Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = biomass plantations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4991 KiB  
Article
Understory Plant Diversity in Cunninghamia lanceolata (Lamb.) Hook. Plantations Under Different Mixed Planting Patterns
by Minsi Wang, Hongting Guo and Jiang Jiang
Forests 2025, 16(8), 1290; https://doi.org/10.3390/f16081290 (registering DOI) - 7 Aug 2025
Abstract
The composition and structure of understory plants are crucial for forest ecosystem succession and stability. This study examined the impact of various Cunninghamia lanceolata mixed plantation patterns on understory biodiversity, aiming to provide a theoretical foundation for sustainable management. Six patterns were evaluated [...] Read more.
The composition and structure of understory plants are crucial for forest ecosystem succession and stability. This study examined the impact of various Cunninghamia lanceolata mixed plantation patterns on understory biodiversity, aiming to provide a theoretical foundation for sustainable management. Six patterns were evaluated using sample plots at Guanshan Forest Farm in Jiangxi Province, China. Understory vegetation diversity, biomass, and soil properties—including total nitrogen, available nitrogen, total phosphorus, available phosphorus, total potassium, available potassium, soil organic matter, and pH—were quantitatively analyzed. Significant differences in diversity among the patterns were revealed. The ‘Cunninghamia lanceolata + Phoebe bournei (Hemsl.) Yen C. Yang + Schima superba Gardner & Champ’ mixed plantation exhibited the most pronounced enhancement of understory plant diversity, whereas the ‘C. lanceolata + Liquidambar formosana Hance’ pattern demonstrated the least significant effects among all treatments. Significant correlations were detected between soil nutrients and diversity indices. Mixed patterns enhance diversity through expanded ecological niches and optimized microenvironments, thereby strengthening ecological functions and management efficiency. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

31 pages, 2773 KiB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 529
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

16 pages, 1049 KiB  
Article
Limited Short-Term Impact of Annual Cover Crops on Soil Carbon and Soil Enzyme Activity in Subtropical Tree Crop Systems
by Abraham J. Gibson, Lee J. Kearney, Karina Griffin, Michael T. Rose and Terry J. Rose
Agronomy 2025, 15(7), 1750; https://doi.org/10.3390/agronomy15071750 - 21 Jul 2025
Viewed by 285
Abstract
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in [...] Read more.
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in these systems. To investigate this, farmer participatory field trials were conducted in commercial avocado, macadamia, and coffee plantations in the wet Australian subtropics. Cover crops were direct-seeded into existing inter-row groundcovers in winter (cool season cover crops), and into the same plots the following summer (warm season cover crops). Inter-row biomass was quantified at the end of winter and summer in the control (no cover crop) and cover crops treatments. Soil carbon and nutrient cycling parameters including hot water extractable carbon, water soluble carbon, autoclavable citrate-extractable protein and soil enzyme activities were quantified every two months from early spring (September) 2021 to late autumn (May) 2022. Seeded cover crops produced 500 to 800 kg ha−1 more total inter-row biomass over winter at the avocado coffee sites, and 3000 kg ha−1 biomass in summer at the coffee site. However, they had no effect on biomass production in either season at the macadamia site. Soil functional parameters changed with season (i.e., time of sampling), with few significant effects of cover crop treatments on soil function parameters across the three sits. Growing a highly productive annual summer cover crop at the coffee site led to suppression and death of perennial groundcovers, exposing bare soil in the inter-row by 3 weeks after termination of the summer cover crop. Annual cover crops seeded into existing perennial groundcovers in tree crop systems had few significant impacts on soil biological function over the 12-month period, and their integration needs careful management to avoid investment losses and exacerbating the risk of soil erosion on sloping lands in the wet subtropics. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

