Synthesis of (Bi2O3)1-x(PbO)x Thin Films by Plasma-Assisted Reactive Evaporation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.W.; Zhang, J.Z.; Hu, Z.G.; Chu, J.H. Experimental Investigations of the Bismuth Oxide Film Grown by Atomic Layer Deposition Using Triphenyl Bismuth. Thin Solid Film. 2017, 622, 65–70. [Google Scholar]
- Tanaka, Y.; Sakama, H. Growth of Bismuth Oxide by Atomic Layer Deposition: An Attempt to Achieve a Stoichiometric Composition and a High Growth Rate. Cryst. Growth Des. 2025, 25, 970–977. [Google Scholar] [CrossRef]
- Popa, P.L.; Sønderby, S.; Kerdsongpanya, S.; Lu, J.; Arwin, H.; Eklund, P. Structural, Morphological, and Optical Properties of Bi2O3 Thin Films Grown by Reactive Sputtering. Thin Solid Film. 2017, 624, 41–48. [Google Scholar] [CrossRef]
- Rodil, S.E.; Depablos-Rivera, O.; Sánchez-López, J.C. Tribological Response of Δ-Bi2O3 Coatings Deposited by Rf Magnetron Sputtering. Lubricants 2023, 11, 207. [Google Scholar] [CrossRef]
- Sun, Z.; Oka, D.; Fukumura, T. Epitaxial Growth of Β-Bi2O3 Thin Films and Particles with Mist Chemical Vapor Deposition. Cryst. Growth Des. 2019, 19, 7170–7174. [Google Scholar] [CrossRef]
- Bedoya, C.; Condorelli, G.G.; Anastasi, G.; Baeri, A.; Scerra, F.; Fragalà, I.L.; Lisoni, J.G.; Wouters, D. Mocvd of Bismuth Oxides: Transport Properties and Deposition Mechanisms of the Bi(C6H5)3 Precursor. Chem. Mater. 2004, 16, 3176–3183. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Q.; He, W. Thin Bismuth Oxide Films Prepared through the Sol–Gel Method as Photocatalyst. J. Mol. Catal. A: Chem. 2007, 261, 167–171. [Google Scholar]
- He, W.; Wei, Q.; Wu, X.; Ning, H. Thin Bismuth Oxide Films Prepared through the Sol–Gel Method. Mater. Lett. 2007, 61, 4100–4102. [Google Scholar]
- Leontie, L.; Caraman, M.; Visinoiu, A.; Rusu, G.I. On the Optical Properties of Bismuth Oxide Thin Films Prepared by Pulsed Laser Deposition. Thin Solid Film. 2005, 473, 230–235. [Google Scholar] [CrossRef]
- Condurache-Bota, S.; Constantinescu, C.; Praisler, M.; Tiron, V.; Tigau, N.; Gheorghies, C. The Influence of Laser Wavelength and Pulses Number on the Structure and the Optical Properties of Pulsed Laser-Deposited Bismuth Oxide Thin Films. In Proceedings of the 2014 International Semiconductor Conference (CAS), Sinaia, Romania, 13–15 October 2014. [Google Scholar]
- Jiang, N.; Wachsman, E.D.; Jung, S.-H. A Higher Conductivity Bi2O3-Based Electrolyte. Solid State Ion. 2002, 150, 347–353. [Google Scholar] [CrossRef]
- Sammes, N.M.; Tompsett, G.; Phillips, R.; Carson, C.; Cartner, A.M.; Fee, M.G.; Yamamoto, O. Characterisation and Stability of the Fast Ion Conductor (Bi2O3)1 − X(Pbo)X. Solid State Ion. 1996, 86, 125–130. [Google Scholar] [CrossRef]
- Sammes, N.M.; Tompsett, G.A.; Näfe, H.; Aldinger, F. Bismuth Based Oxide Electrolytes—Structure and Ionic Conductivity. J. Eur. Ceram. Soc. 1999, 19, 1801–1826. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Koch, C.C. Nanocrystalline Materials—Current Research and Future Directions. Hyperfine Interact. 2000, 130, 5–44. [Google Scholar] [CrossRef]
