Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = bismuth film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2921 KiB  
Article
Enhanced Photoelectrochemical Performance of BiVO4 Photoanodes Co-Modified with Borate and NiFeOx
by Siqiang Cheng, Yun Cheng, Taoyun Zhou, Shilin Li, Dong Xie and Xinyu Li
Micromachines 2025, 16(8), 866; https://doi.org/10.3390/mi16080866 - 27 Jul 2025
Viewed by 262
Abstract
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge [...] Read more.
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge transport, sluggish surface kinetics, and photocorrosion. In this study, porous monoclinic BiVO4 films are fabricated via a simplified successive ionic layer adsorption and reaction (SILAR) method, followed by borate treatment and PEC deposition of NiFeOx. The resulting B/BiVO4/NiFeOx photoanode exhibits a significantly enhanced photocurrent density of 2.45 mA cm−2 at 1.23 V vs. RHE—5.3 times higher than pristine BiVO4. It also achieves an ABPE of 0.77% and a charge transfer efficiency of 79.5%. These results demonstrate that dual surface modification via borate and NiFeOx is a cost-effective strategy to improve BiVO4-based PEC water splitting performance. This work provides a promising pathway for the scalable development of efficient and economically viable photoanodes for solar hydrogen production. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

13 pages, 6374 KiB  
Article
Synthesis of (Bi2O3)1-x(PbO)x Thin Films by Plasma-Assisted Reactive Evaporation
by Aleksandras Iljinas, Vytautas Stankus, Darius Virbukas and Remigijus Kaliasas
Coatings 2025, 15(7), 748; https://doi.org/10.3390/coatings15070748 - 24 Jun 2025
Viewed by 391
Abstract
Thin, dense and nanocrystal bismuth oxide films were prepared by the in situ plasma-assisted reactive evaporation (ARE) method using lead doping. Thin films were deposited at room temperature and at 500 °C temperature on glass and silicon substrates. X-ray diffraction, SEM, EDS, and [...] Read more.
Thin, dense and nanocrystal bismuth oxide films were prepared by the in situ plasma-assisted reactive evaporation (ARE) method using lead doping. Thin films were deposited at room temperature and at 500 °C temperature on glass and silicon substrates. X-ray diffraction, SEM, EDS, and optical measurements were applied to characterize these bismuth oxide films. The results showed that it is possible to synthesize the δ-Bi2O3 phase thin films at a temperature lower than 729 °C using an plasma-assisted reactive evaporation (ARE) method and stabilize it (to room temperature) using the additives of lead oxide. The influence of lead oxide concentration on phase formation was investigated. The optimal amount of lead oxide dopant was determined. An excess of lead oxide concentration forms PbO and δ-Bi2O3 mixture phases and nanorods appear in films. The synthesized δ-Bi2O3 phase was metastable; it transformed into the β-Bi2O3 phase after thermal impact during impedance measurements. The cross section of thin film sample shows the dense and monolithic structure. Optical measurements show that the optical band gap increases with increasing lead concentration. It was found that the highest total ionic conductivity of (Bi1−xPb0.26)2O3 is 0.165 S/cm at 1073 K temperature and activation energy is ΔEtot = 0.5 eV. Full article
(This article belongs to the Special Issue Advances in Novel Coatings)
Show Figures