20 pages, 1340 KiB  
Article
Assessment of Soil and Plant Nutrient Status, Spectral Reflectance, and Growth Performance of Various Dragon Fruit (Pitaya) Species Cultivated Under High Tunnel Systems
by Priyanka Belbase, Krishnaswamy Jayachandran and Maruthi Sridhar Balaji Bhaskar
Soil Syst. 2025, 9(3), 75; https://doi.org/10.3390/soilsystems9030075 - 14 Jul 2025
Viewed by 326
Abstract
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized [...] Read more.
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized crops, little is known about how pitaya growth, physiology and nutrient uptake change throughout the production period. This study aims to evaluate the impact of high tunnels and varying rates of vermicompost on three varieties of pitaya, White Pitaya (WP), Yellow Pitaya (YP), and Red Pitaya (RP), to assess the soil and plant nutrient dynamics, spectral reflectance changes and plant growth. Plants were assessed at 120 and 365 DAP (Days After Plantation). YP thrived in a high tunnel compared to an open environment in terms of survival before 120 DAP, with no diseased incidence and higher nutrient retention. The nutrient accumulation in the RP, WP, and YP shoot samples 120 DAP were ranked in the following order, K > N > Ca > Mg > P > Fe > Zn > B > Mn, while 365 DAP, they were ranked as K > Ca > N > Mg > P > S > Fe > Zn > B > Mn. The nutrient accumulation in the RP, WP, and YP, soil samples 120 and 365 DAP were ranked in the following order: N > Ca > Mg > P > K > Na > Zn. Soil nutrients showed a higher concentration of Na and K grown inside the high tunnels in all three pitaya species due to the increased concentration of soluble salts. Spectral reflectance analysis showed that RP and WP had higher reflectance in the visible and NIR region compared to YP due to their higher plant biomass and canopy cover. This study emphasizes the importance of environmental conditions, nutrition strategies, and plant physiology in the different pitaya plant species. The results suggest that high tunnels with appropriate vermicompost can enhance pitaya growth and development. Full article
Show Figures

Figure 1

12 pages, 2220 KiB  
Article
The Effects of Tree Species on Soil Organic Carbon Mineralization in Reservoir Water-Level Drawdown Zones
by Jiayi Zhang, Fang Wang, Jia Yang, Yanting Zhang, Li Qiu, Ziting Chen, Xi Wang, Tianya Zhang, Songzhe Li, Jiacheng Tong, Shunbao Lu and Yanjie Zhang
Forests 2025, 16(7), 1145; https://doi.org/10.3390/f16071145 - 11 Jul 2025
Viewed by 302
Abstract
Soil organic carbon (SOC) mineralization is the conversion of SOC to inorganic forms of carbon (C) by microbial decomposition and conversion. It plays an important role in global C cycling. Currently, most of the studies investigating the effects of different tree species on [...] Read more.
Soil organic carbon (SOC) mineralization is the conversion of SOC to inorganic forms of carbon (C) by microbial decomposition and conversion. It plays an important role in global C cycling. Currently, most of the studies investigating the effects of different tree species on SOC mineralization focus on forest ecosystems, and few have focused on reservoir water-level drawdown zones. In this study, we used an indoor incubation method to investigate SOC mineralization in the plantation soils of Glyptostrobus pensilis, Taxodium Zhongshanshan, Taxodium distichum and CK (unplanted plantation) in the reservoir water-level drawdown zones. We aimed to explore the effects of different tree species on the process of SOC mineralization in the reservoir water-level drawdown zones by considering both the biological and chemical processes of the soil. The results showed that the rates of SOC mineralization in the G. pensilis and T. Zhongshanshan plantations were 47% and 37%, respectively, higher than those in CK (p < 0.05), whereas the rate of SOC mineralization in T. distichum soils did not differ from that in CK. The structural equation model’s results showed microbial biomass carbon (MBC) is a key driver of SOC mineralization, while SOC and dissolved organic carbon (DOC) concentrations are also important factors that affect SOC mineralization and follow MBC. Compared to soil biochemical properties, the bacterial community composition has relatively little effect on SOC mineralization. Planted forests can, to a degree, change the biochemical properties of the soil in the reservoir water-level drawdown zones, effectively improving soil pH, and significantly increasing the amount of potential soil C mineralization, the content of SOC and the diversity of the soil bacteria (p < 0.05). Full article
Show Figures

