Spatiotemporal Dynamics and Driving Factors of Arbor Forest Carbon Stocks in Yunnan Province, China (2016–2020)
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Dataset
2.2.1. Forest Resource Vector Data
2.2.2. Socioeconomic Data
2.2.3. Meteorological Data
2.2.4. Topographic Data
2.3. Calculation of Carbon Storage in Arbor Forests
2.4. Calculation of Carbon Density in Arbor Forests
2.5. Spatial Variation Analysis
- (1)
- Center coordinates:
- (2)
- Axial standard deviation:
- (3)
- Azimuth angle:
2.6. Influencing Factor Analysis
3. Results
3.1. Spatial Distribution Patterns and Temporal Trends of Carbon Storage and Density in Arbor Forests of Yunnan Province
3.1.1. Spatial Distribution Patterns and Temporal Dynamics
3.1.2. Prefectural Distribution Patterns and Temporal Changes
3.2. Analysis of Carbon Storage Centroid Shifts
3.3. Analysis of Influencing Factors on Arbor Forest Carbon Storage in Yunnan Province
4. Discussion
4.1. Spatiotemporal Distribution of Carbon Storage and Carbon Density in Yunnan’s Arbor Forests
4.2. Trends in the Spatial Centroid of Carbon Storage
4.3. Key Drivers of Carbon Storage Variation
4.4. Policy Recommendations and Regional Development Strategies
4.5. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, C.; Xu, M. Achieving Carbon Neutrality through Ecological Carbon Sinks: A Systems Perspective. Green. Carbon. 2023, 1, 43–46. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The Carbon Balance of Terrestrial Ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Raich, J.W.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.; Steudler, P.A.; Peterson, B.J.; Grace, A.L.; Moore, B., III; Vorosmarty, C.J. Potential Net Primary Productivity in South America: Application of a Global Model. Ecol. Appl. 1991, 1, 399–429. [Google Scholar] [CrossRef]
- Yin, S.; Gong, Z.; Gu, L.; Deng, Y.; Niu, Y. Driving Forces of the Efficiency of Forest Carbon Sequestration Production: Spatial Panel Data from the National Forest Inventory in China. J. Clean. Prod. 2022, 330, 129776. [Google Scholar] [CrossRef]
- Khan, M.N.; Tan, Y.; Gul, A.A.; Abbas, S.; Wang, J. Forest Aboveground Biomass Estimation and Inventory: Evaluating Remote Sensing-Based Approaches. Forests 2024, 15, 1055. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H.; Dong, C.; Lou, X.; Wu, D.; Fang, L.; Dai, D.; Xu, L.; Xue, X. Tree Height Estimation of Chinese Fir Forests Based on Geographically Weighted Regression and Forest Survey Data. Forests 2024, 15, 1315. [Google Scholar] [CrossRef]
- Li, Q.; Xia, X.; Kou, X.; Niu, L.; Wan, F.; Zhu, J.; Xiao, W. Forest Carbon Storage and Carbon Sequestration Potential in Shaanxi Province, China. Forests 2023, 14, 2021. [Google Scholar] [CrossRef]
- Cheng, K.; Wu, J.; Ma, X.; Wu, L. Simulation of Carbon Sink of Arbor Forest Vegetation in Henan Province of China Based on CO2FIX Model. Land 2023, 12, 246. [Google Scholar] [CrossRef]
- Zhao, Z.; Tao, C.; Liu, X.; Cheng, X.; Zhou, C.; Huang, S.; Shou, M.; Zhang, Q.; Huang, B.; Li, C.; et al. Effects of Different Management Measures on Carbon Stocks and Soil Carbon Stocks in Moso Bamboo Forests: Meta-Analysis and Control Experiment. Forests 2024, 15, 496. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X. Review on Carbon Storage Estimation of Forest Ecosystem and Applications in China. For. Ecosyst. 2019, 7, 4. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Chu, H.; Jia, H.; He, X.; Wang, C.; Zhang, B.; Pan, C.; Liu, S.; Fan, S.; et al. The Impact of Nitrogen Addition on Soil Carbon Components and Understory Vegetation in Moso Bamboo Forests. Plants 2025, 14, 569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, X.; Li, X.; Cui, P.; Zheng, D. A New Scheme of Climate-Vegetation Regionalization in the Hengduan Mountains Region. Sci. China Earth Sci. 2024, 67, 751–768. [Google Scholar] [CrossRef]
