Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,744)

Search Parameters:
Keywords = biomass harvesting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12087 KB  
Article
Effects of Winter Green Manure Incorporation on Grain Yield, Nitrogen Uptake, and Nitrogen Use Efficiency in Different Ratoon Rice Varieties
by Qiwen Hou, Pufan Shao, Sheng Chen, Zhangzhen Yang, Zhixiong Yuan, Liusheng Zhong, Ziyuan Zhao, Yu Wang, Cuo Ga, Jiarui Tang, Yaoyun Xu, Yanfu Zeng, Cong Yu, Cheng Huang and Ying Xu
Agriculture 2025, 15(17), 1801; https://doi.org/10.3390/agriculture15171801 (registering DOI) - 22 Aug 2025
Viewed by 150
Abstract
This study evaluated the effects of winter green manure incorporation on grain yield, nitrogen uptake, and use efficiency in ratoon rice production. A two-year field experiment (2019–2021) was conducted using a split-plot design, with main plots comprising three cropping systems: fallow–ratoon rice (FA), [...] Read more.
This study evaluated the effects of winter green manure incorporation on grain yield, nitrogen uptake, and use efficiency in ratoon rice production. A two-year field experiment (2019–2021) was conducted using a split-plot design, with main plots comprising three cropping systems: fallow–ratoon rice (FA), rapeseed–ratoon rice (RA), and milk vetch–ratoon rice (MV). In the RA and MV systems, green manures were incorporated in situ, while subplots featured two ratoon rice varieties (Yliangyou 911, YLY911; Liangyou 6326, LY6326). Compared to FA treatment, RA and MV treatments significantly increased main crop yields by 16.37% and 9.31%, respectively, with corresponding annual total yield improvements of 11.34% and 7.78%. Under RA treatment, LY6326 achieved significantly higher yields than YLY911. Biomass accumulation analysis revealed that RA and MV treatments enhanced plant dry matter by 24.40% and 5.63% at heading stage, and 9.83% and 7.47% at maturity, respectively, relative to FA treatment. Green manure incorporation improved plant nitrogen content at maturity (9.42% and 10.29% for RA and MV, respectively) and panicle nitrogen accumulation (11.73% and 38.26%, respectively) compared to fallow treatment. Nitrogen use efficiency metrics demonstrated that RA and MV treatments enhanced nitrogen harvest index by 1.54% and 5.65%, respectively, while nitrogen partial factor productivity increased by 11.34% and 7.78%. Varietal comparison confirmed that LY6326 exhibited superior nitrogen accumulation and utilization compared to YLY911. These findings demonstrate that winter green manure incorporation significantly enhances grain yield and nitrogen use efficiency in ratoon rice systems, providing a scientific foundation for developing sustainable and productive rice cropping practices. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

19 pages, 2774 KB  
Article
Effect of PGPRs on the Rhizosphere Microbial Community Structure and Yield of Silage Maize in Saline–Alkaline Fields
by Weisong Zhao, Shezeng Li, Wei Yang, Naqi Cui, Xiuyun Lu, Shaojing Mo, Qinggang Guo and Ping Ma
Int. J. Mol. Sci. 2025, 26(16), 8040; https://doi.org/10.3390/ijms26168040 - 20 Aug 2025
Viewed by 254
Abstract
Plant Growth Promoting Rhizobacteria, PGPR, can protect plants against soil-borne diseases and abiotic stress conditions. The primary objective of this study was to evaluate the effects of different PGPRs (TF1, TF2, TF3, and TF4) on the rhizosphere microbial community of silage maize in [...] Read more.
Plant Growth Promoting Rhizobacteria, PGPR, can protect plants against soil-borne diseases and abiotic stress conditions. The primary objective of this study was to evaluate the effects of different PGPRs (TF1, TF2, TF3, and TF4) on the rhizosphere microbial community of silage maize in a saline–alkaline field via Illumina MiSeq high-throughput sequencing technology. Results demonstrated that different PGPRs significantly increased the harvest density (by 21.31–45.16%), plant height (by 9.12–19.98%), stem diameter (by 30.07–45.78%), and biomass (by 33.20–65.36%) of silage maize, TF3 treatment significantly increased the fresh weight (by 32.50%), while the other treatments could increase the fresh weight but not significantly. Four microbial agents significantly reduced the contents of soil available phosphorus (AP), electrical conductivity (EC), and neutral phosphatase activity (NPA), while significantly increasing the contents of available potassium (AK), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3-N), chitinase activity (ChtA), and urease activity (UA). Specifically, TF2 and TF3 treatments significantly decreased the soil pH value, while not for TF1 and TF4. Microbiome analysis showed that four microbial agents significantly increased the relative abundances of beneficial microorganisms, such as Arthrobacter, Blastococcus, MNDI, Chaetomidium, Alternaria, Sarocladium, Acremonium, and Clonostachys, and significantly decreased the relative abundances of Gibberella and Fusarium. Mental analysis showed that the soil bacterial community structure did not significantly correlate with soil biochemical properties, while the soil fungal community structure significantly and positively correlated with pH. Maize yield significantly and positively correlated with NH4+-N, OM, AP, EC, UA, ChtA, and NPA. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