Figure 1

19 pages, 3570 KiB  
Article
Modeling the Effects of Climate and Site on Soil and Forest Floor Carbon Stocks in Radiata Pine Stands at Harvesting Age
by Daniel Bozo, Rafael Rubilar, Óscar Jara, Marianne V. Asmussen, Rosa M. Alzamora, Juan Pedro Elissetche, Otávio C. Campoe and Matías Pincheira
Forests 2025, 16(7), 1137; https://doi.org/10.3390/f16071137 - 10 Jul 2025
Viewed by 329
Abstract
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors [...] Read more.
Forests are a key terrestrial carbon sink, storing carbon in biomass, the forest floor, and the mineral soil (SOC). Since Pinus radiata D. Don is the most widely planted forest species in Chile, it is important to understand how environmental and soil factors influence these carbon pools. Our objective was to evaluate the effects of climate and site variables on carbon stocks in adult radiata pine plantations across contrasting water and nutrient conditions. Three 1000 m2 plots were installed at 20 sites with sandy, granitic, recent ash, and metamorphic soils, which were selected along a productivity gradient. Biomass carbon stocks were estimated using allometric equations, and carbon stocks in the forest floor and mineral soil (up to 1 m deep) were assessed. SOC varied significantly, from 139.9 Mg ha−1 in sandy soils to 382.4 Mg ha−1 in metamorphic soils. Total carbon stocks (TCS) per site ranged from 331.0 Mg ha−1 in sandy soils to 552.9 Mg ha−1 in metamorphic soils. Across all soil types, the forest floor held the lowest carbon stock. Correlation analyses and linear models revealed that variables related to soil water availability, nitrogen content, precipitation, and stand productivity positively increased SOC and TCS stocks. In contrast, temperature, evapotranspiration, and sand content had a negative effect. The developed models will allow more accurate estimation estimates of C stocks at SOC and in the total stand. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 14490 KiB  
Article
Estimation of Forest Aboveground Biomass Using Sentinel-1/2 Synergized with Extrapolated Parameters from LiDAR Data and Analysis of Its Ecological Driving Factors
by Xu Xu, Jingyu Yang, Shanze Qi, Yue Ma, Wei Liu, Luanxin Li, Xiaoqiang Lu and Yan Liu
Remote Sens. 2025, 17(14), 2358; https://doi.org/10.3390/rs17142358 - 9 Jul 2025
Viewed by 341
Abstract
Accurate estimation of forest aboveground biomass (AGB) and understanding its ecological drivers are vital for carbon monitoring and sustainable forest management. However, AGB estimation using remote sensing is hindered by signal saturation in high-biomass areas and insufficient attention to ecological structural factors. Focusing [...] Read more.
Accurate estimation of forest aboveground biomass (AGB) and understanding its ecological drivers are vital for carbon monitoring and sustainable forest management. However, AGB estimation using remote sensing is hindered by signal saturation in high-biomass areas and insufficient attention to ecological structural factors. Focusing on Guangdong Province, this study proposes a novel approach that spatially extrapolates airborne LiDAR-derived Forest structural parameters and integrates them with Sentinel-1/2 data to construct an AGB prediction model. Results show that incorporating structural parameters significantly reduces saturation effects, improving prediction accuracy and AGB maximum range in high-AGB regions (R2 from 0.724 to 0.811; RMSE = 10.64 Mg/ha; max AGB > 180 Mg/ha). Using multi-scale geographically weighted regression (MGWR), we further examined the spatial influence of forest type, age structure, and species mixture. Forest age showed a strong positive correlation with AGB in over 95% of the area, particularly in mountainous and hilly regions (coefficients up to 1.23). Species mixture had positive effects in 87.7% of the region, especially in the north and parts of the south. Natural forests consistently exhibited higher AGB than plantations, with differences amplifying at later successional stages. Highly mixed natural forests showed faster biomass accumulation and higher steady-state AGB, highlighting the regulatory role of structural complexity and successional maturity. This study not only mitigates remote sensing saturation issues but also deepens understanding of spatial and ecological drivers of AGB, offering theoretical and technical support for targeted carbon stock assessment and forest management strategies. Full article
Show Figures