- Jolley, A.G.; Bai, Q.; Jayathilake, R.; Mo, Y.; Wachsman, E.D. Bismuth Oxide Electrolytes with Superior Conductivity and Stability. Mater. Today 2025, 86, 247–254. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.-J.; Zhang, G.; Ning, X.-J.; Li, C.-X.; Liao, H.; Coddet, C. Ionic Conductivity and Its Temperature Dependence of Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Electrolyte. Mater. Sci. Eng. B 2007, 137, 24–30. [Google Scholar] [CrossRef]
- Anirban, S.; Dutta, A. Revisiting Ionic Conductivity of Rare Earth Doped Ceria: Dependency on Different Factors. Int. J. Hydrogen Energy 2020, 45, 25139–25166. [Google Scholar] [CrossRef]
- Morales, M.; Roa, J.J.; Tartaj, J.; Segarra, M. A Review of Doped Lanthanum Gallates as Electrolytes for Intermediate Temperature Solid Oxides Fuel Cells: From Materials Processing to Electrical and Thermo-Mechanical Properties. J. Eur. Ceram. Soc. 2016, 36, 1–16. [Google Scholar] [CrossRef]
- Ilves, V.G.; Gaviko, V.S.; Murzakaev, A.M.; Sokovnin, S.Y.; Svetlova, O.A.; Zuev, M.G.; Uimin, M.A. Effect of Air Annealing on Structural, Textural, Thermal, Magnetic and Photocatalytic Properties of Ag-Doped Mesoporous Amorphous Crystalline Nanopowders Bi2O3. Nano-Struct. Nano-Objects 2024, 39, 101319. [Google Scholar] [CrossRef]
- Leng, D.; Wang, T.; Du, C.; Pei, X.; Wan, Y.; Wang, J. Synthesis of Β-Bi2O3 Nanoparticles Via the Oxidation of Bi Nanoparticles: Size, Shape and Polymorph Control, Anisotropic Thermal Expansion, and Visible-Light Photocatalytic Activity. Ceram. Int. 2022, 48, 18270–18277. [Google Scholar] [CrossRef]
- Liu, G.; Li, S.; Lu, Y.; Zhang, J.; Feng, Z.; Li, C. Controllable Synthesis of A-Bi2O3 and Γ-Bi2O3 with High Photocatalytic Activity by A-Bi2O3→Γ-Bi2O3→A-Bi2O3 Transformation in a Facile Precipitation Method. J. Alloys Compd. 2016, 689, 787–799. [Google Scholar] [CrossRef]
- Shuk, P.; Wiemhöfer, H.D.; Guth, U.; Göpel, W.; Greenblatt, M. Oxide Ion Conducting Solid Electrolytes Based on Bi2O3. Solid State Ion. 1996, 89, 179–196. [Google Scholar] [CrossRef]
- Dapčević, A.; Poleti, D.; Rogan, J.; Radojković, A.; Radović, M.; Branković, G. A New Electrolyte Based on Tm3 +-Doped Δ-Bi2O3-Type Phase with Enhanced Conductivity. Solid State Ion. 2015, 280, 18–23. [Google Scholar] [CrossRef]
- Iwahara, H.; Esaka, T.; Sato, T.; Takahashi, T. Formation of High Oxide Ion Conductive Phases in the Sintered Oxides of the System Bi2O3 Ln2O3 (Ln = La Yb). J. Solid State Chem. 1981, 39, 173–180. [Google Scholar] [CrossRef]
- Punn, R.; Feteira, A.M.; Sinclair, D.C.; Greaves, C. Enhanced Oxide Ion Conductivity in Stabilized Δ-Bi2O3. J. Am. Chem. Soc. 2006, 128, 15386–15387. [Google Scholar] [CrossRef]
- Takahashi, T.; Iwahara, H. Oxide Ion Conductors Based on Bismuthsesquioxide. Mater. Res. Bull. 1978, 13, 1447–1453. [Google Scholar] [CrossRef]
- Kharitonova, E.P.; Voronkova, V.I.; Belov, D.A.; Orlova, E.I. Fluorite-Like Compounds with High Anionic Conductivity in Nd2moo6—Bi2O3 System. Int. J. Hydrogen Energy 2016, 41, 10053–10059. [Google Scholar] [CrossRef]
- Balci, M. Structural, Thermal, Surface, and Electrical Properties of Bi2O3 Ceramics Co–Doped with Er–Ho–Tb Rare Earths. J. Aust. Ceram. Soc. 2024, 60, 385–397. [Google Scholar] [CrossRef]
