Response of Cannabis sativa L. to Inorganic Fertilization (N, P, K): Biomass, Nutrient Uptake and Cannabinoids Profile
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design and Fertilization Scheme
- T1: Maintained the same N, P, and K doses as in the vegetative stage.
- T2: Maintained the N and K doses but increased P relative to the vegetative stage.
- T3: Maintained the same as T2, with an additional increase in K.
2.3. Fresh and Dry Biomass Determination
2.4. Mineral Nutrient Analysis
2.5. Cannabinoid Content
2.6. Substrate Nutrient Analysis and Balance
2.7. Statistical Analysis
3. Results
3.1. Biomass Partitioning, Accumulation, and Harvest Index
3.2. Effect of N, P, and K Fertilization on Biomass Allocation in Organs
3.3. Effect of Fertilization on Tissue Nutrient Concentrations
3.4. Cannabinoids
Effect of N, P, and K Fertilization on CBD and THC Concentration and Accumulation
3.5. Nutrient Balance Within the Growing Substrate
4. Discussion
4.1. Biomass Accumulation and Partitioning
4.1.1. Nitrogen and Biomass
4.1.2. Phosphorus and Biomass
4.1.3. Potassium and Biomass
4.2. Nutrient Concentrations in C. sativa Organs
4.3. Cannabinoids
4.3.1. Effect of Nitrogen on CBD and THC Concentration and Accumulation (mg Plant−1)
4.3.2. Effect of Phosphorus on CBD and THC Concentration
4.3.3. Effect of Potassium on CBD and THC Concentration
4.3.4. Effect of Phosphorus and Potassium on Total CBD and THC Accumulation (mg Plant−1)
4.4. Nutrient Balance
4.5. Susceptibility to Fusarium spp.
4.6. Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.L. An Archaeological and Historical Account of Cannabis in China. Econ. Bot. 1974, 28, 437–448. [Google Scholar] [CrossRef]
- Abel, E.L. Marihuana: The First Twelve Thousand Years; Springer: New York, NY, USA, 2013. [Google Scholar]
- Pertwee, R. The Diverse CB1 and CB2 Receptor Pharmacology of Three Plant Cannabinoids: Δ9-Tetrahydrocannabinol, Cannabidiol and Δ9-Tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef]
- Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017, 376, 2011–2020. [Google Scholar] [CrossRef]
- Blessing, E.M.; Steenkamp, M.M.; Manzanares, J.; Marmar, C.R. Cannabidiol as a Potential Treatment for Anxiety Disorders. Neurotherapeutics 2015, 12, 825–836. [Google Scholar] [CrossRef]
- Wylie, S.E.; Ristvey, A.G.; Fiorellino, N.M. Fertility Management for Industrial Hemp Production: Current Knowledge and Future Research Needs. GCB Bioenergy 2021, 13, 517–524. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Response of Medical Cannabis (Cannabis sativa L.) to Nitrogen Supply under Long Photoperiod. Front. Plant Sci. 2020, 11, 592119. [Google Scholar] [CrossRef] [PubMed]
- Shiponi, S.; Bernstein, N. The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology. Front. Plant Sci. 2021, 12, 657323. [Google Scholar] [CrossRef]
- Bevan, L.; Jones, M.; Zheng, Y. Optimisation of Nitrogen, Phosphorus, and Potassium for Soilless Production of Cannabis sativa in the Flowering Stage Using Response Surface Analysis. Front. Plant Sci. 2021, 12, 764103. [Google Scholar] [CrossRef] [PubMed]
- Saloner, A.; Bernstein, N. Nitrogen Supply Affects Cannabinoid and Terpenoid Profile in Medical Cannabis (Cannabis sativa L.). Ind. Crops Prod. 2021, 167, 113516. [Google Scholar] [CrossRef]
- Westmoreland, F.M.; Bugbee, B. Sustainable Cannabis Nutrition: Elevated Root-Zone Phosphorus Significantly Increases Leachate P and Does Not Improve Yield or Quality. Front. Plant Sci. 2022, 13, 1015652. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; González, L.; Tablada, M.; Robledo, C.W. InfoStat; Versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba: Argentina. Available online: http://www.infostat.com.ar (accessed on 6 June 2025).