Figure 1

17 pages, 3983 KiB  
Article
Reduced Precipitation Alters Soil Nutrient Dynamics by Regulating the Chemical Properties of Deadwood Substrates
by Laicong Luo, Xi Yuan, Chunsheng Wu, Dehuan Zong, Xueying Zhong, Kang Lin, Long Li, Bingxu Yang, Xuejiao Han, Chao Luo, Wenping Deng, Shijie Li and Yuanqiu Liu
Forests 2025, 16(7), 1112; https://doi.org/10.3390/f16071112 - 4 Jul 2025
Viewed by 248
Abstract
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby [...] Read more.
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby influences soil nutrient pools remain poorly resolved. Here, we investigated a Cunninghamia lanceolata (Lamb.) Hook. plantation in subtropical China under ambient precipitation (CK) and precipitation reduction treatments of 30%, 50%, and 80%, systematically examining how reduced precipitation alters the chemical properties of deadwood substrates and, in turn, soil nutrient status. Our findings reveal that (1) as precipitation declined, soil water content decreased significantly (p < 0.01), while deadwood pH declined and total organic carbon (TOC), nonstructural carbohydrates (NSCs), and lignin content markedly accumulated (p < 0.01); (2) these shifts in deadwood chemistry affected feedback mechanisms, leading to the suppression of soil nutrient pools: extreme drought (80% reduction) significantly reduced soil TOC, dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.01) and inhibited N and P mineralization, whereas the 30% reduction treatment elicited a transient increase in soil microbial biomass carbon (MBC), indicative of microbial acclimation to mild water stress; and (3) principal component analysis (PCA) showed that the 80% reduction treatment drove lignin accumulation in deadwood, while the 30% reduction treatment exerted the greatest influence on soil DOC, TOC, and MBC; partial least squares path modeling (PLS-PM) further demonstrated that soil water content and deadwood substrate properties (pH, lignin, soluble sugars, TOC, C/N, and lignin/N) were strongly negatively correlated (r = −0.9051, p < 0.01), and that deadwood chemistry was, in turn, negatively correlated with soil nutrient variables (pH, TOC, DOC, MBC, TP, TN, and dissolved organic nitrogen [DON]; r = −0.8056, p < 0.01). Together, these results indicate that precipitation reduction—by drying soils—profoundly modifies deadwood chemical composition (lignin accumulation and NSC retention) and thereby, via slowed organic-matter mineralization, constrains soil nutrient release and accumulation. This work provides a mechanistic framework for understanding forest carbon–nitrogen cycling under climate change. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

12 pages, 675 KiB  
Article
The Energy Potential of White Mulberry Waste Biomass
by Dominika Sieracka, Jakub Frankowski, Agnieszka Łacka, Stanisław Wacławek and Wojciech Czekała
Energies 2025, 18(13), 3541; https://doi.org/10.3390/en18133541 - 4 Jul 2025
Viewed by 352
Abstract
White mulberry (Morus alba L.) is a tree growing up to 15 m in height. It is a plant whose cultivation is historically associated with silk production. Mulberry leaves are the only food source of the mulberry silkworm caterpillars (Bombyx mori [...] Read more.
White mulberry (Morus alba L.) is a tree growing up to 15 m in height. It is a plant whose cultivation is historically associated with silk production. Mulberry leaves are the only food source of the mulberry silkworm caterpillars (Bombyx mori L.). The cultivation of this tree has recently gained renewed importance. Due to the content of numerous bioactive substances, mulberry is a valuable raw material for the food, pharmaceutical and herbal industries. This article presents the results of tests on pellets from 1-, 3- and 5-year-old branches, which are waste biomass remaining after pruning mulberry shrubs cultivated to obtain leaves to feed silkworms. Additionally, analyses of pellets from mulberry leaves were also carried out. For the specified mulberry biomass yield, analyses of chemical composition of mulberry biomass (branches and leaves) were carried out, and energy properties (heat of combustion and calorific value) and energy potential were calculated. The heat of combustion of pellet from mulberry branches was, on average, 19,266 MJ∙Mg−1, and the calorific value was 17,726 MJ∙Mg−1. The energy potential, on the other hand, was, on average, 159 GJ∙ha−1 and 44 MWh∙ha−1. The obtained results indicate the possibility of the effective use of mulberry branches after the annual pruning of bushes in plantations for energy purposes. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