12 pages, 597 KB  
Article
Early Feeding Strategies for the Larviculture of the Vermiculated Angelfish Chaetodontoplus mesoleucus: The Key Role of Copepods
by Yu-Hsuan Sun, Yu-Ru Lin, Hung-Yen Hsieh and Pei-Jie Meng
Animals 2025, 15(16), 2437; https://doi.org/10.3390/ani15162437 - 20 Aug 2025
Viewed by 136
Abstract
The captive breeding of marine ornamental fish with specialized larval requirements—such as Chaetodontoplus mesoleucus—remains a major bottleneck in aquaculture, largely due to the lack of techniques tailored to their unique morphological and nutritional needs. The global marine ornamental aquaculture market is valued [...] Read more.
The captive breeding of marine ornamental fish with specialized larval requirements—such as Chaetodontoplus mesoleucus—remains a major bottleneck in aquaculture, largely due to the lack of techniques tailored to their unique morphological and nutritional needs. The global marine ornamental aquaculture market is valued at approximately USD 2.15 billion annually; however, only around 10% of marine ornamental species are currently supplied through captive breeding, highlighting a substantial technological gap. The artificial propagation of C. mesoleucus is particularly challenging due to the species’ small mouth gape and high nutritional demands during early development. To address this issue, we evaluated the effects of three live-prey types—Euplotes sp., Brachionus sp., and Bestiolina coreana—as well as a mixed diet containing all three, on larval performance. From 3 days post-hatch, larvae were fed each prey type at equal densities (15–20 individuals/mL), and water quality was carefully maintained to minimize external influences. Survival and total length were assessed at 14 dph. At the end of the trial, the mixed-diet group showed the highest survival rate (36.2 ± 5.6%), whereas larvae fed only B. coreana exhibited the greatest total length (7.4 ± 1.2 mm) and a high metamorphosis rate (97.8%). These findings demonstrate that prey selection significantly influences the early survival and growth in C. mesoleucus larvae and highlight the critical role of copepods in promoting growth performance. However, as larval biomass was not quantified, the findings should be interpreted with caution, and future studies incorporating biomass assessments are needed to draw more conclusive inferences. The successful mass rearing of this species supports the feasibility of captive production to reduce wild harvesting, protect coral-reef biodiversity, and promote sustainable ornamental aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 2208 KB  
Article
The Significant Impact of Biomass Burning Emitted Particles on Typical Haze Pollution in Changsha, China
by Qu Xiao, Hui Guo, Jie Tan, Zaihua Wang, Yuzhu Xie, Honghong Jin, Mengrong Yang, Xinning Wang, Chunlei Cheng, Bo Huang and Mei Li
Toxics 2025, 13(8), 691; https://doi.org/10.3390/toxics13080691 - 20 Aug 2025
Viewed by 231
Abstract
In this study, typical haze pollution influenced by biomass burning (BB) activities in Changsha in the autumn of 2024 was investigated through the mixing state and evolution process of BB particles via the real-time measurement of single-particle aerosol mass spectrometry (SPAMS). From the [...] Read more.
In this study, typical haze pollution influenced by biomass burning (BB) activities in Changsha in the autumn of 2024 was investigated through the mixing state and evolution process of BB particles via the real-time measurement of single-particle aerosol mass spectrometry (SPAMS). From the clean period to the haze period, the PM2.5 concentration increased from 25 μg·m−3 at 12:00 to 273 μg·m−3 at 21:00 on 12 October, and the proportion of total BB single particles in the total detected particles increased from 17.2% to 54%. This indicates that the rapid increase in PM2.5 concentration was accompanied by a concurrent increase in the contribution of particles originating from BB sources. The detected BB particles were classified into two types based on their mixing states and temporal variations: BB1 and BB2, which accounted for 71.7% and 28.3% of the total BB particles, respectively. The analysis of backward trajectories and fire spots suggested that BB1 particles originated from straw burning emissions at northern Changsha, while BB2 particles were primarily related to local nighttime cooking emissions in Changsha. In addition, a special type of K-containing single particles without K cluster ions was found closely associated with BB1 type particles, which were designated as secondarily processed BB particles (BB-sec). The BB-sec particles contained abundant sulfate and ammonium signals and showed lagged appearance after the peak of BB1-type particles, which was possibly due to the aging and formation of ammonium sulfate on the freshly emitted particles. In all, this study provides insights into understanding the substantial impact of BB sources on regional air quality during the crop harvest season and the appropriate disposal of crop straw, including conversion into high-efficiency fuel through secondary processing or clean energy via biological fermentation, which is of great significance for the mitigation of local haze pollution. Full article
Show Figures

