Determination of Caffeine in Energy Drinks Using a Composite Modified Sensor Based on Magnetic Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of the Electrodes
2.2. Surface Modifier Composition Optimization
2.3. Type and Concentration of the Base Electrolyte
2.4. Electrochemical Performance of CAF
2.5. Deposition and Accumulation Step
2.6. Technique Parameters
2.7. Repeatability and Reproducibility
2.8. Sensitivity, Selectivity and Application
3. Materials and Methods
3.1. Instrumentations
3.2. Reagents
3.3. BDDE/Nafion@Fe3O4/BiF Preparation and CAF Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadok, I.; Tyszczuk-Rotko, K.; Nosal-Wiercińska, A. Bismuth particles Nafion covered boron-doped diamond electrode for simultaneous and individual voltammetric assays of paracetamol and caffeine. Sens. Actuators B Chem. 2016, 235, 263–272. [Google Scholar] [CrossRef]
- Tefera, M.; Geto, A.; Tessema, M.; Admassie, S. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)- modified glassy carbon electrode. Food Chem. 2016, 210, 156–162. [Google Scholar] [CrossRef]
- Tyszczuk-Rotko, K.; Pietrzak, K.; Sasal, A. Adsorptive stripping voltammetric method for the determination of caffeine at an integrated three-electrode screen-printed sensor with carbon/carbon nanofibers working electrode. Adsorption 2019, 25, 913–921. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta 2010, 55, 8638–8648. [Google Scholar] [CrossRef]
- Farag, A.S.; Pravcová, K.; Česlová, L.; Vytřas, K.; Sýs, M. Simultaneous Determination of Caffeine and Pyridoxine in Energy Drinks using Differential Pulse Voltammetry at Glassy Carbon Electrode Modified with Nafion®. Electroanalysis 2019, 31, 1494. [Google Scholar] [CrossRef]
- Habibi, B.; Abazari, M.; Pournaghi-Azar, M.H. A Carbon Nanotube Modified Electrode for Determination of Caffeine by Differential Pulse Voltammetry. Chinese J. Catal. 2012, 33, 1783–1790. [Google Scholar] [CrossRef]
- Tyszczuk-Rotko, K.; Szwagierek, A. Green Electrochemical Sensor for Caffeine Determination in Environmental Water Samples: The Bismuth Film Screen-Printed Carbon Electrode. J. Electrochem. Soc. 2017, 164, B342. [Google Scholar] [CrossRef]
- Seifert, S.M.; Schaechter, J.L.; Hershorin, E.R.; Lipshultz, S.E. Health Effects of Energy Drinks on Children, Adolescents, and Young Adults. Pediatrics 2011, 127, 511–528. [Google Scholar] [CrossRef]
- Owens, J. Insufficient Sleep in Adolescents and Young Adults: An Update on Causes and Consequences. Pediatrics 2014, 134, e921–e932. [Google Scholar] [CrossRef]
- Reissig, C.J.; Strain, E.C.; Griffiths, R.R. Caffeinated energy drinks—A growing problem. Drug Alcohol Depend. 2009, 99, 1–10. [Google Scholar] [CrossRef]
- Journal of Laws of the Republic of Poland. ACT on Amending the Public Health Act and Certain Other Acts. Available online: https://orka.sejm.gov.pl/proc9.nsf/ustawy/3258_u.htm (accessed on 17 August 2023).
- Franeta, J.T.; Agbaba, D.; Eric, S.; Pavkov, S.; Aleksic, M.; Vladimirov, S. HPLC assay of acetylsalicylic acid, paracetamol, caffeine and phenobarbital in tablets. Il Farmaco 2002, 57, 709–713. [Google Scholar] [CrossRef]
- Peng, X.; Brown, M.; Bowdler, P.; Honeychurch, K.C. Extraction-Free, Direct Determination of Caffeine in Microliter Volumes of Beverages by Thermal Desorption-Gas Chromatography Mass Spectrometry. Int. J. Anal. Chem. 2020, 149, 405184. [Google Scholar] [CrossRef]
- Wong, A.; Santos, A.M.; da Fonseca Alves, R.; Vicentini, F.C.; Fatibello-Filho, O.; Del Pilar Taboada Sotomayor, M. Simultaneous determination of direct yellow 50, tryptophan, carbendazim, and caffeine in environmental and biological fluid samples using graphite pencil electrode modified with palladium nanoparticles. Talanta 2021, 222, 121539. [Google Scholar] [CrossRef]
- Yang, S.; Yang, R.; Li, G.; Qu, L.; Li, J.; Yu, L. Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine. J. Electroanal. Chem. 2010, 639, 77–82. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Wang, F.; Li, M. Sensitive voltammetric detection of caffeine in tea and other beverages based on a DNA functionalized single-walled carbon nanotube modified glassy carbon electrode. Anal. Methods 2014, 6, 7525–7531. [Google Scholar] [CrossRef]