18 pages, 3951 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Arbor Forest Carbon Stocks in Yunnan Province, China (2016–2020)
by Jinxia Wu, Yue Chen, Wei Yang, Hongtian Leng, Qingzhong Wen, Minmin Li, Yunrong Huang and Jingfei Wan
Forests 2025, 16(7), 1076; https://doi.org/10.3390/f16071076 - 27 Jun 2025
Viewed by 440
Abstract
In the context of accelerating global climate change, the accurate quantification of forest carbon sequestration at the regional scale is of critical importance to estimate carbon budgets and formulate targeted ecological policies. This study systematically investigated the spatiotemporal dynamics and driving mechanisms of [...] Read more.
In the context of accelerating global climate change, the accurate quantification of forest carbon sequestration at the regional scale is of critical importance to estimate carbon budgets and formulate targeted ecological policies. This study systematically investigated the spatiotemporal dynamics and driving mechanisms of arbor forest carbon stocks between 2016 and 2020 in Yunnan Province, China. Based on the “One Map” forest resource inventory, the continuous biomass expansion factor (CBEF) method, standard deviational ellipse (SDE) analysis, and multiple linear regression (MLR) modeling, the results showed the following. (1) Arbor forest carbon stocks steadily increased from 832.13 Mt to 938.84 Mt, and carbon density increased from 41.92 to 42.32 t C·hm−2. Carbon stocks displayed a dual high pattern in the northwest and southwest, with lower values in the central and eastern regions. (2) The spatial centroid of carbon stocks shifted 4.8 km eastward, driven primarily by afforestation efforts in central and eastern Yunnan. (3) The MLR results revealed that precipitation and economic development were significant positive drivers, whereas temperature, elevation, and anthropogenic disturbances were major limiting factors. A negative correlation to afforestation area indicated a diminished need for new plantations as forest quality and quantity improved. These results provided a theoretical foundation for spatially differentiated carbon sequestration strategies in Yunnan, providing key insights for reinforcing ecological security in Southwest China and enhancing national carbon neutrality objectives. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

15 pages, 2253 KiB  
Article
Plant Diversity and Microbial Community Drive Ecosystem Multifunctionality in Castanopsis hystrix Plantations
by Han Sheng, Babar Shahzad, Fengling Long, Fasih Ullah Haider, Xu Li, Lihua Xian, Cheng Huang, Yuhua Ma and Hui Li
Plants 2025, 14(13), 1973; https://doi.org/10.3390/plants14131973 - 27 Jun 2025
Viewed by 392
Abstract
Monoculture plantation systems face increasing challenges in sustaining ecosystem multifunctionality (EMF) under intensive management and climate change, with long-term functional trajectories remaining poorly understood. Although biodiversity–EMF relationships are well-documented in natural forests, the drivers of multifunctionality in managed plantations, particularly age-dependent dynamics, require [...] Read more.
Monoculture plantation systems face increasing challenges in sustaining ecosystem multifunctionality (EMF) under intensive management and climate change, with long-term functional trajectories remaining poorly understood. Although biodiversity–EMF relationships are well-documented in natural forests, the drivers of multifunctionality in managed plantations, particularly age-dependent dynamics, require further investigation. This study examines how stand development influences EMF in Castanopsis hystrix L. plantations, a dominant subtropical timber species in China, by assessing six ecosystem functions (carbon stocks, wood production, nutrient cycling, decomposition, symbiosis, and water regulation) of six forest ages (6, 10, 15, 25, 30, and 34 years). The results demonstrate substantial age-dependent functional enhancement, with carbon stocks and wood production increasing by 467% and 2016% in mature stand (34 year) relative to younger stand (6 year). Nutrient cycling and water regulation showed intermediate gains (6% and 23%). Structural equation modeling identified plant diversity and microbial community composition as direct primary drivers. Tree biomass profiles emerged as the strongest biological predictors of EMF (p < 0.01), exceeding abiotic factors. These findings highlight that C. hystrix plantations can achieve high multifunctionality through stand maturation facilitated by synergistic interactions between plants and microbes. Conservation of understory vegetation and soil biodiversity represents a critical strategy for sustaining EMF, providing a science-based framework for climate-resilient plantation management in subtropical regions. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

