Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (832)

Search Parameters:
Keywords = biological pretreatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2801 KiB  
Article
The Influence of Substrate Preparation on the Performance of Two Alkyd Coatings After 7 Years of Exposure in Outdoor Conditions
by Emanuela Carmen Beldean, Maria Cristina Timar and Emilia-Adela Salca Manea
Coatings 2025, 15(8), 918; https://doi.org/10.3390/coatings15080918 - 6 Aug 2025
Abstract
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, [...] Read more.
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, a semi-transparent brown stain with micronized pigments (Alk1) and an opaque white enamel (Alk2), applied directly on wood or wood pre-treated with three types of resins: acryl-polyurethane (R1), epoxy (R2), and alkyd-polyurethane (R3). Fir (Abies alba) wood served as the substrate. Cracking, coating adhesion, and biological degradation were periodically assessed through visual inspection and microscopy. Additionally, a cross-cut test was performed, and the loss of coating on the directly exposed upper faces was measured using ImageJ. The results indicated that resin pretreatments somewhat reduced cracking but negatively affected coating adhesion after long-term exposure. All samples pretreated with resins and coated with Alk1 lost more than 50% (up to 78%) of the original finishing film by the end of the test. In comparison, coated control samples lost less than 50%. The Alk2 coating exhibited a film loss between 2% and 12%, compared to an average loss of 9% for the coated control. Overall, samples pretreated with alkyd-polyurethane resin (R3) and coated with alkyd enamel (Alk2) demonstrated the best performance in terms of cracking, adhesion, and discoloration. Full article
(This article belongs to the Collection Wood: Modifications, Coatings, Surfaces, and Interfaces)
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

23 pages, 8079 KiB  
Article
Electrophoretic Deposition of Green-Synthesized Hydroxyapatite on Thermally Oxidized Titanium: Enhanced Bioactivity and Antibacterial Performance
by Mariana Relva, Daniela Santo, Ricardo Alexandre, Pedro Faia, Sandra Carvalho, Zohra Benzarti and Susana Devesa
Appl. Sci. 2025, 15(15), 8598; https://doi.org/10.3390/app15158598 - 2 Aug 2025
Viewed by 140
Abstract
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer [...] Read more.
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer with a hydroxyapatite (HAp) top layer synthesized via a green route using Hylocereus undatus extract. The HAp was deposited by electrophoretic deposition (EPD), enabling continuous coverage and strong adhesion to the pre-treated Ti-6Al-4V substrate. Structural, morphological, chemical, and electrical characterizations were performed using XRD, SEM, EDS, Raman spectroscopy, and impedance spectroscopy. Bioactivity was assessed through apatite formation in simulated body fluid (SBF), while antibacterial properties were evaluated against Staphylococcus aureus. The results demonstrated successful formation of crystalline TiO2 (rutile phase) and calcium-rich HAp with good surface coverage. The HAp-coated surfaces exhibited significantly enhanced bioactivity and strong antibacterial performance, likely due to the combined effects of surface roughness and the bioactive compounds present in the plant extract. This study highlights the potential of eco-friendly, bio-inspired surface engineering to improve the biological performance of titanium-based implants. Full article
Show Figures

Figure 1

16 pages, 701 KiB  
Article
Use of Trichoderma, Aspergillus, and Rhizopus Fungi for the Biological Production of Hydrolytic Enzymes and Uronic Acids from Sargassum Biomass
by Cristina Agabo-García, Muhammad Nur Cahyanto, Widiastuti Setyaningsih, Luis I. Romero-García, Carlos J. Álvarez-Gallego and Ana Blandino
Fermentation 2025, 11(8), 430; https://doi.org/10.3390/fermentation11080430 - 27 Jul 2025
Viewed by 350
Abstract
The objective of this study was the evaluation of fungal solid-state fermentation (SSF) for the production of alginate lyase and extraction of uronic acids from Sargassum sp. For this purpose, the fungi Trichoderma asperellum, Aspergillus oryzae, and Rhizopus oryzae were applied [...] Read more.
The objective of this study was the evaluation of fungal solid-state fermentation (SSF) for the production of alginate lyase and extraction of uronic acids from Sargassum sp. For this purpose, the fungi Trichoderma asperellum, Aspergillus oryzae, and Rhizopus oryzae were applied (alone or combined) to Sargassum sp. biomass through SSF (107 spores gbiomass−1, 30 °C, and 7 days of treatment). In general, individual SSF with all three fungi degraded the biomass, achieving a marked synergy in the production of cellulase, laminarinase, and alginate lyase activities (especially for the last one). Trichoderma was the most efficient species in producing laminarinase, whereas Rhizophus was the best option for producing alginate lyase. However, when dual combinations were tested, the maximal values of alginate lyase activities were reached (13.4 ± 0.2 IU gbiomass−1 for Aspergillus oryzae and Rhizopus oryzae). Remarkably, uronic acids were the main monomeric units from algal biomass solubilization, achieving a maximum yield of 14.4 mguronic gbiomass−1, with the A + R condition being a feasible, eco-friendly alternative to chemical extraction of this monomer. Additionally, the application of all the fungal pretreatments drastically decreased the total phenolic content (TPC) in the biomass from 369 mg L−1 to values around 44–84 mg L−1, minimizing the inhibition for possible subsequent biological processes in which the residual solid can be used. Full article
Show Figures