- Hernández-Cuevas, G.; Leyva Mendoza, J.R.; García-Casillas, P.E.; Olivas-Armendariz, I.; Mani-González, P.G.; Díaz de la Torre, S.; Raymond-Herrera, O.; Martínez-Guerra, E.; Espinosa-Almeyda, Y.; Camacho-Montes, H. Synthesis and Characterization of Niobium Doped Bismuth Titanate. Boletín Soc. Española Cerámica Y Vidr. 2023, 62, 220–232. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Ali, M.G.; Waseem, S.; Bashir, Z.; Riaz, S.; Naseem, S. Optimization of Nanostructured Zr Doped Bismuth Oxide (Bi2O4) Thin Films for Physical and Biological Properties. Ceram. Int. 2024, 50, 6854–6869. [Google Scholar] [CrossRef]
- Gomez, C.L.; Depablos-Rivera, O.; Medina, J.C.; Silva-Bermudez, P.; Muhl, S.; Zeinert, A.; Rodil, S.E. Stabilization of the Delta-Phase in Bi2O3 Thin Films. Solid State Ion. 2014, 255, 147–152. [Google Scholar] [CrossRef]
- Omari, M.; Drache, M.; Conflant, P.; Boivin, J.C. Anionic Conduction Properties of the Fluorite-Type Phase in the Bi2O3-Y2O3-Pbo System. Solid State Ion. 1990, 40–41, 929–933. [Google Scholar] [CrossRef]
- Drache, M.; Conflant, P.; Boivin, J.C. Anionic Conduction Properties of Bi Ca Pb Mixed Oxides. Solid State Ion. 1992, 57, 245–249. [Google Scholar] [CrossRef]
- Arı, M.; Taşçıoğlu, İ.; Altındal, Ş.; Uslu, İ.; Aytimur, A.; Karaaslan, T.; Koçyiğit, S. Crystal Structure and Electrical Properties of Gadolinia Doped Bismuth Oxide Nanoceramic Powders. Mater. Chem. Phys. 2012, 136, 942–946. [Google Scholar] [CrossRef]
- Aytimur, A.; Koçyiğit, S.; Uslu, İ.; Durmuşoğlu, Ş.; Akdemir, A. Fabrication and Characterization of Bismuth Oxide–Holmia Nanofibers and Nanoceramics. Curr. Appl. Phys. 2013, 13, 581–586. [Google Scholar] [CrossRef]
- Iljinas, A.; Burinskas, S.; Dudonis, J. Synthesis of Bismuth Oxide Thin Films Deposited by Reactive Magnetron Sputtering. Acta Phys. Pol. A 2011, 120, 60–62. [Google Scholar] [CrossRef]
- Iljinas, A.; Marcinauskas, L. Formation of Bismuth Oxide Nanostructures by Reactive Plasma Assisted Thermal Evaporation. Thin Solid Film. 2015, 594, 192–196. [Google Scholar] [CrossRef]
- Medina, J.C.; Bizarro, M.; Silva-Bermudez, P.; Giorcelli, M.; Tagliaferro, A.; Rodil, S.E. Photocatalytic Discoloration of Methyl Orange Dye by Δ-Bi2O3 Thin Films. Thin Solid Film. 2016, 612, 72–81. [Google Scholar] [CrossRef]
- Qin, W.; Qi, J.; Wu, X. Photocatalytic Property of Cu2+-Doped Bi2O3 Films under Visible Light Prepared by the Sol–Gel Method. Vacuum 2014, 107, 204–207. [Google Scholar] [CrossRef]
- Salim, E.T.; Al-Douri, Y.; Al Wazny, M.S.; Fakhri, M.A. Optical Properties of Cauliflower-Like Bi2O3 Nanostructures by Reactive Pulsed Laser Deposition (Pld) Technique. Sol. Energy 2014, 107, 523–529. [Google Scholar] [CrossRef]
- Taşçıoğlu, İ.; Arı, M.; Uslu, İ.; Koçyiğit, S.; Dağdemir, Y.; Çorumlu, V.; Altındal, Ş. Temperature Dependent Conductivity and Structural Properties of Sol–Gel Prepared Holmium Doped Bi2O3 Nanoceramic Powder. Ceram. Int. 2012, 38, 6455–6460. [Google Scholar] [CrossRef]
- Zhang, J.; Han, Q.; Wang, X.; Zhu, J.; Duan, G. Synthesis of Δ-Bi2O3 Microflowers and Nanosheets Using Ch3coo(Bio) Self-Sacrifice Precursor. Mater. Lett. 2016, 162, 218–221. [Google Scholar] [CrossRef]
- Ramanauskas, R.; Iljinas, A.; Marcinauskas, L.; Milieška, M.; Kavaliauskas, Ž.; Gecevičius, G.; Čapas, V. Deposition and Application of Indium-Tin-Oxide Films for Defrosting Windscreens. Coatings 2022, 12, 670. [Google Scholar] [CrossRef]