Graphical abstract

21 pages, 1178 KB  
Article
Response of Cannabis sativa L. to Inorganic Fertilization (N, P, K): Biomass, Nutrient Uptake and Cannabinoids Profile
by Marianela Simonutti, Gonzalo Berhongaray, Marcos Derita and Juan Marcelo Zabala
Int. J. Plant Biol. 2025, 16(3), 92; https://doi.org/10.3390/ijpb16030092 - 16 Aug 2025
Viewed by 316
Abstract
Cannabis sativa L. is a high-value medicinal crop whose nutritional requirements and fertilization strategies remain poorly defined, particularly in relation to cannabinoid production. This study evaluated the effects of inorganic fertilization (N, P, and K) on biomass accumulation, nutrient uptake and balance, and [...] Read more.
Cannabis sativa L. is a high-value medicinal crop whose nutritional requirements and fertilization strategies remain poorly defined, particularly in relation to cannabinoid production. This study evaluated the effects of inorganic fertilization (N, P, and K) on biomass accumulation, nutrient uptake and balance, and cannabinoid content in Cannabis sativa L. A high-cannabidiol (CBD) cultivar was propagated from ex vitro cuttings and grown in 10 L pots with commercial substrate. Treatments included a non-fertilized control and increasing doses of N (0–10 g plant−1), P (0–6 g plant−1), and K (0–10 g plant−1), with higher P and K doses applied during the reproductive stage. Biomass production peaked at 5 g N, 2 g P, and 3 g K plant−1, yielding 41.9% more than the control. Fertilized plants showed harvest indexes of 31–42%. Additional P and K during the reproductive stage did not enhance inflorescence biomass and CBD content. Tissue nutrient concentrations increased with fertilization. Inflorescences had maximum N and P levels at 5 g N and 2 g P plant−1, while leaves accumulated more K at 7.5 g K plant−1. CBD content increased and THC (%) decreased progressively with nutrient supply. High nutrient doses, however, led to nutritional imbalances and plant health issues. Nutrient balance analysis showed differential macronutrient extraction by treatment. These findings highlight the importance of optimized fertilization strategies to enhance both biomass and cannabinoid production in high-CBD cannabis cultivars. Full article
Show Figures

