Synthesis, Crystal Structure, Characterization, and Hydrophobicity Tests of Bismuth(III)– and Silver(I)–Triammionium Bromide Low-Dimensional Perovskites
Abstract
:1. Introduction
2. Experimental
3. X-Ray Crystallography
4. Results
4.1. Comments on Material Synthesis
4.2. Crystal Structure Description
4.3. Film Deposition and Water Affinity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NREL Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency (accessed on 24 March 2025).
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, H.L.; Jiao, W.B.; Wang, Q.; Wei, M.; Cantone, I.; Lü, J.; Abate, A. Biological Impact of Lead from Halide Perovskites Reveals the Risk of Introducing a Safe Threshold. Nat. Commun. 2020, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Kore, B.P.; Jamshidi, M.; Gardner, J.M. The Impact of Moisture on the Stability and Degradation of Perovskites in Solar Cells. Mater. Adv. 2024, 5, 2200–2217. [Google Scholar] [CrossRef]
- Cheng, W.; Zhou, R.; Peng, S.; Wang, C.; Chen, L. Research on Passivation of Perovskite Layer in Perovskite Solar Cells. Mater. Today Commun. 2024, 38, 107879. [Google Scholar] [CrossRef]
- McClure, E.T.; Ball, M.R.; Windl, W.; Woodward, P.M. Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. Chem. Mater. 2016, 28, 1348–1354. [Google Scholar] [CrossRef]
- Volonakis, G.; Filip, M.R.; Haghighirad, A.A.; Sakai, N.; Wenger, B.; Snaith, H.J.; Giustino, F. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. J. Phys. Chem. Lett. 2016, 7, 1254–1259. [Google Scholar] [CrossRef]
- Rajeev Kumar, N.; Radhakrishnan, R. Electronic, Optical and Mechanical Properties of Lead-Free Halide Double Perovskites Using First-Principles Density Functional Theory. Mater. Lett. 2018, 227, 289–291. [Google Scholar] [CrossRef]
- Xiao, Z.; Du, K.; Meng, W.; Mitzi, D.B.; Yan, Y. Chemical Origin of the Stability Difference between Copper(I)- and Silver(I)-Based Halide Double Perovskites. Angew. Chem. 2017, 129, 12275–12279. [Google Scholar] [CrossRef]
- Filip, M.R.; Liu, X.; Miglio, A.; Hautier, G.; Giustino, F. Phase Diagrams and Stability of Lead-Free Halide Double Perovskites Cs2BB′X6: B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and i. J. Phys. Chem. C 2018, 122, 158–170. [Google Scholar] [CrossRef]
- Creutz, S.E.; Crites, E.N.; De Siena, M.C.; Gamelin, D.R. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange to Access New Materials. Nano Lett. 2018, 18, 1118–1123. [Google Scholar] [CrossRef]
- Scalon, L.; Szostak, R.; Araújo, F.L.; Adriani, K.F.; Silveira, J.F.R.V.; Oliveira, W.X.C.; Da Silva, J.L.F.; Oliveira, C.C.; Nogueira, A.F. Improving the Stability and Efficiency of Perovskite Solar Cells by a Bidentate Anilinium Salt. JACS Au 2022, 2, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, M.; Cao, F.; Tian, W.; Li, L. Hydrophobic Long Alkyl Chain Organic Cations Induced 2D/3D Heterojunction for Efficient and Stable Perovskite Solar Cells. J. Mater. Sci. Technol. 2022, 124, 243–251. [Google Scholar] [CrossRef]
- Davy, M.M.; Jadel, T.M.; Qin, C.; Luyun, B.; Mina, G. Recent Progress in Low Dimensional (Quasi-2D) and Mixed Dimensional (2D/3D) Tin-Based Perovskite Solar Cells. Sustain. Energy Fuels 2021, 5, 34–51. [Google Scholar] [CrossRef]