Figure 1

15 pages, 3356 KiB  
Article
Synthesis, Crystal Structure, Characterization, and Hydrophobicity Tests of Bismuth(III)– and Silver(I)–Triammionium Bromide Low-Dimensional Perovskites
by Victor C. Sousa, Bruno Dival and Willian X. C. Oliveira
Compounds 2025, 5(2), 20; https://doi.org/10.3390/compounds5020020 - 4 Jun 2025
Viewed by 803
Abstract
This work describes the synthesis, crystal structure, and hydrophobicity tests of four bismuth(III)– and silver(I)–bromide complexes using the triammonium cations diethylenetriaminonium (H3DETA3+) and N,N,N′,N″,N‴-pentamethyldiethylenetriammonium (H3PMDTA3+). The prepared compounds are the 0D perovskites (H3DETA)[BiBr [...] Read more.
This work describes the synthesis, crystal structure, and hydrophobicity tests of four bismuth(III)– and silver(I)–bromide complexes using the triammonium cations diethylenetriaminonium (H3DETA3+) and N,N,N′,N″,N‴-pentamethyldiethylenetriammonium (H3PMDTA3+). The prepared compounds are the 0D perovskites (H3DETA)[BiBr6] (1), (H3DETA)2[AgBr4]Br3 (2), and (H3PMDTA)[BiBr6] (3), as well as the 1D/2D mixed perovskite with minimum formula (H3PMDTA)[Ag3Br6] (4), being the last three novel materials. Compounds 1 and 3 crystallize in the orthorhombic P212121 space group and are discrete [BiBr6]3− units with the cation surrounding them. In both compounds, the bismuth(III) metal ion is found in a distorted octahedral coordination geometry. Compound 2 crystallizes in the monoclinic P21/c space group, and it is a mixed salt consisting of (H3DETA)[AgBr4] and (H3DETA)Br3, whereas the silver(I) complexes are also isolated. Finally, compound 4, which crystallizes in the orthorhombic space group Pbcn, is a combination of a 2D and 1D silver–bromide perovskite, with the cations filling the voids. The 2D structure has the minimal formula [Ag4Br7]3−, with the 1D coordination polymer [Ag2Br5]3− being both built up by a combination of bromide ions acting as tetrahedra corner and edge-sharing bridging ligands. The silver(I) in 2 and 4 is found in a tetrahedral coordination geometry. All compounds were deposited on pristine FTO glass, resulting in an increase in the contact angle from 22° to 44°, 36°, 62°, and 54° for films of 1, 2, 3, and 4, respectively. Compounds 1 and 3 were also deposited onto Cs2AgBiBr6 film, and the contact angles were observed to be the same as when deposited directly onto the FTO cover glass. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Graphical abstract

14 pages, 3682 KiB  
Article
Bismuth(III) Sulfide Films by Chemical Bath Deposition Method Using L-Cysteine as a Novel Sulfur Source
by Aistis Melnikas, Remigijus Ivanauskas, Skirma Zalenkiene and Marius Mikolajūnas
Crystals 2025, 15(6), 515; https://doi.org/10.3390/cryst15060515 - 28 May 2025
Viewed by 472
Abstract
Thin films of bismuth(III) sulfide (Bi2S3) on fluorine doped tin oxide (FTO) coated glass slides were successfully formed by the chemical bath deposition (CBD) method. In this work, a new sulfur precursor L-cysteine was used instead of the typical [...] Read more.
Thin films of bismuth(III) sulfide (Bi2S3) on fluorine doped tin oxide (FTO) coated glass slides were successfully formed by the chemical bath deposition (CBD) method. In this work, a new sulfur precursor L-cysteine was used instead of the typical sulfur precursors, such as urea, thiosulfate, or thioacetamide, used for the formation of the Bi2S3 films by the CBD method. The synthesized Bi2S3 thin film on the FTO substrate was subjected to characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and UV–Visible spectroscopy analysis. An X-ray diffraction analysis showed that, initially, Bi2S3 films of an amorphous structure with elemental sulfur impurities were formed on the FTO surface. During the annealing of the samples, amorphous Bi2S3 was transformed into its crystalline phase with an average crystallite size of about 22.06 nm. The EDS studies confirmed that some of the sulfur that was not part of the Bi2S3 was removed from the films during annealing. The influence of the morphology of Bi2S3 films on their optical properties was confirmed by studies in the UV-visible range. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