14 pages, 1317 KiB  
Article
Role of Agricultural Management in Short-Term Monitoring of Arthropod Diversity at Field Scale
by Simone Bergonzoli, Luca Cozzolino, Elio Romano and Luigi Pari
Ecologies 2025, 6(3), 45; https://doi.org/10.3390/ecologies6030045 - 23 Jun 2025
Viewed by 382
Abstract
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management [...] Read more.
In recent decades, a significant decline in arthropods’ abundance and biodiversity, as a consequence of intensive agricultural practices and reductions in their natural environments, has been observed. While landscape-scale biodiversity studies are well documented in the literature, the impact of field-level agricultural management remains less understood. To address this gap, a sampling of diversity was carried out through Malaise traps on five agricultural surfaces with different management schemes: two characterized by the presence of trees (Populus L. spp. and Eucalyptus spp.), two herbaceous fields in different development stages (flowering Carthamus tinctorius L. and stubble of Triticum aestivum), and one mixed system (an agroforestry plantation composed of Populus L. spp. and Carthamus tinctorius L.). Data collection focused on evaluating the total animal biomass (weight and number) and the richness and evenness components of diversity using Shannon and Simpson indices at the Order level. The sampled arthropods belonged to six Orders of Insecta and one Order of Arachnida. The agroforestry system had a higher total animal biomass, in terms of weight, than the other treatments (61.24% higher than in the eucalyptus system, 58.91% higher than in the wheat stubble, 42.63% higher than in the flowering safflower system, and 11.63% higher than in the poplar plantation), with the number of total arthropods following a similar trend. The results demonstrated that the biomass, richness, and evenness of the collected arthropods varied according to the management practices applied, and higher values were recorded in the agroforestry system. Although preliminary, the findings suggest the suitability of mixed systems for sustaining higher diversity than traditional monoculture management schemes. Full article
Show Figures

Figure 1

25 pages, 1579 KiB  
Article
Properties of Pellets from Forest and Agricultural Biomass and Their Mixtures
by Mariusz Jerzy Stolarski, Michał Krzyżaniak and Ewelina Olba-Zięty
Energies 2025, 18(12), 3137; https://doi.org/10.3390/en18123137 - 14 Jun 2025
Cited by 1 | Viewed by 427
Abstract
Pellets can be produced not only from forest dendromass but also from agricultural dendromass derived from short rotation coppice (SRC) plantations, as well as surplus straw from cereal and oilseed crops. This study aimed to determine the thermophysical properties and elemental composition of [...] Read more.
Pellets can be produced not only from forest dendromass but also from agricultural dendromass derived from short rotation coppice (SRC) plantations, as well as surplus straw from cereal and oilseed crops. This study aimed to determine the thermophysical properties and elemental composition of 16 types of pellets produced from four types of forest biomass (Scots pine I, alder, beech, and Scots pine II), four types of agricultural biomass (SRC willow, SRC poplar, wheat straw, and rapeseed straw), and eight types of pellets from mixtures of wood biomass and straw. Another aim of the study was to demonstrate which pellet types met the parameters specified in three standards, categorizing pellets into thirteen different classes. As expected, pellets produced from pure Scots pine sawdust exhibited the best quality. The quality of the pellets obtained from mixtures of dendromass and straw deteriorated with an increase in the proportion of cereal straw or rapeseed straw in relation to pure Scots pine sawdust and SRC dendromass. The bulk density of the pellets ranged from 607.9 to 797.5 kg m−3, indicating that all 16 pellet types met the requirements of all six classes of the ISO standard. However, it was determined that four types of pellets (rapeseed, wheat, and two others from biomass mixtures) did not meet the necessary requirements of the Premium and Grade 1 classes. The ash content ranged from 0.44% DM in pellets from pure Scots pine sawdust to 5.00% DM in rapeseed straw pellets. Regarding ash content, only the pellets made from pure Scots pine sawdust met the stringent requirements of the highest classes, A1, Premium, and Grade 1. In contrast, all 16 types of pellets fulfilled the criteria for the lower classes, i.e., Utility and Grade 4. Concerning the nitrogen (N) content, seven types of pellets met the strict standards of classes A1 and Grade 1, while all the pellets satisfied the less rigorous requirements of classes B and Grade 4. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