- Hershkowitz, J.A.; Westmoreland, F.M.; Bugbee, B. Elevated Root-Zone P and Nutrient Concentration Do Not Increase Yield or Cannabinoids in Medical Cannabis. Front. Plant Sci. 2025, 16, 1433985. [Google Scholar] [CrossRef]
- Massuela, D.C.; Munz, S.; Hartung, J.; Nkebiwe, P.M.; Graeff-Hönninger, S. Cannabis Hunger Games: Nutrient stress induction in flowering stage—Impact of organic and mineral fertilizer levels on biomass, cannabidiol (CBD) yield and nutrient use efficiency. Front. Plant Sci. 2023, 14, 1233232. [Google Scholar] [CrossRef]
- Yep, B.; Zheng, Y. Potassium and micronutrient fertilizer addition in a mock aquaponic system for drug-type Cannabis sativa L. cultivation. Can. J. Plant Sci. 2020, 101, 341–352. [Google Scholar] [CrossRef]
- Cockson, P.; Schroeder-Moreno, M.; Veazie, P.; Barajas, G.; Logan, D.; Davis, M.; Whipker, B.E. Impact of Phosphorus on Cannabis sativa Reproduction, Cannabinoids, and Terpenes. Appl. Sci. 2020, 10, 7875. [Google Scholar] [CrossRef]
- De Prato, L.; Ansari, O.; Hardy, G.E.S.J.; Howieson, J.; O’Hara, G.; Ruthrof, K.X. Morpho-Physiology and Cannabinoid Concentrations of Hemp (Cannabis sativa L.) Are Affected by Potassium Fertilisers and Microbes under Tropical Conditions. Ind. Crops Prod. 2022, 182, 114907. [Google Scholar] [CrossRef]
- Saloner, A.; Sacks, M.M.; Bernstein, N. Response of Medical Cannabis (Cannabis sativa L.) Genotypes K Supply Under Long Photoperiod. Front. Plant Sci. 2019, 10, 1369. [Google Scholar] [CrossRef] [PubMed]
- Saloner, A.; Bernstein, N. Effect of Potassium (K) Supply on Cannabinoids, Terpenoids and Plant Function in Medical Cannabis. Agronomy 2022, 12, 1242. [Google Scholar] [CrossRef]
- Ryan, M.H.; Kaur, P.; Nazeri, N.K.; Clode, P.L.; Keeble-Gagnère, G.; Doolette, A.L.; Smernik, R.J.; Van Aken, O.; Nicol, D.; Maruyama, H.; et al. Globular Structures in Roots Accumulate Phosphorus to Extremely High Concentrations Following Phosphorus Addition. Plant Cell Environ. 2019, 42, 1987–2002. [Google Scholar] [CrossRef] [PubMed]
- Finnan, J.; Burke, B. Potassium Fertilization of Hemp (Cannabis sativa). Ind. Crops Prod. 2013, 41, 419–422. [Google Scholar] [CrossRef]
- Bernstein, N.; Gorelick, J.; Zerahia, R.; Koch, S. Impact of N, P, K, and Humic Acid Supplementation on the Chemical Profile of Medical Cannabis (Cannabis sativa L). Front. Plant Sci. 2019, 10, 736. [Google Scholar] [CrossRef]
- Panday, D.; Acharya, B.S.; Bhusal, N.; Afshar, R.K.; Smith, A.; Ghalehgolabbehbahani, A. Precision Nitrogen Management for Optimal Yield and Cannabinoid Profile in CBD Hemp. Agrosyst. Geosci. Environ. 2024, 8, e70028. [Google Scholar] [CrossRef]
- James, M.S.; Vann, M.C.; Suchoff, D.H.; McGinnis, M.; Whipker, B.E.; Edmisten, K.L.; Gatiboni, L.C. Hemp Yield and Cannabinoid Concentrations under Variable Nitrogen and Potassium Fertilizer Rates. Crop Sci. 2023, 63, 1555–1565. [Google Scholar] [CrossRef]
