends and radical decarbonization path of iron and steel industry in China. J. Clean. Prod. 2021, 326, 129354. [Google Scholar] [CrossRef]
- World Steel Association. Available online: https://worldsteel.org/ (accessed on 19 April 2025).
- Visco, I. Lawrence R. Klein: Macroeconomics, econometrics and economic policy. J. Policy Model. 2014, 36, 605–628. [Google Scholar] [CrossRef]
- Muwanguzi, A.J.; Olowo, P.; Sebukeera, H.; Guloba, A.; Mezulic, D.; Bonci, P.; Muvawala, J. Modelling the Growth Trend of the Iron and Steel Industry: Case for Uganda. Am. J. Ind. Bus. Manag. 2020, 10, 1640. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, X.; Shen, Y.; Li, Y.; Xu, H.; Hu, Z. Model study of shaft injection of reformed coke oven gas in a blast furnace. Energy Fuels 2020, 34, 15048–15060. [Google Scholar] [CrossRef]
- Boretti, A. The perspective of hydrogen direct reduction of iron. J. Clean. Prod. 2023, 429, 139585. [Google Scholar] [CrossRef]
- Astoria, T. Dealing with an Uncertain Future: Direct Reduction in the Hydrogen Economy. Direct from Midrex. 2022. Available online: https://www.midrex.com/tech-article/dealing-with-an-uncertain-future-direct-reduction-in-the-hydrogen-economy/ (accessed on 19 April 2025).
- U.S. Energy Information Administration. U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/ (accessed on 19 April 2025).
- Yang, L.; Hu, H.; Yang, S.; Wang, S.; Chen, F.; Guo, Y. Life cycle carbon footprint of electric arc furnace steelmaking processes under different smelting modes in China. Sustain. Mater. Technol. 2023, 35, e00564. [Google Scholar] [CrossRef]
- Kunitomo, K.; Takamoto, Y.; Naito, M.; Yag, J. Blast furnace ironmaking system using partially reduced iron ore reduced by an energy source with low carbon content. J. Jpn. Inst. Energy 2005, 84, 126–133. [Google Scholar] [CrossRef]
- Hasannezhad, H.; Meysami, A. Effects of porosity and electrical resistance of metallurgical coke and semicoke on silicon recovery in an electric arc furnace. JOM 2019, 71, 336–341. [Google Scholar] [CrossRef]
- Hasannezhad, H.; Meysami, A. Comparison of Biomass and Coal in the Recovery Process of silicon in an Electric Arc Furnace. JOM 2021, 73, 1030–1036. [Google Scholar] [CrossRef]
- Szekely, J. Gas-Solid Reactions; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Ponugoti, P.V.; Garg, P.; Geddam, S.N.; Nag, S.; Janardhanan, V.M. Kinetics of iron oxide reduction using CO: Experiments and Modeling. Chem. Eng. J. 2022, 434, 134384. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Kumar, S.S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813. [Google Scholar] [CrossRef]
- Rechberger, K.; Spanlang, A.; Sasiain Conde, A.; Wolfmeir, H.; Harris, C. Green hydrogen-based direct reduction for low-carbon steelmaking. Steel Res. Int. 2020, 91, 2000110. [Google Scholar] [CrossRef]
- Lan, C.; Hao, Y.; Shao, J.; Zhang, S.; Liu, R.; Lyu, Q. Effect of H2 on blast furnace ironmaking: A review. Metals 2022, 12, 1864. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
Method | Product Name | Reducing Agent/s | Maximum Work Temperature (°C) | Reduction Degree (%) | Production Rate (MT/Day) | Implementation Rate (%) | CO2 Emission MT/MT of Iron | Production in 2020 MT | Expected Production in 2050 MT | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Blast Furnace | Pig Iron | Coke, CO | 1800–2000 | 95 | 10,000 | 80 | 1.9 | 14.5 | 4.5 | [14,43] |
Direct Reduction based on CH4 | DRI | CO, 50% H2 | 950 | 90 | 3600 | 70 | 1.1 | 3.5 | 7.3 | [14,15] |
Hydrogen- rich carbon circulating oxygen BF | Pig Iron | Coke, CO, H2 | 1600 | 95 | 7000 | 30 | 1.52 | ∼0 | 4.7 | [51] |
Hydrogen DRI technologies | DRI | H2 | 1000 | 95 | 4000 | 60 | 0.2 | ∼0 | 5.11 | [39,52,53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meysami, M.; Meisami, A.; Merhi, M.; Dehghanpour, H.; Meysami, A. Predicting CO2 Emissions in U.S. Ironmaking: A Data-Driven Approach for Long-Term Policy and Process Optimization. Sustainability 2025, 17, 5859. https://doi.org/10.3390/su17135859
Meysami M, Meisami A, Merhi M, Dehghanpour H, Meysami A. Predicting CO2 Emissions in U.S. Ironmaking: A Data-Driven Approach for Long-Term Policy and Process Optimization. Sustainability. 2025; 17(13):5859. https://doi.org/10.3390/su17135859
Chicago/Turabian StyleMeysami, Mohammad, Alex Meisami, Mohammad Merhi, Hassan Dehghanpour, and Amirhossein Meysami. 2025. "Predicting CO2 Emissions in U.S. Ironmaking: A Data-Driven Approach for Long-Term Policy and Process Optimization" Sustainability 17, no. 13: 5859. https://doi.org/10.3390/su17135859
APA StyleMeysami, M., Meisami, A., Merhi, M., Dehghanpour, H., & Meysami, A. (2025). Predicting CO2 Emissions in U.S. Ironmaking: A Data-Driven Approach for Long-Term Policy and Process Optimization. Sustainability, 17(13), 5859. https://doi.org/10.3390/su17135859