- Xiahou, M.; Liu, Y.; Yang, T.; Shen, Z. Estimating Potential Vegetation Distribution and Restoration in a Biodiversity Hotspot Region under Future Climate Change. J. Geogr. Sci. 2024, 34, 2128–2144. [Google Scholar] [CrossRef]
- Su, J.; Long, Q.; Lin, S.; Hu, Z.; Zeng, Y. Carbon Neutralization in Yunnan: Harnessing the Power of Forests to Mitigate Carbon Emissions and Promote Sustainable Development in the Southwest Forest Area of China. Mitig. Adapt. Strat. Glob. Change 2024, 29, 87. [Google Scholar] [CrossRef]
- Lü, F.; Song, Y.; Yan, X. Evaluating Carbon Sink Potential of Forest Ecosystems under Different Climate Change Scenarios in Yunnan, Southwest China. Remote Sens. 2023, 15, 1442. [Google Scholar] [CrossRef]
- Cai, W.; Xu, L.; Li, M.; Li, O.J.; He, N. Imbalance of Inter-Provincial Forest Carbon Sequestration Rate from 2010 to 2060 in China and Its Regulation Strategy. J. Geogr. Sci. 2023, 33, 3–17. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Lin, Y.; Chen, G.; Cao, Q.; Feng, Y. Land Change Simulation and Forest Carbon Storage of Central Yunnan Urban Agglomeration, China Based on SSP-RCP Scenarios. Forests 2022, 13, 2030. [Google Scholar] [CrossRef]
- Liu, S.; Ding, Z.; Lin, Y.; Yao, S. The Efficiency of Forest Management Investment in Key State-Owned Forest Regions under the Carbon Neutral Target: A Case Study of Heilongjiang Province, China. Forests 2022, 13, 609. [Google Scholar] [CrossRef]
- Zhou, J.; Zan, M.; Zhai, L.; Yang, S.; Xue, C.; Li, R.; Wang, X. Remote Sensing Estimation of Aboveground Biomass of Different Forest Types in Xinjiang Based on Machine Learning. Sci. Rep. 2025, 15, 6187. [Google Scholar] [CrossRef]
- Ogana, F.N.; Corey, G.P. Radtke Modeling the Growth and Yield of Natural Hardwood Stands in the Southern United States Using the Forest Inventory and Analysis Data. For. Ecol. Manag. 2025, 586, 122722. [Google Scholar] [CrossRef]
- Tapio, R. Comparative Analysis of Multiple Linear Regression and Random Forest Regression in Predicting Academic Performance of Students in Higher Education. Asian Res. J. Math. 2025, 21, 170–181. [Google Scholar] [CrossRef]
- Yan, W.; He, Y.; Cai, Y.; Qu, X.; Cui, X. Relationship between Extreme Climate Indices and Spatiotemporal Changes of Vegetation on Yunnan Plateau from 1982 to 2019. Glob. Ecol. Conserv. 2021, 31, e01813. [Google Scholar] [CrossRef]
- Gao, Z.; Sun, H.; Ou, X. The List of Natural Ecosystems in Yunnan, 2018 ed.; Yunnan Science and Technology Press: Kunming, China, 2023. [Google Scholar]
- Xie, B.; Jones, P.; Dwivedi, R.; Bao, L.; Liang, R. Evaluation, Comparison, and Unique Features of Ecological Security in Southwest China: A Case Study of Yunnan Province. Ecol. Indic. 2023, 153, 110453. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, H. Notes on the Key Role of Stenochoric Endemic Plants in the Floristic Regionalization of Yunnan. Plant Divers. 2016, 38, 289–294. [Google Scholar] [CrossRef]
- Petersson, H.; Holm, S.; Ståhl, G.; Alger, D.; Fridman, J.; Lehtonen, A.; Lundström, A.; Mäkipää, R. Individual Tree Biomass Equations or Biomass Expansion Factors for Assessment of Carbon Stock Changes in Living Biomass—A Comparative Study. For. Ecol. Manag. 2012, 270, 78–84. [Google Scholar] [CrossRef]