Figure 1

17 pages, 1941 KiB  
Article
Blue–Red LED Light Modulates Morphophysiological and Metabolic Responses in the Medicinal Plant Nepeta nuda
by Miroslava Zhiponova, Grigor Zehirov, Krasimir Rusanov, Mila Rusanova, Miroslava Stefanova, Tsveta Ganeva, Momchil Paunov, Valentina Ganeva, Kiril Mishev, Petre I. Dobrev, Roberta Vaculíková, Václav Motyka, Zhenya Yordanova, Ganka Chaneva and Valya Vassileva
Plants 2025, 14(15), 2285; https://doi.org/10.3390/plants14152285 - 24 Jul 2025
Viewed by 347
Abstract
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda [...] Read more.
Light quality and duration profoundly influence the growth and productivity of plant species. This study investigated the effects of a blue–red LED light combination, known to induce flowering, on the physiological state and content of biologically active substances in catmint (Nepeta nuda L.) grown under controlled in vitro conditions. White light (W) was used as a control and compared with two blue–red intensities: BR (high-intensity blue–red light) and BRS (low-intensity blue–red light or “BR with shadow”). BR-treated plants showed increased leaf area, mesophyll thickness, biomass and starch content but reduced levels of plastid pigments. BR also modified the oxidative state of plants by inducing lipid peroxidation while simultaneously activating ROS scavenging mechanisms and enhancing phenolic antioxidants. Interestingly, BR decreased the accumulation of the Nepeta sp.-specific iridoid, nepetalactone. These effects appear to be regulated by the phytohormones auxin, abscisic acid and jasmonates. BRS treatment produced effects similar to the W control but led to increased plant height and reduced leaf area and thickness. Both BR and BRS regimes induced the accumulation of proteins and amino acids. We conclude that blue–red light can enhance the survival capacity of micropropagated N. nuda during subsequent soil adaptation, suggesting that similar light pre-treatment could improve plant performance under stress conditions. Full article
Show Figures

Figure 1

18 pages, 1717 KiB  
Article
An Immune Assay to Quantify the Neutralization of Oxidation-Specific Epitopes by Human Blood Plasma
by Marija Jelic, Philipp Jokesch, Olga Oskolkova, Gernot Faustmann, Brigitte M. Winklhofer-Roob, Bernd Ullrich, Jürgen Krauss, Rudolf Übelhart, Bernd Gesslbauer and Valery Bochkov
Antioxidants 2025, 14(8), 903; https://doi.org/10.3390/antiox14080903 - 24 Jul 2025
Viewed by 362
Abstract
Oxidized phospholipids (OxPLs) are increasingly recognized as biologically active lipids involved in various pathologies. Both exposure to pathogenic factors and the efficacy of protective mechanisms are critical to disease development. In this study, we characterized an immunoassay that quantified the total capacity of [...] Read more.
Oxidized phospholipids (OxPLs) are increasingly recognized as biologically active lipids involved in various pathologies. Both exposure to pathogenic factors and the efficacy of protective mechanisms are critical to disease development. In this study, we characterized an immunoassay that quantified the total capacity of the plasma to degrade or mask OxPLs, thereby preventing their interaction with cells and soluble proteins. OxLDL-coated plates were first incubated with human blood plasma or a control vehicle, followed by an ELISA using a monoclonal antibody specific to oxidized phosphatidylethanolamine. Pretreatment with the diluted blood plasma markedly inhibited mAb binding. The masking assay was optimized by evaluating the buffer composition, the compatibility with various anticoagulants, potential interfering compounds, the kinetic parameters, pre-analytical stability, statistical robustness, and intra- and inter-individual variability. We propose that this masking assay provides a simple immunological approach to assessing protective mechanisms against lipid peroxidation products. Establishing this robust and reproducible method is essential for conducting clinical association studies that explore masking activity as a potential biomarker of the predisposition to a broad range of lipid-peroxidation-related diseases. Full article
(This article belongs to the Special Issue Exploring Biomarkers of Oxidative Stress in Health and Disease)
Show Figures