Figure 1

33 pages, 6805 KB  
Review
Diatom Biosilica: A Useful Natural Material for Biomedical Engineering
by Daehyeon Yoo, Minyoung Lee, Yoseph Seo, Jinwook Yoon, Eunseok Jang, Gaeun Lee, Daeryul Kwon, Sang Deuk Lee, Junhong Min and Taek Lee
Water 2025, 17(16), 2373; https://doi.org/10.3390/w17162373 - 11 Aug 2025
Viewed by 484
Abstract
Silica-based materials are recognized as effective functional materials across diverse industrial fields, including biomedicine (e.g., drug delivery systems (DDS), biosensors, and tissue engineering), owing to their excellent stability and physicochemical characteristics. Among them, diatom biosilica (DB), which constitutes a major part of aquatic [...] Read more.
Silica-based materials are recognized as effective functional materials across diverse industrial fields, including biomedicine (e.g., drug delivery systems (DDS), biosensors, and tissue engineering), owing to their excellent stability and physicochemical characteristics. Among them, diatom biosilica (DB), which constitutes a major part of aquatic biomass, recently gained significant attention as a valuable biomaterial following breakthroughs in its innovative surface structure, superior biocompatibility and multifunctionality. Therefore, DB is emerging as an alternative to synthetic materials used in the biomedical field. This review comprehensively examines the diverse biological properties of DB, followed by an analysis of harvesting and purification strategies. Then, the current application status of DB in two principal biomedical domains, DDS and biosensors, is evaluated. Furthermore, the convergence of these domains into theragnostic applications addresses a significant unmet clinical need for simultaneous therapeutic intervention and diagnostic monitoring, positioning DB as a transformative biomaterial solution. The unique combination of natural hierarchical architecture, tunable surface properties, and excellent biocompatibility make DB promising candidates for next-generation integrated biomedical platforms to address the growing demand of personalized medicine and precision healthcare solutions. Full article
(This article belongs to the Special Issue Advances in Diatom Research in Freshwater)
Show Figures

Graphical abstract

20 pages, 4565 KB  
Article
Legume–Cereal Cover Crops Improve Soil Properties but Fall Short on Weed Suppression in Chickpea Systems
by Zelalem Mersha, Michael A. Ibarra-Bautista, Girma Birru, Julia Bucciarelli, Leonard Githinji, Andualem S. Shiferaw, Shuxin Ren and Laban Rutto
Agronomy 2025, 15(8), 1893; https://doi.org/10.3390/agronomy15081893 - 6 Aug 2025
Viewed by 460
Abstract
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of [...] Read more.
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of fall-planted winter rye (WR) alone in 2021 and mixed with hairy vetch (HV) in 2022 and 2023 at Randolph farm in Petersburg, Virginia. The objectives were two-fold: (a) to examine the effect of CCs on soil properties using monthly growth dynamics and biomass harvested from fifteen 0.25 m2-quadrants and (b) to evaluate the efficiency of five termination methods: (1) green manure (GM); (2) GM plus pre-emergence herbicide (GMH); (3) burn (BOH); (4) crimp mulch (CRM); and (5) mow-mulch (MW) in suppressing weeds in chickpea fields. Weed distribution, particularly nutsedge, was patchy and dominant on the eastern side. Growth dynamics followed an exponential growth rate in fall 2022 (R2 ≥ 0.994, p < 0.0002) and a three-parameter sigmoidal curve in 2023 (R2 ≥ 0.972, p < 0.0047). Biomass averaged 55.8 and 96.9 t/ha for 2022 and 2023, respectively. GMH consistently outperformed GM in weed suppression, though GM was not significantly different from no-till systems by the season’s end. Kabuli-type chickpeas under GMH had significantly higher yields than desi types. Pooled data fitted well to a three-parametric logistic curve, predicting half-time to 50% weed coverage at 35 (MM), 38 (CRM), 40 (BOH), 46 (GM), and 53 (GMH) days. Relapses of CCs were consistent in no-till systems, especially BOH and MW. Although soil properties improved, CCs alone did not significantly suppress weed. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

24 pages, 2584 KB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 - 2 Aug 2025
Viewed by 459
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