- Hong, K.; Van Le, Q.; Young Kim, S.; Won Jang, H. Low-Dimensional Halide Perovskites: Review and Issues. J. Mater. Chem. C 2018, 6, 2189. [Google Scholar] [CrossRef]
- Febriansyah, B.; Li, Y.; Giovanni, D.; Salim, T.; Hooper, T.J.N.; Sim, Y.; Ma, D.; Laxmi, S.; Lekina, Y.; Koh, T.M.; et al. Inorganic Frameworks of Low-Dimensional Perovskites Dictate the Performance and Stability of Mixed-Dimensional Perovskite Solar Cells. Mater. Horiz. 2023, 10, 536–546. [Google Scholar] [CrossRef]
- Yao, Y.; Jiang, H.; Peng, Y.; Zhang, X.; Chen, S.; Liu, X.; Luo, J. High-Curie Temperature Multilayered Hybrid Double Perovskite Photoferroelectrics Induced by Aromatic Cation Alloying. J. Am. Chem. Soc. 2021, 143, 15900–15906. [Google Scholar] [CrossRef]
- Connor, B.A.; Su, A.C.; Slavney, A.H.; Leppert, L.; Karunadasa, H.I. Understanding the Evolution of Double Perovskite Band Structure upon Dimensional Reduction. Chem. Sci. 2023, 14, 11858–11871. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X.; Chen, Y.; Li, M.; Fang, W.; Yu, Z.; He, B.; Zhai, T.; He, Y. Narrow-Bandgap Mixed 0D/1D Bismuth Bromide Perovskite Hydrate Enabled by Aromatic Ditertiary Ammonium Spacer. Adv. Opt. Mater. 2023, 11, 2300820. [Google Scholar] [CrossRef]
- Connor, B.A.; Biega, R.I.; Leppert, L.; Karunadasa, H.I. Dimensional Reduction of the Small-Bandgap Double Perovskite Cs2AgTlBr6. Chem. Sci. 2020, 11, 7708–7715. [Google Scholar] [CrossRef]
- Guo, Z.; Ruan, H.; Lin, J.; Sun, F.; Liu, K.; Chen, X.; Zhao, J.; Yuan, W. (BA)10AgBi2Br19: A One-Dimensional Halide Double Perovskite with a Unique Br Trimer. Chem. Commun. 2022, 58, 13337–13340. [Google Scholar] [CrossRef]
- Zhu, Z.K.; Zhu, T.; Wu, J.; You, S.; Yu, P.; Liu, X.; Li, L.; Ji, C.; Luo, J. Discovering New Type of Lead-Free Cluster-Based Hybrid Double Perovskite Derivatives with Chiral Optical Activities and Low X-Ray Detection Limit. Adv. Funct. Mater. 2023, 33, 2214660. [Google Scholar] [CrossRef]
- Wan, M.Y.; Liu, W.F.; Luo, J.L.; Liao, J.; Wang, F.X.; Wang, L.J.; Tang, Y.Z.; Tan, Y.H. Silver/Antimony-Base Multifunctional Double Perovskite with H/F Substitution Enhance Properties. Inorg. Chem. 2024, 63, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- Pious, J.K.; Muthu, C.; Dani, S.; Saeki, A.; Nair, V.C. Bismuth-Based Zero-Dimensional Perovskite-like Materials: Effect of Benzylammonium on Dielectric Confinement and Photoconductivity. Chem. Mater. 2020, 32, 2647–2652. [Google Scholar] [CrossRef]
- Ozório, M.S.; Oliveira, W.X.C.; Silveira, J.F.R.V.; Nogueira, A.F.; Da Silva, J.L.F. Novel Zero-Dimensional Lead-Free Bismuth Based Perovskites: From Synthesis to Structural and Optoelectronic Characterization. Mater. Adv. 2020, 1, 3439–3448. [Google Scholar] [CrossRef]
- Zhang, R.; Mao, X.; Yang, Y.; Yang, S.; Zhao, W.; Wumaier, T.; Wei, D.; Deng, W.; Han, K. Air-Stable, Lead-Free Zero-Dimensional Mixed Bismuth-Antimony Perovskite Single Crystals with Ultra-Broadband Emission. Angew. Chem. Int. Ed. 2019, 58, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Ran, C.; Xi, J.; Jiao, B.; Zhang, W.; Wu, M.; Hou, X.; Wu, Z. High-Quality Cs2AgBiBr6 Double Perovskite Film for Lead-Free Inverted Planar Heterojunction Solar Cells with 2.2% Efficiency. ChemPhysChem 2018, 19, 1696–1700. [Google Scholar] [CrossRef]
- Rigaku OD. CrysAlis PRO 2022, Rigaku: Tokyo, Japan, 2022.
