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Abstract

White mulberry (Morus alba L.) is a tree growing up to 15 m in height. It is a plant whose
cultivation is historically associated with silk production. Mulberry leaves are the only
food source of the mulberry silkworm caterpillars (Bombyx mori L.). The cultivation of this
tree has recently gained renewed importance. Due to the content of numerous bioactive
substances, mulberry is a valuable raw material for the food, pharmaceutical and herbal
industries. This article presents the results of tests on pellets from 1-, 3- and 5-year-old
branches, which are waste biomass remaining after pruning mulberry shrubs cultivated to
obtain leaves to feed silkworms. Additionally, analyses of pellets from mulberry leaves
were also carried out. For the specified mulberry biomass yield, analyses of chemical
composition of mulberry biomass (branches and leaves) were carried out, and energy
properties (heat of combustion and calorific value) and energy potential were calculated.
The heat of combustion of pellet from mulberry branches was, on average, 19,266 MJ·Mg−1,
and the calorific value was 17,726 MJ·Mg−1. The energy potential, on the other hand, was,
on average, 159 GJ·ha−1 and 44 MWh·ha−1. The obtained results indicate the possibility of
the effective use of mulberry branches after the annual pruning of bushes in plantations for
energy purposes.

Keywords: solid biofuels; pellet; waste management; bioenergy production; biomass yield

1. Introduction
The global demand for energy is constantly growing, and the use of fossil fuels is

becoming not only an ecological problem but also a geopolitical and socio-economic one [1].
The seriousness of the problem was noticed by the European Union and the United Nations,
and is reflected in their legislation. Currently, the subject of renewable energy sources is
discussed, among others, in The European Green Deal [2], The Sustainable Development
Goals [3], and The Net-zero Industry Act [4]. Through its policy, the European Union aims
to phase out the use of fossil fuels in favor of renewable, sustainable energy sources and
reduce carbon dioxide emissions. The EU Directive defines energy from renewable sources
as: “energy from renewable non-fossil sources, namely wind, solar (solar thermal and so-lar
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photovoltaic) and geothermal energy, ambient energy, tide, wave and other ocean energy,
hydropower, biomass, landfill gas, sewage treatment plant gas, and biogas” [5].

Biomass for biofuel production can come from various sources. There are crops
intended for energy purposes—for this purpose, Salix viminalis (L.) [6], Miscanthus ×
giganteus [7,8], Brassica napus (L.) var. napus [9,10] and Sida hermaphrodita ((L.) Rusby) [11,12]
are grown. However, they compete with agricultural crops, occupying arable land. It is
therefore advisable to search for and use plant biomass for energy purposes, which is a
by-product or waste, which will ensure the full use of resources and will be in line with the
principles of a circular economy [13].

Waste plant biomass can be used to produce solid, liquid and gaseous biofuels [14,15].
Pelletization is one of the simplest methods of processing plant biomass [16]. Pellet production
does not require the use of many expensive devices or the carrying out of specialist chemical
or biochemical processes. This method of biomass processing is therefore possible to carry
out even on small farms independently by farmers or farm workers [17]. Moreover, the
pellet itself is suitable for use as heating fuel on the same farms without the need to invest
in special installations. Pellet production from waste plant biomass, directly at the place of
its acquisition, is, therefore, a way to use waste or by-products in a sustainable way and can
provide additional income for farms [18].

White mulberry (Morus alba L.) is a plant that has been known and used for thousands
of years. It is a perennial shrub or tree that can grow up to 15 m in height. The species is
characterized by heterophily and the presence of milky sap in its shoots [19,20]. Its leaves,
fruits and seeds are rich sources of nutrients, vitamins and micro- and macroelements [21–23].
Additionally, white mulberry leaves are notable for their high content of proteins, fibers and
polyphenols, including quercetin and rutin. The seeds are a valuable source of unsaturated
fatty acids, while the fruits are abundant in micro- and macroelements such as nitrogen,
potassium, magnesium, iron, zinc and manganese. Due to the presence of numerous bioactive
compounds, mulberry serves as a valuable raw material for the food, pharmaceutical and
herbal industries [24,25]. The bark extracted from mulberry can also be used as a natural
dye plant owing to its tannin content in the woody biomass [25]. Due to its fast growth—
annual shoot increments range from 2 to 2.5 m, and breast height reaches 60–80 cm in the
first 40–50 years [26,27]—mulberry can also be successfully used as an energy crop for the
production of pellets and briquettes [28].