18 pages, 2865 KB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Viewed by 368
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

13 pages, 553 KB  
Article
Biorefinery-Based Energy Recovery from Algae: Comparative Evaluation of Liquid and Gaseous Biofuels
by Panagiotis Fotios Chatzimaliakas, Dimitrios Malamis, Sofia Mai and Elli Maria Barampouti
Fermentation 2025, 11(8), 448; https://doi.org/10.3390/fermentation11080448 - 1 Aug 2025
Viewed by 546
Abstract
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested [...] Read more.
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested and sedimented algal biomass. Employing a factorial experimental design, various trials were conducted, with ethanol yield as the primary optimization target. The findings indicated that the sodium hydroxide concentration during pretreatment and the amylase dosage in enzymatic hydrolysis were key parameters influencing the ethanol production efficiency. Under optimized conditions—using 0.3 M NaOH, 25 μL/g starch, and 250 μL/g cellulose—fermentation yielded ethanol concentrations as high as 2.75 ± 0.18 g/L (45.13 ± 2.90%), underscoring the significance of both enzyme loading and alkali treatment. Biomethane potential tests on the residues of fermentation revealed reduced methane yields in comparison with the raw algal feedstock, with a peak value of 198.50 ± 25.57 mL/g volatile solids. The integrated process resulted in a total energy recovery of up to 809.58 kWh per tonne of algal biomass, with biomethane accounting for 87.16% of the total energy output. However, the energy recovered from unprocessed biomass alone was nearly double, indicating a trade-off between sequential valorization steps. A comparison between fresh and dried feedstocks also demonstrated marked differences, largely due to variations in moisture content and biomass composition. Overall, this study highlights the promise of integrated algal biomass utilization as a viable and energy-efficient route for sustainable biofuel production. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

20 pages, 2327 KB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 477
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

24 pages, 1412 KB  
Article
Arthrospira platensis var. toliarensis: A Local Sustainable Microalga for Food System Resilience
by Antonio Fidinirina Telesphore, Andreea Veronica Botezatu, Daniela Ionela Istrati, Bianca Furdui, Rodica Mihaela Dinica and Valérie Lalao Andriamanamisata Razafindratovo
Foods 2025, 14(15), 2634; https://doi.org/10.3390/foods14152634 - 27 Jul 2025
Viewed by 495
Abstract
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study [...] Read more.
The intensifying global demand for sustainable and nutrient-dense food sources necessitates the exploration of underutilized local resources. Arthrospira platensis var. toliarensis, a cyanobacterium endemic to Madagascar, was evaluated for its nutritional, functional, and environmental potential under small-scale, low-input outdoor cultivation. The study assessed growth kinetics, physicochemical parameters, and composition during two contrasting seasons. Biomass increased 7.5-fold in 10 days, reaching a productivity of 7.8 ± 0.58 g/m2/day and a protein yield of 4.68 ± 0.35 g/m2/day. The hot-season harvest showed significantly higher protein content (65.1% vs. 44.6%), enriched in essential amino acids. On a dry matter basis, mineral profiling revealed high levels of sodium (2140 ± 35.4 mg/100 g), potassium (1530 ± 21.8 mg/100 g), calcium (968 ± 15.1 mg/100 g), phosphorus (815 ± 13.2 mg/100 g), magnesium (389.28 ± 6.4 mg/100 g), and iron (235 ± 9.1 mg/100 g), underscoring its value as a micronutrient-rich supplement. The hydroethanolic extract had the highest polyphenol content (4.67 g GAE/100 g of dry extract), while the hexanic extract exhibited the strongest antioxidant capacity (IC50 = 101.03 ± 1.37 µg/mL), indicating fat-soluble antioxidants. Aflatoxin levels (B1, B2, G1, and G2) remained below EU safety thresholds. Compared to soy and beef, this strain showed superior protein productivity and water-use efficiency. These findings confirm A. platensis var. toliarensis as a promising, ecologically sound alternative for improving food and nutrition security, and its local production can offer substantial benefits to smallholder livelihoods. Full article
Show Figures