- Palatinus, L.; Chapuis, G. SUPERFLIP—A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Dammak, H.; Feki, H.; Boughzala, H.; Abid, Y. Crystal Structure, Vibrational Spectra and Non-Linear Optical Properties of Diethylenetriammonium Hexabromobismuthate: C4H16N3BiBr6. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 1235–1243. [Google Scholar] [CrossRef]
- de P. Espínola, J.G.; Martins, E.P.S.; Aguiar, F.P.; Silva, H.R.M.; Fonseca, M.G.; Arakaki, L.N.H.; Teotônio, E.E.S. Thermal Decomposition Study of Bismuth (III) Trichloride Complex with 1,10-Phenanthroline as the Ligand. J. Therm. Anal. Calorim. 2011, 106, 601–606. [Google Scholar] [CrossRef]
- Imperatori, P.; Ferro, D.; Piacente, V. Sublimation Study of BiCl3 and of BiBr3. J. Chem. Thermodyn. 1982, 14, 461–472. [Google Scholar] [CrossRef]
- Darnell, A.J.; Yosim, S.J. Some Thermodynamic Properties of Solid Bismuth Chloride. J. Phys. Chem. 1959, 63, 1813–1815. [Google Scholar] [CrossRef]
Compound | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Formula | C4H16N3Br6Bi | C8H32N6Br7Ag | C9H23N3Br6Bi | C18H52N6Br12Ag6 |
Moiety Formula | (C4H16N3)[BiBr6] | (C4H16N3)[AgBr4]·(C4H16N3)Br3 | (C9H23N3)[BiBr6] | (C9H26N3)[Ag4Br7]·(C9H26N3)[Ag2Br5] |
MM/gmol−1 | 794.64 | 879.63 | 861.68 | 1958.68 |
T/°C | 27(2) | 27(2) | 27(2) | 20(2) |
λ/Å | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
Crystal system | Orthorhombic | Monoclinic | Orthorhombic | Orthorhombic |
Space group | P212121 | P21/c | P212121 | Pbcn |
a/Å | 7.1619(2) | 12.8135(2) | 12.5209(3) | 21.9327(8) |
b/Å | 14.0315(5) | 8.68440(10) | 13.2679(3) | 7.0174(2) |
c/Å | 16.2858(5) | 21.2648(3) | 13.2685(4) | 29.1014(11) |
α/° | 90 | 90 | 90 | 90 |
β/° | 90 | 94.2400(10) | 90 | 90 |
γ/° | 90 | 90 | 90 | 90 |
V/Å3 | 1636.60(9) | 2359.82(6) | 2204.24(10) | 4479.0(3) |
Z | 4 | 4 | 4 | 4 |
ρ/Mg m−3 | 3.225 | 2.476 | 2.606 | 2.910 |
μ/mm−1 | 25.398 | 20.778 | 18.869 | 33.410 |
F(000) | 1416 | 1656.0 | 1564.0 | 3616 |
Reflections collected (Rint) | 12,523 (0.0596) | 34,634 (0.0365) | 19,708 (0.0477) | 41,359 (0.0377) |
Independent Reflections | 4163 | 5086 | 4514 | 4583 |
Reflection with I >2σ(I) | 3498 | 4789 | 4210 | 3609 |
R a, wR b [I >2σ(I)] | 0.0463, 0.1042 | 0.0361, 0.0956 | 0.0317, 0.0695 | 0.0676, 0.1539 |
R a, wR b (all data) | 0.0600, 0.1089 | 0.0378, 0.0971 | 0.0354, 0.0705 | 0.0882, 0.1649 |
S c | 1.044 | 1.067 | 1.042 | 1.112 |
ρmax and ρmin/e Å−3 | 1.263, –2.655 | 0.789; –1.145 | 1.010, –1.492 | 2.760, –1.837 |
CCDC number | 2,434,447 | 2,434,448 | 2,434,449 | 2,434,450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, V.C.; Dival, B.; Oliveira, W.X.C. Synthesis, Crystal Structure, Characterization, and Hydrophobicity Tests of Bismuth(III)– and Silver(I)–Triammionium Bromide Low-Dimensional Perovskites. Compounds 2025, 5, 20. https://doi.org/10.3390/compounds5020020
Sousa VC, Dival B, Oliveira WXC. Synthesis, Crystal Structure, Characterization, and Hydrophobicity Tests of Bismuth(III)– and Silver(I)–Triammionium Bromide Low-Dimensional Perovskites. Compounds. 2025; 5(2):20. https://doi.org/10.3390/compounds5020020
Chicago/Turabian StyleSousa, Victor C., Bruno Dival, and Willian X. C. Oliveira. 2025. "Synthesis, Crystal Structure, Characterization, and Hydrophobicity Tests of Bismuth(III)– and Silver(I)–Triammionium Bromide Low-Dimensional Perovskites" Compounds 5, no. 2: 20. https://doi.org/10.3390/compounds5020020
APA StyleSousa, V. C., Dival, B., & Oliveira, W. X. C. (2025). Synthesis, Crystal Structure, Characterization, and Hydrophobicity Tests of Bismuth(III)– and Silver(I)–Triammionium Bromide Low-Dimensional Perovskites. Compounds, 5(2), 20. https://doi.org/10.3390/compounds5020020