10 pages, 3174 KiB  
Article
Enhanced Energy Storage Capacity in NBT Micro-Flake Incorporated PVDF Composites
by Tingwei Mei, Mingtao Zhu, Hongjian Zhang and Yong Zhang
Polymers 2025, 17(11), 1486; https://doi.org/10.3390/polym17111486 - 27 May 2025
Viewed by 423
Abstract
In recent years, dielectric films with a high energy-storage capacity have attracted significant attention due to their wide applications in the fields of renewable energy, electronic devices, and power systems. Their fundamental principle relies on the polarization and depolarization processes of dielectric materials [...] Read more.
In recent years, dielectric films with a high energy-storage capacity have attracted significant attention due to their wide applications in the fields of renewable energy, electronic devices, and power systems. Their fundamental principle relies on the polarization and depolarization processes of dielectric materials under external electric fields to store and release electrical energy, featuring a high power density and high charge–discharge efficiency. In this study, sodium bismuth titanate (NBT) micro-flakes synthesized via a molten salt method were treated with hydrogen peroxide and subsequently blended with a polyvinylidene fluoride (PVDF) matrix. An oriented tape-casting process was utilized to fabricate a dielectric thin film with enhanced energy storage capacity under a weakened electric field. Experimental results demonstrated that the introduction of modified NBT micro-flakes facilitated the interfacial interactions between the ceramic fillers and polymer matrix. Additionally, chemical interactions between surface hydroxyl groups and fluorine atoms within PVDF promoted the phase transition from the α to the β phase. Consequently, the energy storage density of PVDF-NBT composite increased from 2.8 J cm−3 to 6.1 J cm−3, representing a 110% enhancement. This design strategy provides novel insights for material innovation and interfacial engineering, showcasing promising potential for next-generation power systems. Full article
Show Figures

Figure 1

13 pages, 2521 KiB  
Article
Determination of Caffeine in Energy Drinks Using a Composite Modified Sensor Based on Magnetic Nanoparticles
by Katarzyna Tyszczuk-Rotko, Aleksandra Liwak and Aleksy Keller
Molecules 2025, 30(10), 2219; https://doi.org/10.3390/molecules30102219 - 20 May 2025
Viewed by 406
Abstract
A new voltammetric sensor (BDDE/Nafion@Fe3O4/BiF) was fabricated by applying a nanocomposite drop of Fe3O4 magnetic nanoparticles in Nafion onto the polished boron-doped diamond electrode (BDDE) surface. Then, after drying (5 min at room temperature), the electrode [...] Read more.
A new voltammetric sensor (BDDE/Nafion@Fe3O4/BiF) was fabricated by applying a nanocomposite drop of Fe3O4 magnetic nanoparticles in Nafion onto the polished boron-doped diamond electrode (BDDE) surface. Then, after drying (5 min at room temperature), the electrode was electrochemically modified with bismuth film (BiF) during in situ analysis. The Nafion@Fe3O4/BiF modification of the BDDE contributes to the acquisition of the highest differential-pulse adsorptive stripping voltammetric (DPAdSV) signals of caffeine (CAF) due to the improvement of electron transfer and the increase in the number of active sites on which CAF can be adsorbed. The DPAdSV signals exhibited a linearly varied oxidation peak with the CAF concentration range between 0.5 and 10,000 nM, leading to the 0.043 and 0.14 nM detection and quantification limits, respectively. The practical applicability of the DPAdSV procedure using the BDDE/Nafion@Fe3O4/BiF was positively confirmed with commercially available energy drinks. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