- Schmidt, M. Mitsuharu Konuma Film Deposition by Plasma Techniques; 1992. X, 224 Pp. 185 Figs., 30 Tabs. (Springer Series on Atoms and Plasmas. Eds: G. Ecker, P. Lambropoulos, I. I. Sobelman, H. Walter. Vol. 10) Hardcover Dm 98,-Isbn 3-540-54057-1. Contrib. Plasm. Phys. 1992, 32, 649–650. [Google Scholar] [CrossRef]
- Setsuhara, Y. 4.12—Plasma Sources in Thin Film Deposition A2—Hashmi, Saleem. In Comprehensive Materials Processing; Batalha, G.F., Tyne, C.J.V., Yilbas, B., Eds.; Elsevier: Oxford, UK, 2014; pp. 307–324. [Google Scholar]
- Gujar, T.P.; Shinde, V.R.; Lokhande, C.D.; Han, S.-H. Fibrous Nanorod Network of Bismuth Oxide by Chemical Method. Mat. Sci. Eng. B-Adv. 2006, 133, 177–180. [Google Scholar] [CrossRef]
- Jia, B.; Gao, L. Synthesis and Characterization of Single Crystalline Pbo Nanorods Via a Facile Hydrothermal Method. Mater. Chem. Phys. 2006, 100, 351–354. [Google Scholar] [CrossRef]
- Prieto, J.E.; Markov, I. Stranski–Krastanov Mechanism of Growth and the Effect of Misfit Sign on Quantum Dots Nucleation. Surf. Sci. 2017, 664, 172–184. [Google Scholar] [CrossRef]
- Venkataraj, S.; Kappertz, O.; Drese, R.; Liesch, C.; Jayavel, R.; Wuttig, M. Thermal Stability of Lead Oxide Films Prepared by Reactive Dc Magnetron Sputtering. Phys. Status Solidi A 2002, 194, 192–205. [Google Scholar] [CrossRef]
Parameters | |||||||
---|---|---|---|---|---|---|---|
Substrate | Si (100) | Glass | |||||
Mass of Bi pieces, mg | 400 | 390 | 360 | 400 | 390 | 360 | 400 |
Mass of Pb pieces, mg | 100 | 130 | 150 | 100 | 130 | 150 | 140 |
Mass ratio of evaporated mix of pieces (Pb/Bi) | 0.25 | 0.33 | 0.42 | 0.25 | 0.33 | 0.42 | 0.35 |
Thickness of thin film, nm | 293 | 337 | 382 | 311 | 359 | 397 | 423 |
Atomic ratio of Pb/Bi in deposited films | 0.26 | 0.31 | 0.42 | 0.16 | 0.19 | 0.36 | 0.22 |
Mole fraction in deposited films of (Bi2O3)1−x(PbO)x | 0.13 | 0.15 | 0.17 | 0.06 | 0.08 | 0.15 | 0.18 |
Substrate temperature, °C | 500 | 25 | |||||
Evaporation rate, mg/min | 50 | ||||||
Initial pressure, Pa | 5 × 10−3 | ||||||
Pressure of reactive O2 gas, Pa | 4 | ||||||
Distance between the boat and the substrate, cm | 10 | ||||||
Plasma discharge and bias voltage, V | 400 | ||||||
Discharge current, A | 0.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iljinas, A.; Stankus, V.; Virbukas, D.; Kaliasas, R. Synthesis of (Bi2O3)1-x(PbO)x Thin Films by Plasma-Assisted Reactive Evaporation. Coatings 2025, 15, 748. https://doi.org/10.3390/coatings15070748
Iljinas A, Stankus V, Virbukas D, Kaliasas R. Synthesis of (Bi2O3)1-x(PbO)x Thin Films by Plasma-Assisted Reactive Evaporation. Coatings. 2025; 15(7):748. https://doi.org/10.3390/coatings15070748
Chicago/Turabian StyleIljinas, Aleksandras, Vytautas Stankus, Darius Virbukas, and Remigijus Kaliasas. 2025. "Synthesis of (Bi2O3)1-x(PbO)x Thin Films by Plasma-Assisted Reactive Evaporation" Coatings 15, no. 7: 748. https://doi.org/10.3390/coatings15070748
APA StyleIljinas, A., Stankus, V., Virbukas, D., & Kaliasas, R. (2025). Synthesis of (Bi2O3)1-x(PbO)x Thin Films by Plasma-Assisted Reactive Evaporation. Coatings, 15(7), 748. https://doi.org/10.3390/coatings15070748