19 pages, 2474 KiB  
Article
Growth and Biomass Distribution Responses of Populus tomentosa to Long-Term Water–Nitrogen Coupling in the North China Plain
by Yafei Wang, Juntao Liu, Yuelin He, Wei Zhu, Liming Jia and Benye Xi
Plants 2025, 14(12), 1833; https://doi.org/10.3390/plants14121833 - 14 Jun 2025
Viewed by 438
Abstract
From 2016 to 2021, a field experiment was conducted in the North China Plain to study the long-term effects of drip irrigation and nitrogen coupling on the growth, biomass allocation, and irrigation water and fertilizer use efficiency of short-rotation triploid Populus tomentosa plantations. [...] Read more.
From 2016 to 2021, a field experiment was conducted in the North China Plain to study the long-term effects of drip irrigation and nitrogen coupling on the growth, biomass allocation, and irrigation water and fertilizer use efficiency of short-rotation triploid Populus tomentosa plantations. The experiment adopted a completely randomized block design, with one control (CK) and six water–nitrogen coupling treatments (IF, two irrigation levels × three nitrogen application levels). Data analysis was conducted using ANOVA, regression models, Spearman’s correlation analysis, and path analysis. The results showed that the effects of water and nitrogen treatments on the annual increment of diameter at breast height (ΔDBH), annual increment of tree height (ΔH), basal area of the stand (BAS), stand volume (VS), and annual forest productivity (AFP) in short-rotation forestry exhibited a significant stand age effect. The coupling of water and nitrogen significantly promoted the DBH growth of 2-year-old trees (p < 0.05), but after 3 years of age, the promoting effect of water and nitrogen coupling gradually diminished. In the 6th year, the above-ground biomass of Populus tomentosa was 5.16 to 6.62 times the under-ground biomass under different treatments. Compared to the I45 treatment (irrigation at soil water potential of −45 kPa), the irrigation water use efficiency of the I20 treatment (−20 kPa) decreased by 88.79%. PFP showed a downward trend with the increase in fertilization amount, dropping by 130.95% and 132.86% under the I20 and I45 irrigation levels. Path analysis indicated that irrigation had a significant effect on the BAS, VS, AFP, and TGB of 6-year-old Populus tomentosa (p < 0.05), with the universality of irrigation being higher than that of fertilization. It is recommended to implement phased water and fertilizer management for Populus tomentosa plantations in the North China Plain. During 1–3 years of tree age, adequate irrigation should be ensured and nitrogen fertilizer application increased. Between the ages of 4 and 6, irrigation and fertilization should be ceased to reduce resource wastage. This work provides scientific guidance for water and fertilizer management in short-rotation plantations. Full article
Show Figures

Figure 1

13 pages, 2305 KiB  
Article
Ecosystem Carbon Storage Distribution Among Different Coniferous and Broadleaved Plantations in North China
by Huitao Shen, Yanjie Qin, Aibin Wu, Yanxia Zhao, Tao Zhang, Xin Liu, Zhenhua Zheng and Leigang Sun
Forests 2025, 16(6), 987; https://doi.org/10.3390/f16060987 - 11 Jun 2025
Viewed by 348
Abstract
Little information is available about the ecosystem carbon (C) storage among coniferous and broadleaved plantations with similar stand ages in North China. The aim of the present research was to estimate the C storages of the components of plants, litter, and soil in [...] Read more.
Little information is available about the ecosystem carbon (C) storage among coniferous and broadleaved plantations with similar stand ages in North China. The aim of the present research was to estimate the C storages of the components of plants, litter, and soil in two coniferous plantations (Pinus tabulaeformis and Larix principis-rupprechtii) and two broadleaved plantations (Betula platyphylla and Populus davidiana) on Yanshan Mountain, North China. Allometric equations of diameter at breast height (DBH) and height (H) were used to quantify the biomass of the tree organs. The C storage of trees, herbs, litter, and soil were estimated based on the measured C contents. The C storage varied from 24.0 to 51.9 Mg ha−1, 0.3 to 0.7 Mg ha−1, and 1.9 to 4.0 Mg ha−1 in the tree, herbs, and litter layers, respectively. The ecosystem C storages were as follows: B. platyphylla (164.1 Mg ha−1) > P. davidiana (150.4 Mg ha−1) > L. principis-rupprechtii (122.3 Mg ha−1) > P. tabulaeformis (106.7 Mg ha−1), 65.7%–75.6% of which was stored in the soil layer. Broadleaf plantations stored higher C than coniferous plantations in this study. These results indicate that ecosystem C storage varied among various plantation types, and broadleaf plantations had considerable ecosystem C sequestration potential with even-aged plantation stands. Full article
Show Figures

Figure 1

Back to TopTop