Figure 1

41 pages, 4318 KiB  
Review
A Review of Pretreatment Strategies for Anaerobic Digestion: Unlocking the Biogas Generation Potential of Wastes in Ghana
by James Darmey, Satyanarayana Narra, Osei-Wusu Achaw, Walter Stinner, Julius Cudjoe Ahiekpor, Herbert Fiifi Ansah, Berah Aurelie N’guessan, Theophilus Ofori Agyekum and Emmanuel Mawuli Koku Nutakor
Waste 2025, 3(3), 24; https://doi.org/10.3390/waste3030024 - 23 Jul 2025
Viewed by 377
Abstract
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in [...] Read more.
Anaerobic digestion (AD) is a sustainable method of treating organic waste to generate methane-rich biogas. However, the complex lignocellulosic nature of organic waste in most cases limits its biodegradability and methane potential. This review evaluates pretreatment technology to optimize AD performance, particularly in developing countries like Ghana, where organic waste remains underutilized. A narrative synthesis of the literature between 2010 and 2024 was conducted through ScienceDirect and Scopus, categorizing pretreatment types as mechanical, thermal, chemical, biological, enzymatic, and hybrid. A bibliometric examination using VOSviewer also demonstrated global trends in research and co-authorship networks. Mechanical and thermal pretreatments increased biogas production by rendering the substrate more available, while chemical treatment degraded lignin and hemicellulose, sometimes more than 100% in methane yield. Biological and enzymatic pretreatments were energy-consuming and effective, with certain enzymatic blends achieving 485% methane yield increases. The study highlights the synergistic benefits of hybrid approaches and growing global interest, as revealed by bibliometric analysis; hence, the need to explore their potential in Ghana. In Ghana, this study concludes that low-cost, biologically driven pretreatments are practical pathways for advancing anaerobic digestion systems toward sustainable waste management and energy goals, despite infrastructure and policy challenges. Full article
(This article belongs to the Special Issue New Trends in Liquid and Solid Effluent Treatment)
Show Figures

Figure 1

14 pages, 3154 KiB  
Article
Integrative Analysis of Omics Reveals RdDM Pathway Participation in the Initiation of Rice Microspore Embryogenesis Under Cold Treatment
by Yingbo Li, Runhong Gao, Yingjie Zong, Guimei Guo, Wenqi Zhang, Zhiwei Chen, Jiao Guo and Chenghong Liu
Plants 2025, 14(15), 2267; https://doi.org/10.3390/plants14152267 - 23 Jul 2025
Viewed by 236
Abstract
Abiotic stress can reprogram the gametophytic pathway; the mechanisms by which floral bud pre-treatment influences microspore embryogenesis initiation remain unclear. In this study, we use bisulfite sequencing, sRNA-seq, and RNA-seq to analyze the dynamic changes in rice microspores under different cold treatment durations. [...] Read more.
Abiotic stress can reprogram the gametophytic pathway; the mechanisms by which floral bud pre-treatment influences microspore embryogenesis initiation remain unclear. In this study, we use bisulfite sequencing, sRNA-seq, and RNA-seq to analyze the dynamic changes in rice microspores under different cold treatment durations. Our results showed that a 10-day cold treatment is essential for CXJ microspore embryogenesis initiation. DNA methylation levels showed a slight change at CG, CHG, and CHH sites under cold treatment. The number of both hyper- and hypomethylated DMRs increased over cold treatment, with more hypermethylated DMRs at 5 and 10 dpt. Hypermethylated DMRs were more frequently in the TSS region compared to hypomethylated DMRs. The proportion of 24 nt sRNAs increased upon cold stress, with more downregulated than upregulated sRNAs at 10 dpt. The number of DMR target DEGs increased from 5 to 10 dpt. Promoter hypomethylation at the CHH site was more frequently associated with DEGs. These outcomes suggested that the RdDM pathway participates in the initiation of rice ME. GO analysis indicated that DMR target DEGs at 10 dpt were enriched in responses to chemical stimuli, biological processes, and stress responses. An auxin-related gene, OsHOX28, was further identified. Its upregulation, potentially mediated by the RdDM pathway, may play a crucial role in the initiation of rice ME. This study provides more information on epigenetic mechanisms during rice ME. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Somatic Embryogenesis in Plants)
Show Figures