- Parresol, B.R. Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, P.; Cui, L.; Yang, Y.; Ma, Z.; Wang, Y.; Miao, D. Study on the Spatial Variation of China’s Territorial Ecological Space Based on the Standard Deviation Ellipse. Front. Environ. Sci. 2022, 10, 982734. [Google Scholar] [CrossRef]
- Epule, T.E. Forest Loss Triggers in Cameroon: A Quantitative Assessment Using Multiple Linear Regression Approach. J. Geogr. Geol. 2011, 3, 30. [Google Scholar] [CrossRef]
- Zhou, R.; Li, W.; Zhang, Y.; Peng, M.; Wang, C.; Sha, L.; Liu, Y.; Song, Q.; Fei, X.; Jin, Y.; et al. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China. Forests 2018, 9, 227. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Zhang, J.; Wu, Y.; Zhou, Y. Assessment of Carbon Stocks and Influencing Factors in Terrestrial Ecosystems Based on Surface Area. iScience 2024, 27, 111431. [Google Scholar] [CrossRef]
- Wei, Y.; Li, M.; Chen, H.; Lewis, B.J.; Yu, D.; Zhou, L.; Zhou, W.; Fang, X.; Zhao, W.; Dai, L. Variation in Carbon Storage and Its Distribution by Stand Age and Forest Type in Boreal and Temperate Forests in Northeastern China. PLoS ONE 2013, 8, e72201. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Chen, Y.; Xiang, T.; Yang, H.; Liu, W.; Ren, Y.; Guan, H.; Hu, T.; Ma, Q.; Guo, Q. A 2020 Forest Age Map for China with 30 m Resolution. Earth Syst. Sci. Data 2024, 16, 803–819. [Google Scholar] [CrossRef]
- Yu, Z.; You, W.; Agathokleous, E.; Zhou, G.; Liu, S. Forest Management Required for Consistent Carbon Sink in China’s Forest Plantations. For. Ecosyst. 2021, 8, 54. [Google Scholar] [CrossRef]
- McIntyre, R.K.; McCall, B.B.; Wear, D.N. The Social and Economic Drivers of the Southeastern Forest Landscape. In Ecological Restoration and Management of Longleaf Pine Forests; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-15214-1. [Google Scholar]
- Deacon, R.T. Deforestation and Ownership: Evidence from Historical Accounts and Contemporary Data. Land Econ. 1999, 75, 341–359. [Google Scholar] [CrossRef]
Data Type | Description | Time Span/Resolution | Source |
---|---|---|---|
Forest Resource Vector Data | Vector-based forest resource data from the “One Map” Spatiotemporal Database, based on ZY-3 and GF-1 (2 m resolution), with subcompartment mapping. Forests classified into 11 dominant types. | 2016–2020/Polygon (min. unit: 0.067 ha) | Yunnan Provincial Forest Resource “One Map” Database |
Socioeconomic Data | Prefecture-level per capita GDP, population density, and afforestation area. Used to reflect development, human pressure, and ecological investment. | 2016–2020/Prefecture-level | Yunnan Statistical Yearbooks (https://stats.yn.gov.cn/List22.aspx, accessed on 2 May 2025) |
Meteorological Data | Daily mean/max temperature and precipitation, interpolated to 1 km raster grids using IDW, then aggregated to annual means by region. | 2016–2020/1 km raster | NOAA NCEI (https://www.ncei.noaa.gov, accessed on 2 May 2025) |
Topographic Data | Elevation data from ASTER GDEM V3, used to compute mean elevation per prefecture as a terrain covariate. | Static/30 m resolution | ASTER GDEM (https://www.earthdata.nasa.gov, accessed on 2 May 2025) |
Types of Dominant Tree Species Groups | a | b | CF |
---|---|---|---|
AM | 4.1095 | 0.5976 | 0.4962 |
PA | 1.3879 | 0.7168 | 0.4931 |
LM | 0.6986 | 0.8262 | 0.4893 |
CLH | 0.5743 | 0.7120 | 0.4990 |
CL | 0.4545 | 1.5341 | 0.4847 |
PYF | 0.9158 | 0.6501 | 0.5075 |
FD | 0.7196 | 1.2948 | 0.4802 |
BL | 0.7507 | 1.0118 | 0.4872 |
EL | 0.3330 | 1.1740 | 0.4783 |
OSB | 0.3454 | 1.2130 | 0.4730 |
OHW | 0.6534 | 0.9920 | 0.4711 |
Dominant Tree Species Group Types | 2016 | 2017 | 2018 | 2019 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