The interest in white mulberry has been increasing recently, with an emphasis the
growth of its cultivation acreage. In order to increase plantations’ productivity, it is neces-
sary to prune the shoots frequently and remove sick or fallen leaves to protect plants from
pathogens. The review of the literature and an analysis of other available scientific sources
conducted by the authors show that there is little information on the energy properties of
white mulberry, especially in the form of pellets. One of the few comprehensive studies
of white mulberry pellets was conducted from domestic waste biomass originating from
the subtropical Mediterranean environment [29]. Therefore, the aim of this work was to
analyze the yield and chemical and elemental compositions of mulberry biomass, which
is a waste in the sericulture industry, from a plantation located in Central Europe in a
temperate climate. A statistical analysis of the chemical components of the obtained results
was also conducted. Moreover, the energy properties of mulberry pellets and the energy
potential per 1 Mg of waste biomass were investigated.

2. Materials and Methods
2.1. Mulberry Biomass

The feedstock for the research was the mulberry biomass of the Żółwińska wielkolistna
cultivar. To reduce variability, all samples were collected from the same season and site–
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Pętkowo Experimental Farm (52◦12′39′′ N 17◦15′20′′ E), which belongs to the Institute of
Natural Fibers and Medicinal Plants—National Research Institute (Poland). The branches
and leaves were harvested in 2021 before and during the vegetation period, respectively.
The size of the mulberry plantation is approx. 5000 m2. A reference amount of biomass
from the whole area (5 kg) was collected in 6 samples and mixed for pellet production and
chemical analysis.

2.2. Solid Biofuel Production from Mulberry Biomass

The mulberry branches were cut using secateurs and afterward subjected to prelimi-
nary crushing to particles of a size of 20–40 mm and dried at 50–55 ◦C for 24 h. Next, the
feedstock was disintegrated on a knife mill with sieves of a mesh size of 2 mm (Retsch
SM-200, Haan, Germany).

The Pellet-Presse PP120B (qteck GmbH, Bergen, Germany) was used for pellet produc-
tion. A pinch of potato starch was used if necessary to bind the biomass together better.
For each biomass sample, 4 kg of pellet was produced.

2.3. Analytical Methods

The chemical composition of the mulberry biomass was analyzed at the Faculty of
Wood Technology, Poznan University of Life Sciences (PULS), according to the PN-92/P-
50092 standard for plant material. The following parameters were determined:

- Moisture content using the oven-dry (gravimetric) method;
- Cellulose using a mixture of acetylacetone and dioxane, according to Seifert;
- Holocellulose using sodium chlorite;
- Lignin using concentrated sulfuric acid, according to Tappi;
- Pentosanes using the trihydroxybenzene method;
- Mineral substances according to the DIN 51731 standard [30].

Experimental samples were ground in a Pulverisette 15 laboratory mill, with the
analytical fraction of 0.4–0.1 mm being separated on sieves [31].

The elemental composition measurements in the dry mulberry biomass were also per-
formed at PULS, according to the PN-EN 15104:2011 [32] and PN-EN 15289:2011 [33] standards.

2.4. Calculations

The heat of combustion of the analyzed samples was carried out at PULS on a KL-
12Mn calorimeter under a 3-bar oxygen atmosphere according to PN-81/G-04513 [34],
which is designed to measure the gross calorific value of solid fuels. The experiments
consisted of determining the increase in water temperature in a calorimetric vessel, the heat
capacity of which was 13,122 J/g. Including the value of heat of combustion of the wire
(6699 J·g−1), the substrate heat of combustion (Qs) (J·g−1) was calculated according to the
following formula:

Qs =
C (Dt − k)− c

m
(1)

where:

C—the heat capacity of the calorimeter (J·K−1);
Dt—the general increase in the main period temperature (K);
K—a correction for the calorimeter’s heat exchange with its surroundings (K);
C—the heat correction emitted during wire burning (J);
M—the mass of the solid fuel sample (g) [35].