- Farnisa, M.M.; Miller, G.C.; Solomon, J.K.Q.; Barrios-Masias, F.H. Floral Hemp (Cannabis sativa L.) Responses to Nitrogen Fertilization under Field Conditions in the High Desert. PLoS ONE 2023, 18, e0284537. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Nitrogen Source Matters: High NH4/NO3 Ratio Reduces Cannabinoids, Terpenoids, and Yield in Medical Cannabis. Front. Plant Sci. 2022, 13, 830224. [Google Scholar] [CrossRef]
- Atoloye, I.A.; Adesina, I.; Shahbazi, A.; Bhowmik, A. Response of cannabidiol hemp (Cannabis sativa L.) varieties grown in the southeastern United States to nitrogen fertilization. Open Agric. 2022, 7, 373–381. [Google Scholar] [CrossRef]
- Rathke, G.W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Barto, E.K.; Menexes, G.; Rillig, M.C. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol. 2013, 62, 961–969. [Google Scholar] [CrossRef]
- Yang, L.; Han, W.; Tan, B.; Wu, Y.; Li, S.; Yi, Y. Effects of Nutrient Accumulation and Microbial Community Changes on Tomato Fusarium Wilt Disease in Greenhouse Soil. Sustainability 2024, 16, 7756. [Google Scholar] [CrossRef]
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture: A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Mur, L.A.J.; Simpson, C.; Kumari, A.; Gupta, A.K.; Gupta, K.J. Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot. 2017, 119, 703–709. [Google Scholar] [CrossRef]
- Orr, R.; Dennis, P.G.; Wong, Y.; Browne, D.J.; Cooper, M.; Birt, H.W.G.; Nelson, P.N. Nitrogen fertilizer rate but not form affects the severity of Fusarium wilt in banana (Fusarium oxysporum f. sp. cubense). Front. Plant Sci. 2022, 13, 907819. [Google Scholar] [CrossRef] [PubMed]
- Hoffland, E.; Jeger, M.J.; van Beusichem, M.L. Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant Soil 2000, 218, 239–247. [Google Scholar] [CrossRef]
Treatment | N (g Plant−1) | P (g Plant−1) | K (g Plant−1) |
---|---|---|---|
Control | 0 | 0 | 0 |
D1 T1 | 5 | 2 | 3 |
D1 T2 | 5 | 3 | 3 |
D1 T3 | 5 | 3 | 5 |
D2 T1 | 7.5 | 3 | 4.5 |
D2 T2 | 7.5 | 4.5 | 4.5 |
D2 T3 | 7.5 | 4.5 | 7.5 |
D3 T1 | 10 | 4 | 6 |
D3 T2 | 10 | 6 | 6 |
D3 T3 | 10 | 6 | 10 |
Treatment | n (Plants per Treatment) |
---|---|
Control | 5 |
D1 T1 | 5 |
D1 T2 | 5 |
D1 T3 | 5 |
D2 T1 | 5 |
D2 T2 | 5 |
D2 T3 | 5 |
D3 T1 | 5 |
D3 T2 | 5 |
D3 T3 | All the plants died |
Nutrient | Rate (g Plant−1) | Root | CV | Stem | CV | Leaf | CV | Inflorescence | CV |
---|---|---|---|---|---|---|---|---|---|
N | 0 | 14.6 (0.2) a | 1.94 | 12.3 (0.05) a | 0.05 | 24.4 (0.99) a | 5.73 | 36.8 (0.25) a | 0.9 |
5 | 17.8 (0.86) b | 11.79 | 13.8 (0.48) a | 8.54 | 32.3 (1.22) b | 9.27 | 42.8 (0.96) ab | 5.5 | |
7.5 | 20.5 (0.32) c | 3.87 | 16.9 (1.1) b | 15.84 | 38.1 (1) c | 6.45 | 50.8 (4.97) b | 23.9 | |
10 | 21.2 (0.58) c | 5.52 | 18.9 (0.19) b | 2 | 39.8 (0.36) c | 1.8 | 50.1 (1.36) ab | 5.5 | |
LSD (N) | 2.28 | 2.78 | 3.73 | 11.87 | |||||
P | 0 | 0.07 (0.01) a | 25.8 | 0.09 (0.01) a | 13.3 | 0.87 (0.5) a | 81.5 | 4.03 (0.1) a | 3.4 |
2 | 0.37 (0.01) a | 5.5 | 1.09 (0.02) c | 2.9 | 6.96 (0.66) b | 13.4 | 7.47 (0.09) c | 1.8 | |
3 | 0.95 (0.02) b | 6.3 | 0.82 (0.05) b | 15.5 | 6.33 (0.33) b | 12.8 | 6.98 (0.5) c | 17.5 | |