9 pages, 1798 KiB  
Article
Magnetoplasmonic Resonators Designed with Hexagonally Arrayed Au/BIG Bilayer Nanodisks on Au Thin Film Layers for Enhanced MOKE and Refractive Index Sensing
by Ziqi Wang, Xiaojian Cui and Yujun Song
Coatings 2025, 15(5), 601; https://doi.org/10.3390/coatings15050601 - 18 May 2025
Viewed by 404
Abstract
A kind of magnetoplasmonic resonators is numerically designed with hexagonally arrayed Au/bismuth iron garnet (BIG) bilayer nanodiscks on Au thin film layers. Multi-physics coupling calculation on their magnetoplasmonic resonance features suggest that there exists a strong resonant coupling between the surface plasmon excited [...] Read more.
A kind of magnetoplasmonic resonators is numerically designed with hexagonally arrayed Au/bismuth iron garnet (BIG) bilayer nanodiscks on Au thin film layers. Multi-physics coupling calculation on their magnetoplasmonic resonance features suggest that there exists a strong resonant coupling between the surface plasmon excited by the hexagonal grating and the waveguide modes induced by Au-BIG-Au, which can significantly enhance the transverse magneto-optical Kerr effect. Interestingly, a new type of circular oscillating can be induced in the optical-transparent BIG layers as the thickness of BIG layers is between 2 nm and 22 nm. This circular oscillating exhibits a distinct thickness-dependent feature, which can be attributed to the near field interference of the excited localized plasmon resonance between the two interfaces formed by the middle BIG nanodiscs in the top Au nanodisks and the bottom Au thin film layers according to the simulation. These unique magnetoplasmonic features endow this kind of magnetoplasmonic resonators with a greatly enhanced refractive index sensing property, with a calculated figure of merit (FOM) value of up to 7527 RIU−1. Full article
Show Figures

Figure 1

16 pages, 2277 KiB  
Article
Simultaneous Trace Analysis of Lead and Cadmium in Drinking Water, Milk, and Honey Samples Through Modified Screen-Printed Electrode
by Fei Wang, Xiao Peng, Ziqian Xiao, Ying Ge, Bilin Tao, Zhaoyong Shou, Yifei Feng, Jing Yuan and Liang Xiao
Biosensors 2025, 15(5), 267; https://doi.org/10.3390/bios15050267 - 23 Apr 2025
Viewed by 661
Abstract
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby [...] Read more.
A composite (N-rGO@ppy) of N-doped reduced graphene oxide (N-rGO) coated with polypyrrole (ppy) particles was successfully synthesized. The incorporation of N-rGO significantly mitigates the aggregation of ppy synthesized in situ, and the doped N atoms improve the conductivity of graphene oxide (GO), thereby enhancing N-rGO@ppy’s redox properties. Firstly, a glassy carbon electrode (GCE) modified with N-rGO@ppy (N-rGO@ppy/GCE) was used in combination with a bismuth film and square-wave anodic stripping voltammetry (SWASV) for the simultaneous trace analysis of Pb2+ and Cd2+. N-rGO@ppy/GCE exhibited distinct stripping peaks for Pb2+ and Cd2+, with a linear range of 1 to 500 μg L−1. The limits of detection (LODs) were found to be 0.080 μg L−1 for Pb2+ and 0.029 μg L−1 for Cd2+, both of which are significantly below the standards set by the World Health Organization (WHO). Subsequently, the same electrochemical sensing strategy was adapted to a more portable screen-printed electrode (SPE) to accommodate the demand for in situ detection. The performance of N-rGO@ppy/SPE for analyzing Pb2+ and Cd2+ in actual samples, such as drinking water, milk, and honey, showed results consistent with those obtained from conventional graphite furnace atomic absorption spectrometry (GFAAS). Full article
Show Figures

Figure 1

16 pages, 9709 KiB  
Article
Al Doping Effect on Enhancement of Nonlinear Optical Absorption in Amorphous Bi2Te3 Thin Films
by Tengfei Zhang, Shenjin Wei, Shubo Zhang, Menghan Li, Jiawei Wang, Jingze Liu, Junhua Wang, Ertao Hu and Jing Li
Materials 2025, 18(6), 1372; https://doi.org/10.3390/ma18061372 - 20 Mar 2025
Viewed by 483
Abstract
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al [...] Read more.
Bismuth telluride (Bi2Te3) has attracted significant attention due to its broadband ultrafast optical response and strong nonlinearity at high laser fluence in the field of optoelectronic materials. The objective of this work is to study the effect of Al doping on the structure, linear optical properties, and nonlinear optical absorption behavior of Bi2Te3 thin films. The amorphous Al-doped Bi2Te3 thin films with varying Al doping concentrations were prepared using magnetron co-sputtering. The structure and linear optical properties were characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/Vis/NIR spectrophotometry. The third-order nonlinear optical absorption properties of Al: Bi2Te3 thin films were investigated using the open-aperture Z-scan system with a 100 fs laser pulse width at a wavelength of 800 nm and a repetition rate of 1 kHz. The results indicate that Al dopant reduces both the refractive index and extinction coefficient and induces a redshift in the optical bandgap. The optical properties of the films can be effectively modulated by varying the Al doping concentration. Compared with undoped Bi2Te3 thin films, Al-doped Bi2Te3 thin films exhibit larger nonlinear optical absorption coefficients and higher damage thresholds and maintaining high transmittance. These findings provide experimental evidence and a reliable approach for the further optimization and design of ultrafast nonlinear optical devices. Full article
Show Figures