For each substrate, five repetitions were made, and the arithmetic mean was calculated.
A net calorific value was determined to complete the characterization of the analyzed

raw material. It is the gross calorific value decreased by the heat of vaporization of water
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separated from the fuel during combustion. Considering the moisture of the samples and
the hydrogen content of the straw, the substrate calorific value (Qw) (J·g−1) was calculated
from the following formula:

Qw = QS − 24.42 (Wa + 8.94 Ha) (2)

where:

Qs—the heat of combustion of the test sample fuel in the analytical state (J·g−1);
Wa—the moisture content in the test sample (%);
Ha—the hydrogen content of the test sample (%) [27].

The amount of energy produced by burning mulberry pellets (GJ·ha−1) was calculated
according to the obtained results about the biomass yield and heat of combustion, and by
using the following formula:

EJ =
m Qw

S
(3)

where:

m—harvested amount of mulberry biomass (Mg);
Qs—calorific value of the test sample fuel in the analytical state (J·g−1);
S—unit of area (1 ha = 10,000 m2).

To express the produced energy amount also in MWh·ha−1, the results were converted
as follows:

EE =
EJ

3.6
(4)

where:

EJ—produced energy amount (GJ·ha−1);
1 MWh = 3.6 GJ [36].

2.5. Statistical Analysis

In order to compare the chemical composition of mulberry obtained in different rota-
tion periods of harvest, an analysis of variance (ANOVA) was performed for the experiment
performed in a completely random design with 6 replications for each treatment.

The normality of the residuals in the model was checked with the Shapiro–Wilk W-test,
while the homogeneity of variance was tested using the Fligner–Killeen test. The post hoc
Tukey’s test (alpha = 0.05) was used to explore significant differences between means for
rotation periods.

3. Results and Discussion
3.1. Mulberry Biomass Yield

The results of the fresh and dry matter yield of mulberry leaves and branches as well
as the biomass humidity showed significant differences between the analyzed feedstocks
(Figure 1).

Generally, the mulberry biomass yield increased with the duration of the plant
rotation. The lowest yield on average was found for annual branches at 28 Mg·ha−1 for
fresh mass and 9 Mg·ha−1 for dry mass, and the highest for five-year-old biomass (136
and 61, respectively).

Most of the mulberry yield research has been carried out for sericulture or the herbal
industry [37–39]. Nevertheless, the obtained results relate to waste biomass. In this case, old
leaves showing traces of pathogen occurrence, which are not useful for mulberry silkworms
or herb production, were the raw material for energy production. Therefore, the obtained
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yield was mostly lower compared with the mulberry industrial plantation. However, such
a use of waste biomass better refers to the circular economy principles [40–42].

 

1.12

28.03

99.86

136.00

0.27
8.97

37.95

61.20

76
68

62
55

0

10

20

30

40

50

60

70

80

0

20

40

60

80

100

120

140

160

Leaves per year 1 year branches 3 years branches 5 years branches

Hu
m

id
ity

 [%
]

Yi
el

d 
[M

g·
ha

−1
]

Feedstock

Fresh mass Dry mass Humidity

Figure 1. Average mulberry biomass yield [Mg·ha−1] and biomass humidity [%].

3.2. Chemical Composition of Mulberry Biomass

Subsequently, the determination of the chemical composition (extractive substances,
cellulose, lignin, holocellulose, pentosans, substances soluble in cold water, substances
soluble in hot water, substances soluble in 1% sodium hydroxide and mineral substances)
of mulberry waste biomass was also investigated (Table 1, Figure 2).

Table 1. Chemical composition of mulberry biomass—leaves [%].