4 | 1.08 (0.01) b | 1.8 | 1.02 (0.03) bc | 4.2 | 5.27 (0.18) b | 4.8 | 6.45 (0.05) c | 1.1 | |
4.5 | 1.07 (0.18) b | 33.8 | 1.01 (0.11) bc | 22.4 | 6.26 (0.97) b | 30.8 | 0.71 (0.14) a | 39.8 | |
6 | 7.15 (0.07) c | 1.3 | 7.73 (0.06) d | 1.1 | 6.9 (0.78) b | 16.1 | 8.07 (0.03) c | 0.46 | |
LSD (P) | 0.36 | 0.27 | 2.33 | 1.57 | |||||
K | 0 | 2.4 (0.02) a | 1.2 | 2.6 (0.02) ab | 1.1 | 37.9 (5.2) a | 19.4 | 19.8 (0.2) bc | 1.4 |
3 | 5.6 (0.45) a | 16.2 | 2.5 (0.1) a | 7.8 | 74 (4) b | 10.8 | 27.8 (0.8) cd | 5.8 | |
4.5 | 7.8 (0.46) a | 11.7 | 6.8 (1.91) ab | 26.5 | 90.3 (5.87) bc | 13 | 15.6 (5.49) b | 30.2 | |
5 | 9.3 (0.03) a | 0.4 | 4.3 (0.03) ab | 0.1 | 103.8 (2.26) c | 3.1 | 38.4 (0.12) d | 0.4 | |
6 | 2.3 (11.16) a | 45.7 | 20.4 (10.01) b | 48.2 | 83.7 (9) bc | 21.5 | 36.2 (3.08) d | 17 | |
7.5 | 5.3 (0.02) a | 0.4 | 3 (0.003) ab | 0.1 | 147.7 (13.32) d | 12.8 | 2.7 (0.01) a | 0.7 | |
LSD (K) | 21.08 | 19.23 | 24.34 | 11.97 |
Treatment | N | P | K | CBD (%) | THC (%) | CBD (mg Plant−1) | THC (mg Plant−1) |
---|---|---|---|---|---|---|---|
T | 0 | 0 | 0 | 87.3 | 10.0 | 240.8 | 28.7 |
D1 T1 | 5 | 2 | 3 | 90.0 | 5.8 | 520.2 | 34.9 |
D1 T2 | 5 | 3 | 3 | 91.7 | 4.9 | 195.1 | 11.1 |
D1 T3 | 5 | 3 | 5 | 93.5 | 3.8 | 249.3 | 10.7 |
D2 T1 | 7.5 | 3 | 4.5 | 91.2 | 5.0 | 204.8 | 11.6 |
D2 T2 | 7.5 | 4.5 | 4.5 | 94.1 | 4.2 | 69.5 | 3.2 |
D2 T3 | 7.5 | 4.5 | 7.5 | 95.3 | 2.9 | 105.7 | 3.4 |
D3 T1 | 10 | 4 | 6 | 93.1 | 2.9 | 111.3 | 3.7 |
D3 T2 | 10 | 6 | 6 | 94.1 | 4.3 | 47.9 | 2.2 |
Treatment | N (mg) | P (mg) | K (mg) |
---|---|---|---|
T0 | −2850 | 1520 | −680 |
D1 T1 | −3310 | −64,304 | −4735 |
D1T2 | −2250 | −6910 | 5560 |
D1 T3 | −2230 | −7800 | −19,300 |
D2 T1 | 1950 | −9000 | −4610 |
D2 T2 | 2080 | −164,201 | −6110 |
D2 T3 | −2650 | −13,450 | −10,570 |
D3 T1 | 3010 | −19,720 | −2580 |
D3 T2 | 3490 | −33,700 | −4800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonutti, M.; Berhongaray, G.; Derita, M.; Zabala, J.M. Response of Cannabis sativa L. to Inorganic Fertilization (N, P, K): Biomass, Nutrient Uptake and Cannabinoids Profile. Int. J. Plant Biol. 2025, 16, 92. https://doi.org/10.3390/ijpb16030092
Simonutti M, Berhongaray G, Derita M, Zabala JM. Response of Cannabis sativa L. to Inorganic Fertilization (N, P, K): Biomass, Nutrient Uptake and Cannabinoids Profile. International Journal of Plant Biology. 2025; 16(3):92. https://doi.org/10.3390/ijpb16030092
Chicago/Turabian StyleSimonutti, Marianela, Gonzalo Berhongaray, Marcos Derita, and Juan Marcelo Zabala. 2025. "Response of Cannabis sativa L. to Inorganic Fertilization (N, P, K): Biomass, Nutrient Uptake and Cannabinoids Profile" International Journal of Plant Biology 16, no. 3: 92. https://doi.org/10.3390/ijpb16030092
APA StyleSimonutti, M., Berhongaray, G., Derita, M., & Zabala, J. M. (2025). Response of Cannabis sativa L. to Inorganic Fertilization (N, P, K): Biomass, Nutrient Uptake and Cannabinoids Profile. International Journal of Plant Biology, 16(3), 92. https://doi.org/10.3390/ijpb16030092