- Miao, P.; Tang, Y.; Wang, L. DNA Modified Fe3O4@Au Magnetic Nanoparticles as Selective Probes for Simultaneous Detection of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2017, 9, 3940–3947. [Google Scholar] [CrossRef]
- Arvand, M.; Hemmati, S. Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sens. Actuat. B Chem. 2017, 238, 346–356. [Google Scholar] [CrossRef]
- Tyszczuk-Rotko, K.; Bęczkowska, I. Nafion covered lead film electrode for the voltammetric determination of caffeine in beverage samples and pharmaceutical formulations. Food Chem. 2015, 172, 24–29. [Google Scholar] [CrossRef]
- Wu, W.; Jia, M.; Zhang, Z.; Chen, X.; Zhang, Q.; Zhang, W.; Li, P.; Chen, L. Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. Ecotoxicol. Environ. Saf. 2019, 175, 243–250. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, X.; Ma, Q.; Tang, B.; Lu, Z.; Zhang, J.; Mo, G.; Ye, J.; Ye, J. A sensitive electrochemical sensor for simultaneous voltammetric sensing of cadmium and lead based on Fe3O4/multiwalled carbon nanotube/laser scribed graphene composites functionalized with chitosan modified electrode. Mater. Chem. Phys. 2019, 238, 121877. [Google Scholar] [CrossRef]
- Gosser, D.K. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanism; VCH: New York, NY, USA, 1993. [Google Scholar]
- Spataru, N.; Sarada, B.V.; Tryk, D.A.; Fujishima, A. Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application. Electroanalysis 2002, 14, 721–728. [Google Scholar] [CrossRef]
- Newton, D.W.; Kluza, R.B. pKa values of medicinal compounds in pharmacy practice. Drug Intell. Clin. Pharm. 1978, 12, 546–554. [Google Scholar] [CrossRef]
- Vandeponseele, A.; Draye, M.; Piot, C.; Chatel, G. Study of influential parameters of the caffeine extraction from spent coffee grounds: From brewing coffee method to the waste treatment conditions. Clean Technol. 2021, 3, 335–350. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Suely Fernandes, N.; Ferro, S.; De Battisti, A.; Quiroz, M.A. Fabrication and application of Nafion®—Modified boron-doped diamond electrode as sensor for detection caffeine. Diam. Relat. Mater. 2010, 19, 1188–1193. [Google Scholar] [CrossRef]
- Telo, J.P.; Vieira, A.J.S.C. Mechanism of free radical oxidation of caffeine in aqueous solution. J. Chem. Soc. Perkin Trans. 2 1997, 9, 1755–1758. [Google Scholar] [CrossRef]
Method (Sensor) | Linear Range [nM] | LOD [nM] | Sample | Ref. |
---|---|---|---|---|
RP-HPLC with UV detection | 51,500–412,000 | 875 | Tablets | [12] |
TD-GC/MS | 51,500–2,570,000 | 2350 | Energy drinks, cola | [13] |
DPV (Bi/Nafion/BDDE) | 10–20,000 | 1.14 | Energy drinks, cola, tea, coffee | [1] |
DPAdSV (SPCE/CNFs) | 200–1000 | 56 | Energy drink, cola | [3] |
DPV (SWCNT/CCE) | 250–100,000 | 120 | Mineral water | [6] |
DPAdSV (BDDE/Nafion@Fe3O4/BiF) | 0.5–10,000 | 0.0431 | Energy drinks | This work |
CAF Concentration [mM] ± SD (n = 3) | |||
---|---|---|---|
Sample (Content) | Found DPV | Coefficient of Variation * [%] | Recovery ** [%] |
1 (1.65) | 1.60 ± 0.12 | 7.5 | 97.0 |
2 (0.72) | 0.72 ± 0.013 | 1.8 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyszczuk-Rotko, K.; Liwak, A.; Keller, A. Determination of Caffeine in Energy Drinks Using a Composite Modified Sensor Based on Magnetic Nanoparticles. Molecules 2025, 30, 2219. https://doi.org/10.3390/molecules30102219
Tyszczuk-Rotko K, Liwak A, Keller A. Determination of Caffeine in Energy Drinks Using a Composite Modified Sensor Based on Magnetic Nanoparticles. Molecules. 2025; 30(10):2219. https://doi.org/10.3390/molecules30102219
Chicago/Turabian StyleTyszczuk-Rotko, Katarzyna, Aleksandra Liwak, and Aleksy Keller. 2025. "Determination of Caffeine in Energy Drinks Using a Composite Modified Sensor Based on Magnetic Nanoparticles" Molecules 30, no. 10: 2219. https://doi.org/10.3390/molecules30102219
APA StyleTyszczuk-Rotko, K., Liwak, A., & Keller, A. (2025). Determination of Caffeine in Energy Drinks Using a Composite Modified Sensor Based on Magnetic Nanoparticles. Molecules, 30(10), 2219. https://doi.org/10.3390/molecules30102219