Figure 1

20 pages, 2984 KB  
Article
Influence of Rice–Crayfish Co-Culture Systems on Soil Properties and Microbial Communities in Paddy Fields
by Dingyu Duan, Dingxuan He, Liangjie Zhao, Chenxi Tan, Donghui Yang, Wende Yan, Guangjun Wang and Xiaoyong Chen
Plants 2025, 14(15), 2320; https://doi.org/10.3390/plants14152320 - 27 Jul 2025
Viewed by 509
Abstract
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects [...] Read more.
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects of the RC systems on soil physicochemical characteristics and microbial dynamics in paddy fields of southern Henan Province, China, over the 2023 growing season and subsequent fallow period. Using a randomized complete design, rice monoculture (RM, as the control) and RC treatments were compared across replicated plots. Soil and water samples were collected post-harvest and pre-transplanting to assess soil properties, extracellular enzyme activity, and microbial community structure. Results showed that RC significantly enhanced soil moisture by up to 30.2%, increased soil porosity by 9.6%, and nearly tripled soil organic carbon compared to RM. The RC system consistently elevated nitrogen (N), phosphorus (P), and potassium (K) throughout both the rice growth and fallow stages, indicating improved nutrient availability and retention. Elevated extracellular enzyme activities linked to carbon, N, and P cycling were observed under RC, with enzymatic stoichiometry revealing increased microbial nutrient limitation intensity and a shift toward P limitation. Microbial community composition was significantly altered under RC, showing increased biomass, a higher fungi-to-bacteria ratio, and greater relative abundance of Gram-positive bacteria, reflecting enhanced soil biodiversity and ecosystem resilience. Further analyses using the Mantel test and Random Forest identified extracellular enzyme activities, PLFAs, soil moisture, and bulk density as major factors shaping microbial communities. Redundancy analysis (RDA) confirmed that total potassium (TK), vector length (VL), soil pH, and total nitrogen (TN) were the strongest environmental predictors of microbial variation, jointly explaining 74.57% of the total variation. Our findings indicated that RC improves soil physicochemical conditions and microbial function, thereby supporting sustainable nutrient cycling and offering a promising, environmentally sound strategy for enhancing productivity and soil health in rice-based agro-ecosystems. Full article
Show Figures

Figure 1

23 pages, 4324 KB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 563
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

14 pages, 4700 KB  
Article
Pilot-Scale Phycocyanin Extraction by the Green Two-Step Ultrasound-Based UltraBlu Process
by Rosaria Lauceri, Melissa Pignataro, Antonio Giorgi, Antonio Idà and Lyudmila Kamburska
Separations 2025, 12(8), 194; https://doi.org/10.3390/separations12080194 - 25 Jul 2025
Viewed by 272
Abstract
Phycocyanin is a natural, non-toxic, blue pigment-protein with many commercial applications. Its exploitation in various biotechnological sectors strongly depends on its purity grade (P). Phycocyanin is largely used in food industry where a low purity grade is required, while its widespread use in [...] Read more.
Phycocyanin is a natural, non-toxic, blue pigment-protein with many commercial applications. Its exploitation in various biotechnological sectors strongly depends on its purity grade (P). Phycocyanin is largely used in food industry where a low purity grade is required, while its widespread use in sectors requiring a higher purity is hampered by the cost of large-scale industrial production. Industry, in fact, needs simple, easily scalable and cost-effective procedures to ensure sustainable production of high-quality pigment. In this work we applied the innovative two-step ultrasound-based process UltraBlu to the pilot-scale production of phycocyanin. A total of 50 L of biomass suspension of commercial Spirulina were processed in batch mode. The pigment extract was obtained in one day, including the biomass harvesting. Food/cosmetic grade (P = 1.41–1.76) and a good yield (Y = 59.2–76.1%) were achieved. The initial results obtained suggest that UltraBlu can be an effective scalable process suitable to produce phycocyanin also on an industrial scale. Full article
(This article belongs to the Special Issue Application of Sustainable Separation Techniques in Food Processing)
Show Figures

Graphical abstract

Back to TopTop