Figure 1

14 pages, 4614 KiB  
Article
Simultaneous Measurements of Nanotrace Amounts of Lead and Cadmium Using an Environmentally Friendly Sensor (An Activated Glassy Carbon Electrode Modified with a Bismuth Film)
by Katarzyna Tyszczuk-Rotko and Aleksy Keller
Molecules 2025, 30(6), 1308; https://doi.org/10.3390/molecules30061308 - 14 Mar 2025
Cited by 1 | Viewed by 789
Abstract
This paper shows the fabrication of a new environmentally friendly sensor, an activated glassy carbon electrode with an in situ deposited bismuth film (aGCE/BiF), to determine Cd(II) and Pb(II) at the nanotrace level. The electrochemical activation of the GCE surface was achieved in [...] Read more.
This paper shows the fabrication of a new environmentally friendly sensor, an activated glassy carbon electrode with an in situ deposited bismuth film (aGCE/BiF), to determine Cd(II) and Pb(II) at the nanotrace level. The electrochemical activation of the GCE surface was achieved in a solution of 0.1 M phosphate-buffered saline (PBS) of pH = 7 by performing five cyclic voltammetric scans in the range of −1.5–2.5 V at ν of 100 mV/s. The newly developed electrode provides several advantages, such as an increased electron active surface (compared to the glassy carbon electrode) and improved electron transfer kinetics. As a result, the new voltammetric procedure (square-wave anodic stripping voltammetry, SWASV) was established and optimized. With the SWASV method, the following calibration curves and low detection limits (LODs) were obtained for Cd(II) and Pb(II), respectively: 5–100 nM, 0.62 nM, 2–200 nM, and 0.18 nM. The newly prepared method was used to determine the amounts of Pb(II) and Cd(II) in the certified reference material, and the results agreed with the certified values. Moreover, the procedure was successfully applied to determine the Cd(II) and Pb(II) in river samples. The official and standard addition methods validated the measurement results. Full article
(This article belongs to the Special Issue Carbon-Based Materials for Sustainable Chemistry: 2nd Edition)
Show Figures

Figure 1

11 pages, 2717 KiB  
Article
Vapor-Assisted Method to Deposit Compact (CH3NH3)3Bi2I9 Thin Films for Bismuth-Based Planar Perovskite Solar Cells
by Zihao Gao, Xinjie Wang, Zhen Sun, Ping Song, Xiyuan Feng and Zhixin Jin
Micromachines 2025, 16(2), 218; https://doi.org/10.3390/mi16020218 - 14 Feb 2025
Cited by 1 | Viewed by 883
Abstract
Bismuth-based perovskite derivatives, (CH3NH3)3Bi2I9 (MBI), are promising non-toxic light-absorbing materials widely used in various photoelectric devices because of their excellent stability. However, MBI-based perovskite solar cells (PSCs) are limited by poor film quality, and [...] Read more.
Bismuth-based perovskite derivatives, (CH3NH3)3Bi2I9 (MBI), are promising non-toxic light-absorbing materials widely used in various photoelectric devices because of their excellent stability. However, MBI-based perovskite solar cells (PSCs) are limited by poor film quality, and the performance of such a device is far behind that of lead-based PSCs. In this work, the crystal structure and morphological properties of MBI films were compared across different preparation methods. The two-step vapor-assisted method can prepare continuous dense MBI films because MBI crystal nucleation is induced by the BiI3 seed layer. The MBI film grown by this method is better for the production of excellent PSCs compared to the film prepared by the solution method. The best photovoltaic device based on the MBI film could obtain a power conversion efficiency of 1.13%. An MBI device is stored in the glove box for 60 days, and the device’s performance is maintained at 99%. These results indicate that the vapor-assisted deposition of MBI films can be an effective method to improve the performance of bismuth-based planar PSCs. Full article
(This article belongs to the Special Issue Energy Conversion Materials/Devices and Their Applications)
Show Figures