Substance Average Content [%]

Extractive substances 20.26
Cellulose 18.69
Lignin 10.07
Holocellulose 55.97
Pentosans 12.46
Substances soluble in cold H2O 15.09
Substances soluble in hot H2O 16.69
Substances soluble in 1% NaOH 80.99
Mineral substances 16.62

Significant differences in the content were found for the tested samples of mulberry
biomass. From each experimental plot, the chemical composition of leaves was completely
different compared to branches. Nevertheless, the chemical composition of mulberry
waste biomass is comparable to other research described in the literature. The content
of mineral substances in leaves (16.5–16.7%) was five to eight times higher, according to
results obtained from branches harvested in a five-year-old rotation period. On the other
hand, leaves contained less lignin, cellulose, and holocellulose than the woody parts of
plants [43–45].
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Figure 2. Chemical composition of mulberry biomass—branches [%].

The content of chemical substances in mulberry branches varied as plants aged. The
average cellulose content was higher for five-year-old branches (42.8%), as well as the
holocellulose content (74.1%) and pentosans content (21.7%). In turn, the lowest levels of
other substances were recorded in the five-year-old branches. Interestingly, in the case
of cellulose and holocellulose, a decrease in the content of these substances was noted
in three-year-old branches compared to one- and five-year old branches. However, the
authors believe that this phenomenon requires confirmation in further research. The results
of the statistical analysis of chemical components of mulberry biomass are shown in Table 2.

Table 2. Statistical analysis of chemical components in white mulberry biomass from different harvest
ages (mean ± SD; ANOVA and Tukey’s test).

Cellulose Lignin Holocellulose Mineral
Substances

General Analysis—Results
Type of

Analysis ANOVA ANOVA ANOVA ANOVA

df 3; 20 3; 20 3; 20 3; 20
F 199,504 153,915 938,484,00 162,071

p-value <2 × 10−16 *** <2 × 10−16 *** <2 × 10−16 *** <2 × 10−16 ***
Mean Values for Treatments/Results of Post Hoc Tests α = 0.05

General
mean 33.37 18.02 59.17 6.19

1 year old
branches

37.73
(±0.04) b 21.73

(±0.03) a 70.38
(±0.06) b 2.76

(±0.04) c

3 year old
branches

34.24
(±0.02) c 20.72

(±0.04) b 36.21
(±0.04) d 3.36

(±0.04) b

5 year old
branches

42.8
(±0.06) a 19.58

(±0.04) c 74.13
(±0.03) a 2.03

(±0.04) d

Leaves
per year

18.69
(±0.09) d 10.065

(±0.02) d 55.97
(±0.03) c 16.62

(±0.05) a

*** indicates statistically significant differences at p < 0.001 (ANOVA). Means followed by a common letter are not
significantly different as per the Tukey post-hoc test at the 5% level of significance.

The statistical analysis showed significant differences between the mean percentages
of the examined chemical components in the material from the different rotation periods of
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harvest for all analyzed compounds (Table 2). The highest cellulose content (42.8%) was
found for five-year-old rhizomes, and it was significantly higher than the average for the
remaining treatments. For leaves, the content of this component was more than half than
for one- and five-year-old rhizomes and amounted to 18.7%.

Five-year-old rhizomes were also characterized by the highest content of holocellu-
lose (74.1%), which is 3.8% more than for one-year-old rhizomes; statistically significant
differences between means for mentioned treatments were found. The lowest average
value of holocellulose was found for three-year-old rhizomes (36.2%). The content of lignin
decreased with the age of rhizomes and differed significantly for all rotation periods. The
analysis of the content of mineral substances showed the opposite tendency than in the
case of the content of cellulose for the treatments. Their highest average content was found
for leaves, and it was significantly higher than the average content of minerals in rhizomes,
of which the three-year-old rhizomes turned out to be the richest in this substrate (3.4%).

Furthermore, the elemental composition of pellets produced from analyzed substrates
was investigated (Table 3).

Table 3. Elemental composition of analyzed substrates [%].