CS | CD | CS | CD | CS | CD | CS | CD | CS | CD | |
AM | 54.37 | 75.64 | 54.85 | 76.41 | 54.93 | 76.85 | 55.46 | 77.02 | 55.76 | 77.42 |
PA | 30.15 | 93.90 | 30.45 | 93.70 | 28.47 | 87.24 | 29.45 | 89.54 | 29.58 | 89.51 |
LM | 4.00 | 59.16 | 4.80 | 70.10 | 4.15 | 60.35 | 4.18 | 60.20 | 4.21 | 60.77 |
CLH | 23.45 | 36.34 | 25.22 | 38.67 | 21.07 | 30.12 | 21.66 | 29.77 | 22.78 | 28.25 |
CL | 2.70 | 33.55 | 2.98 | 36.27 | 3.03 | 36.04 | 3.10 | 35.76 | 3.56 | 35.65 |
PYF | 184.78 | 26.52 | 223.97 | 29.70 | 237.05 | 29.20 | 243.77 | 29.43 | 251.25 | 30.00 |
FD | 247.46 | 56.45 | 255.11 | 57.89 | 262.49 | 57.49 | 268.77 | 57.71 | 273.21 | 56.76 |
BL | 10.30 | 45.43 | 12.86 | 53.65 | 12.91 | 51.10 | 13.12 | 51.04 | 14.43 | 55.38 |
EL | 30.82 | 53.54 | 30.22 | 52.23 | 20.11 | 38.94 | 21.22 | 39.90 | 21.59 | 39.97 |
OSB | 123.15 | 42.38 | 123.28 | 40.57 | 125.36 | 35.04 | 127.55 | 34.90 | 131.16 | 34.48 |
OHW | 120.98 | 46.59 | 121.03 | 46.26 | 121.91 | 41.37 | 125.26 | 41.53 | 131.29 | 41.19 |
Number | Region | Carbon Stock/Mt | |||||
---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2019 | 2020 | Average Value | ||
Yunnan | 832.13 | 884.78 | 891.49 | 913.54 | 938.84 | 892.16 | |
1 | Pu’er | 131.38 | 135.49 | 138.85 | 140.31 | 142.08 | 137.62 |
2 | Xishuangbanna | 100.40 | 101.15 | 104.54 | 105.28 | 107.27 | 103.73 |
3 | Diqing | 91.98 | 101.26 | 96.67 | 99.83 | 100.07 | 97.96 |
4 | Nujiang | 74.01 | 71.37 | 79.19 | 80.16 | 81.21 | 77.19 |
5 | Linjcang | 52.98 | 55.77 | 57.92 | 58.23 | 60.13 | 57.01 |
6 | Baoshan | 50.87 | 56.94 | 55.39 | 55.53 | 57.08 | 55.16 |
7 | Honghe | 47.76 | 50.42 | 49.87 | 50.88 | 52.86 | 50.36 |
8 | Dali | 43.13 | 47.80 | 47.79 | 49.52 | 54.09 | 48.47 |
9 | Chuxiong | 43.97 | 45.67 | 47.55 | 51.01 | 52.90 | 48.22 |
10 | Dehong | 56.43 | 51.53 | 41.70 | 41.88 | 44.91 | 47.29 |
11 | Lijiang | 40.23 | 45.18 | 47.56 | 48.17 | 49.93 | 46.21 |
12 | Wenshan | 26.62 | 28.96 | 28.98 | 29.21 | 30.10 | 28.77 |
13 | Yuxi | 22.81 | 24.73 | 25.01 | 26.59 | 27.55 | 25.34 |
14 | Zhaotong | 18.55 | 21.59 | 27.10 | 24.89 | 25.19 | 23.46 |
15 | Kunming | 16.35 | 24.83 | 22.06 | 26.56 | 27.13 | 23.39 |
16 | Qujing | 14.66 | 22.09 | 21.31 | 25.49 | 26.34 | 21.98 |
Independent Variable | Normalization Factor | P | VIF | F | R2 |
---|---|---|---|---|---|
Constant | 1.661 | 0.101 | 14.215 | 0.539 | |
T | −0.453 | 0.197 | 5.635 | ||
P | 0.310 | 0.005 | 2.567 | ||
H | −0.433 | 0.151 | 7.668 | ||
G | 0.331 | 0.031 | 3.586 | ||
R | −0.816 | 0.000 | 3.440 | ||
A | −1.00 | 0.364 | 1.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Chen, Y.; Yang, W.; Leng, H.; Wen, Q.; Li, M.; Huang, Y.; Wan, J. Spatiotemporal Dynamics and Driving Factors of Arbor Forest Carbon Stocks in Yunnan Province, China (2016–2020). Forests 2025, 16, 1076. https://doi.org/10.3390/f16071076
Wu J, Chen Y, Yang W, Leng H, Wen Q, Li M, Huang Y, Wan J. Spatiotemporal Dynamics and Driving Factors of Arbor Forest Carbon Stocks in Yunnan Province, China (2016–2020). Forests. 2025; 16(7):1076. https://doi.org/10.3390/f16071076
Chicago/Turabian StyleWu, Jinxia, Yue Chen, Wei Yang, Hongtian Leng, Qingzhong Wen, Minmin Li, Yunrong Huang, and Jingfei Wan. 2025. "Spatiotemporal Dynamics and Driving Factors of Arbor Forest Carbon Stocks in Yunnan Province, China (2016–2020)" Forests 16, no. 7: 1076. https://doi.org/10.3390/f16071076
APA StyleWu, J., Chen, Y., Yang, W., Leng, H., Wen, Q., Li, M., Huang, Y., & Wan, J. (2025). Spatiotemporal Dynamics and Driving Factors of Arbor Forest Carbon Stocks in Yunnan Province, China (2016–2020). Forests, 16(7), 1076. https://doi.org/10.3390/f16071076