Figure 1

15 pages, 15656 KiB  
Article
Study on the Corrosion Behavior of Low-Carbon 9Cr-ODS Steel in Oxygen-Saturated Lead–Bismuth Eutectic for 1000 Hours
by Chongdou Yang, Tao Liu, Yiqun Yang, Youqi Wang, Yuwen Xu, Di Yun, Penghui Lei and Jie Qiu
Nanomaterials 2025, 15(4), 258; https://doi.org/10.3390/nano15040258 - 8 Feb 2025
Viewed by 735
Abstract
A novel low-carbon 9Cr-ODS steel was exposed to corrosion in lead–bismuth eutectic saturated with oxygen at 500 °C for 1000 h, leading to the formation of three distinct layers of oxide film. From the outermost to the innermost layer, these included a Fe [...] Read more.
A novel low-carbon 9Cr-ODS steel was exposed to corrosion in lead–bismuth eutectic saturated with oxygen at 500 °C for 1000 h, leading to the formation of three distinct layers of oxide film. From the outermost to the innermost layer, these included a Fe3O4 layer infiltrated with Pb, a FeCr2O4 layer, and an inner oxide zone. The inner oxide zone was primarily composed of an unoxidized matrix and Cr2O3. The formation of the inner oxide zone was primarily attributed to the preferential oxidation of Cr following the infiltration of insufficient O content. Two distinct morphologies of the inner oxide zone were identified: one is porous, while the other is non-porous. The porous morphology is characterized by low Fe content and Pb infiltration. The loss of Fe is the main factor contributing to the development of the porous inner oxide zone and the infiltration of Pb, while the short-range diffusion of Cr promotes the growth of Cr2O3, resulting in a needle-like morphology. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

13 pages, 7101 KiB  
Article
New Long-Term Use Solid Bismuth Microelectrode Arrays for Rapid and Sensitive Determination of Sunset Yellow in Isotonic Beverages and Water Samples by Adsorptive Stripping Voltammetry
by Mieczyslaw Korolczuk, Iwona Gęca, Artur Mazurek and Paulina Mrózek
Molecules 2025, 30(2), 345; https://doi.org/10.3390/molecules30020345 - 16 Jan 2025
Cited by 1 | Viewed by 844
Abstract
This article reports on the long-term use, solid bismuth microelectrode arrays for the first time. The presented working microelectrode is characterized by particular advantages compared to bismuth film electrodes and solid single bismuth microelectrodes; these advantages include environmentally friendly properties and the amplification [...] Read more.
This article reports on the long-term use, solid bismuth microelectrode arrays for the first time. The presented working microelectrode is characterized by particular advantages compared to bismuth film electrodes and solid single bismuth microelectrodes; these advantages include environmentally friendly properties and the amplification of recorded currents, which are subsequently more resistant to interference. The proposed solid bismuth microelectrode array was applied to develop an adsorptive stripping voltammetric procedure for Sunset Yellow determination. The main experimental parameters were optimized. The calibration graph was linear from 5 × 10−9 to 1 × 10−7 mol L−1 (time of accumulation, 60 s). The detection limit was equal to 1.7 × 10−9 mol L−1. The relative standard deviation for a concentration of Sunset Yellow of 2 × 10−8 mol L−1 was 4.1% (n = 7). Potential interference effects were examined. The presented analytical procedure was applied for the determination of Sunset Yellow in isotonic beverages and the results were confirmed by HPLC as a comparative method. The correctness of the presented procedure was also confirmed by satisfactory recovery values obtained during the analysis of spiked environmental water samples. Full article
Show Figures