Sample of Pellet [%] N C H Cl S

1: Leaves
Content 3.75 43.37 5.77 0.22 0.21

SD 0.26 0.79 0.07 0.02 0.02

2: 1-year old branches Content 0.43 47.59 6.33 0.02 0.07
SD 0.03 0.87 0.05 - 0.01

3: 3-year old branches Content 0.47 47.62 6.33 0.01 0.06
SD 0.03 1.10 0.03 - 0.01

4: 5-year old branches Content 0.48 48.04 6.28 0.01 0.04
SD 0.03 0.89 0.04 - 0.01

The pellets from waste mulberry biomass were created including four samples:
1—from mulberry leaves; 2—one-year-old mulberry branches; 3—three-year-old mulberry
branches; and 4—five-year-old mulberry branches. The highest percentage of nitrogen,
chlorine and sulfur was recorded in pellet samples from mulberry leaf biomass. It was
7.8–8.7 times higher for nitrogen, 11.0–22.0 times higher for chlorine and 3.0–5.3 times
higher for sulfur than in the branches. For carbon and hydrogen, no such significant
differences were noted.

Wood pellets from mulberry pruning were also studied by Christoforou’s team [29].
In addition to mulberry, they also analyzed pellets from walnut shells, three-phase olive
pomace and exhausted olive husk. For mulberry, in the case of carbon and hydrogen, results
were obtained that were comparable to the studies presented in this article. The content
of the elements mentioned was 49.5% and 5.9%, respectively. The nitrogen content was,
however, almost twice as high (0.9%). The mulberry pellets, in comparison to others from
the cited study, differ significantly only in the nitrogen content. For example, for a sample
consisting of 100% chemically untreated wood shaving, the nitrogen content was 0.4%,
and for exhausted olive husk, it was 2.2%. When comparing the composition of pellets
from other tree species (debarked or un-debarked wood of Robinia pseudoacacia, Populus,
Quercus and Pinus pinea) [17] with mulberry pellets, differences in nitrogen content can be
observed, with the lowest nitrogen content recorded in the case of the only coniferous tree
species tested—0.1%. A comparison of the elemental composition of pellets from leaves and
branches of different ages is illustrated in Figure 3. The radar chart highlights significant
differences in nitrogen, chlorine and sulfur contents between leaf biomass and woody parts,
with the axes scaled independently based on the range of each element.
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Figure 3. Elemental composition of mulberry pellets—radar chart. The radar chart presents the
percentage content of selected elements (N, C, H, Cl, S) in mulberry pellets made from leaves and
1-, 3-, and 5-year-old wood. The axis scales are variable and based on the individual minimum
and maximum values for each element, allowing the comparison of elemental composition profiles
despite differences in absolute value ranges.

To further explore the variation in chemical and elemental parameters across the dif-
ferent mulberry biomass types, a standardized heatmap was generated (Figure 4). This vi-
sualization clearly highlights the distinct chemical profiles of leaves versus woody biomass,
particularly the elevated nitrogen and mineral content in leaves, and the increasing cellulose
and holocellulose levels with biomass age.

Figure 4. Standardized heatmap of the chemical and elemental composition of mulberry biomass. The
heatmap visualizes standardized values (Z-scores) for selected chemical and elemental parameters
across different mulberry biomass types: leaves and 1-, 3-, and 5-year-old branches. The scaling
highlights relative differences between samples by normalizing all parameters to a common scale.
Red shades indicate higher-than-average values, while blue indicates lower-than-average levels for
each parameter.
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3.3. Energy Properties and Potential of Mulberry Pellets

The energy properties and humidity of mulberry pellets are shown in Figure 5.
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Figure 5. Energy properties [MJ·Mg−1] and humidity [%] of mulberry pellets.