Figure 1

16 pages, 5269 KiB  
Article
X-Ray Shielding Polymer Based on Sequential Polycondensation of BiPh3 and Carboxylic Acids and Radical Polymerization
by Bungo Ochiai, Ryo Kamiya, Yoshimasa Matsumura, Hiroyasu Tanaka, Hideki Ueda, Kazuyoshi Uera, Kikuo Furukawa and Yoshio Nishimura
Polymers 2025, 17(2), 134; https://doi.org/10.3390/polym17020134 - 8 Jan 2025
Viewed by 1100
Abstract
Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and N,N-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh3, 2-octenylsuccinic acid (OSA), [...] Read more.
Transparent X-ray shielding polymer films were developed by bulk photo copolymerization of in situ prepared bismuth carboxylate prepolymers with polymerizable exomethylene moieties and N,N-dimethylacrylamide (DMAA). The bismuth-containing prepolymers were prepared via the polycondensation of BiPh3, 2-octenylsuccinic acid (OSA), and itaconic acid (IA) bearing an exomethylene group for polymerization. OSA was a chain extender by intermolecular condensation and a stopper by intramolecular cyclization to inhibit cross-linkage. The resulting photocured films exhibit high visible-light transparency and high nD, reaching 1.57. The X-ray shielding ability increased with the bismuth content and reached an aluminum equivalent of 0.80. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 5921 KiB  
Article
Bioaccumulation Study of Cadmium and Lead in Cyprinus carpio from the Colorado River, Using Automated Electrochemical Detection
by Federico Danilo Vallese, Sofia Stupniki, Mariano Trillini, Federico Belén, María Susana Di Nezio, Alfredo Juan and Marcelo Fabian Pistonesi
Water 2025, 17(1), 77; https://doi.org/10.3390/w17010077 - 31 Dec 2024
Cited by 1 | Viewed by 829
Abstract
The monitoring of heavy metals in aquatic ecosystems is of critical importance due to the toxic effects that these elements can have on wildlife and the potential risks that they pose to human health. Rivers situated in close proximity to agricultural regions are [...] Read more.
The monitoring of heavy metals in aquatic ecosystems is of critical importance due to the toxic effects that these elements can have on wildlife and the potential risks that they pose to human health. Rivers situated in close proximity to agricultural regions are particularly susceptible to contamination from a combination of natural and anthropogenic sources. The study of bioaccumulation is of great importance for the early detection of environmental stressors. The combination of electrochemical techniques, such as square-wave anodic stripping voltammetry (SWASV), with automated flow-batch systems represents an efficient and cost-effective approach for the detection of trace metals in environmental samples. This study examines the bioaccumulation of cadmium and lead in Cyprinus carpio, a bioindicator of contamination in the Colorado River, Argentina. The fish were exposed to sublethal metal concentrations for 24, 48, and 96 h. Metal quantification was conducted using a novel automatic flow-batch system with SWASV and a bismuth film electrode. To the best of our knowledge, this constitutes the first application of this methodology on aquatic bioindicators for the assessment of metal accumulation in a natural environment. The technique demonstrated enhanced sensitivity and selectivity for the detection of trace metals. The bioaccumulation results demonstrated an increase in cadmium and lead concentrations in fish liver tissue after 96 h, reaching 10.5 µg g−1 and 11.9 µg g−1, respectively. Validation with inductively coupled plasma–atomic emission spectrometry (ICP-AES) demonstrated a satisfactory correlation, confirming the reliability of the method. This novel electrochemical approach offers enhanced accuracy and efficiency, making it a promising tool for environmental monitoring. The results indicate that Colorado River water is within safe levels for aquatic life regarding these metals. However, continuous monitoring is recommended to detect changes in contamination levels and protect ecosystem health, especially during water crises and under climate change. Full article
(This article belongs to the Special Issue Impact of Environmental Factors on Aquatic Ecosystem)
Show Figures

Figure 1

Back to TopTop