For the branches, values ranged from 19,170 MJ·Mg−1 to 19,340 MJ·Mg−1 for the heat
of combustion and from 17,590 MJ·Mg−1 to 17,830 MJ·Mg−1 for the calorific value, with
the highest heat of combustion recorded for one-year-old branches and the highest calorific
value for five-year-old branches. In the pellet studies cited above [29], the energy properties
were also examined. For the mulberry pellet, a similar calorific value was obtained as
in this study—17,730 MJ·Mg−1; however, it was the lowest value among all the tested
samples. The highest was achieved by the pellet from 100 vol% three-phase olive pomace
—19,240 MJ·Mg−1. For comparison, in other studies, the calorific value of one-year-old
mulberry branches from 2- to over 20-year-old shrubs growing in different conditions
was examined. The average value given by the authors was 17,053 MJ·Mg−1 and was
also lower than the calorific value of branches of other studied tree species, such as Quer-
cus, Pinus or Coriaria, but higher than the branches of Eucalyptus and Leucaena and also
Oryza, Triticum aestivum subsp. aestivum and Zea mays (L.) straw, as well as Saccharum
officinarum (L.), but lower than Eupatorium, which is a perennial plant [46]. In turn, when
comparing the research results with the results obtained for energetic woody plants such
as Salix sp. or Populus sp., it is worth paying attention to the work of Stolarski’s team [47].
In the research conducted on the thermophysical properties of pellets from growing
in short rotation coppice plantations, the higher heating value of Salix sp. pellets was
19.61 GJ·Mg−1 and Populus sp. 19.71 GJ·Mg−1. Grasses are also very popular energy plants.
Research conducted by Jasinskas et al. indicates high suitability of this raw material: the
calorific value of Phragmites sp. was 17.86 MJ·kg−1 and that of Phalaris arundinacea (L.) was
17.38 MJ·kg−1 [48].

The lowest heat of combustion and calorific value, which were 18,090 MJ·Mg−1 and
16,680 MJ·Mg−1, respectively, were characteristic of pellets made from mulberry leaf
biomass, which does not indicate suitability of using this type of plant biomass for energy
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purposes. The energy potential of mulberry waste biomass per 1 ton of dry mass is
presented in Table 4.

Table 4. Energy potential per 1 Mg of mulberry dry mass.

Sample of Pellet Produced Energy Amount
[GJ·ha−1]

Produced Energy Amount
[MWh·ha−1]

1: Leaves 4.50 1.25
2: 1-year old branches 159.30 44.25
3: 3-year old branches 157.80 43.83
4: 5-year old branches 159.90 44.42

Finally, the energy potential was calculated. For the analyzed samples of mulberry
branches’ dry mass, the average value was 159 GJ·ha−1 and 44 MWh·ha−1. Leaf dry mass
has a very low energy potential of 4.5 GJ·ha−1 and 1.25 MWh·ha−1. In order to optimally
utilize this co-product, another use must be found. The literature sources indicate the high
value of mulberry leaves as, for example, a herbal raw material [49] or the possibility of
using them in medicine and pharmacy [50,51], or animal nutrition [52,53].

4. Conclusions
Alternative energy sources are gaining importance and should be sought and used

not only in industrial conditions but also to increase the energy self-sufficiency of smaller
enterprises and farms. A perfect example of this is the processing of white mulberry branches,
which are waste from shrub cultivation, e.g., for silk or herbal purposes, into pellets.

The heat of combustion value of pellet from mulberry branches averaged
19,266 MJ·Mg−1 with a calorific value of 17,726 MJ·Mg−1. The energy potential aver-
aged values were 159.00 GJ·ha−1 and 44.17 MWh·ha−1. These are not the highest values
among raw materials from trees such as Quercus or Pinus, but considering that they are
created as a by-product, their use is most appropriate. It is also an excellent practice within
the circular economy.
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26. Łochyńska, M. Yield improvement of white mulberry in Poland by modern cultivation measures. EPRA Int. J. Res. Dev. 2018, 3,

103–109.
27. Krajnc, A.; Ugulin, T.; Pausic, A.; Rabensteiner, J.; Bukovac, V.; Petkovsek, M.; Janzekovic, F.; Bakonyi, T.; Bercic, R.; Felicijan, M.

Morphometric and biochemical screening of old mulberry trees (Morus alba L.) in the former sericulture region of Slovenia. Acta
Soc. Bot. Pol. 2019, 88, 3614. [CrossRef]

28. Sharma, S.; Madan, M. Potential of mulberry (Morus alba) biomass. J. Sci. IndRes 1994, 53, 710–714.
29. Christoforou, E.A.; Fokaides, P.A. Thermochemical properties of pellets derived from agro-residues and the wood industry. Waste

Biomass Valoriz. 2017, 8, 1325–1330. [CrossRef]
30. DIN 51731; Testing of Solid Fuels—Compressed Untreated Wood—Requirements and Testing. Deutsches Institut Fur Normung

E.V.: Berlin, Germany, 1996.
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