Figure 1

18 pages, 10000 KiB  
Article
Predicting Neoadjuvant Chemotherapy Response in Triple-Negative Breast Cancer Using Pre-Treatment Histopathologic Images
by Hikmat Khan, Ziyu Su, Huina Zhang, Yihong Wang, Bohan Ning, Shi Wei, Hua Guo, Zaibo Li and Muhammad Khalid Khan Niazi
Cancers 2025, 17(15), 2423; https://doi.org/10.3390/cancers17152423 - 22 Jul 2025
Viewed by 321
Abstract
Triple-negative breast cancer (TNBC) remains a major clinical challenge due to its aggressive behavior and lack of targeted therapies. Accurate early prediction of response to neoadjuvant chemotherapy (NACT) is essential for guiding personalized treatment strategies and improving patient outcomes. In this study, we [...] Read more.
Triple-negative breast cancer (TNBC) remains a major clinical challenge due to its aggressive behavior and lack of targeted therapies. Accurate early prediction of response to neoadjuvant chemotherapy (NACT) is essential for guiding personalized treatment strategies and improving patient outcomes. In this study, we present an attention-based multiple instance learning (MIL) framework designed to predict pathologic complete response (pCR) directly from pre-treatment hematoxylin and eosin (H&E)-stained biopsy slides. The model was trained on a retrospective in-house cohort of 174 TNBC patients and externally validated on an independent cohort (n = 30). It achieved a mean area under the curve (AUC) of 0.85 during five-fold cross-validation and 0.78 on external testing, demonstrating robust predictive performance and generalizability. To enhance model interpretability, attention maps were spatially co-registered with multiplex immunohistochemistry (mIHC) data stained for PD-L1, CD8+ T cells, and CD163+ macrophages. The attention regions exhibited moderate spatial overlap with immune-enriched areas, with mean Intersection over Union (IoU) scores of 0.47 for PD-L1, 0.45 for CD8+ T cells, and 0.46 for CD163+ macrophages. The presence of these biomarkers in high-attention regions supports their biological relevance to NACT response in TNBC. This not only improves model interpretability but may also inform future efforts to identify clinically actionable histological biomarkers directly from H&E-stained biopsy slides, further supporting the utility of this approach for accurate NACT response prediction and advancing precision oncology in TNBC. Full article
(This article belongs to the Section Cancer Informatics and Big Data)
Show Figures

Figure 1

41 pages, 3292 KiB  
Review
Black Soldier Fly: A Keystone Species for the Future of Sustainable Waste Management and Nutritional Resource Development: A Review
by Muhammad Raheel Tariq, Shaojuan Liu, Fei Wang, Hui Wang, Qianyuan Mo, Zhikai Zhuang, Chaozhong Zheng, Yanwen Liang, Youming Liu, Kashif ur Rehman, Murat Helvaci, Jianguang Qin and Chengpeng Li
Insects 2025, 16(8), 750; https://doi.org/10.3390/insects16080750 - 22 Jul 2025
Viewed by 1130
Abstract
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological [...] Read more.
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological and genomic adaptations underpinning waste conversion efficiency, comparative performance of BSF bioconversion versus traditional treatments, nutritional and functional attributes, techno-economic, regulatory, and safety barriers to industrial scale-up. Peer-reviewed studies were screened for methodological rigor, and data on life cycle traits, conversion metrics, and product compositions were synthesized. BSF larvae achieve high waste reductions, feed-conversion efficiencies and redirect substrate carbon into biomass, yielding net CO2 emissions as low as 12–17 kg CO2 eq ton−1, an order of magnitude below composting or vermicomposting. Larval biomass offers protein, lipids (notably lauric acid), micronutrients, chitin, and antimicrobial peptides, with frass serving as a nutrient-rich fertilizer. Pathogen and antibiotic resistance gene loads decrease during bioconversion. Key constraints include substrate heterogeneity, heavy metal accumulation, fragmented regulatory landscapes, and high energy and capital demands. BSF systems demonstrate superior environmental and nutritional performance compared to conventional waste treatments. Harmonized safety standards, feedstock pretreatment, automation, and green extraction methods are critical to overcoming scale-up barriers. Interdisciplinary innovation and policy alignment will enable BSF platforms to realize their full potential within circular bio-economies. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

20 pages, 12298 KiB  
Article
Impact of Metastatic Microenvironment on Physiology and Metabolism of Small Cell Neuroendocrine Prostate Cancer Patient-Derived Xenografts
by Shubhangi Agarwal, Deepti Upadhyay, Jinny Sun, Emilie Decavel-Bueff, Robert A. Bok, Romelyn Delos Santos, Said Al Muzhahimi, Rosalie Nolley, Jason Crane, John Kurhanewicz, Donna M. Peehl and Renuka Sriram
Cancers 2025, 17(14), 2385; https://doi.org/10.3390/cancers17142385 - 18 Jul 2025
Viewed by 442
Abstract
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative [...] Read more.
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative to those with bone metastases alone. The mechanisms that underlie the different behavior of ARPC in bone vs. liver may involve factors intrinsic to the tumor cell, tumor microenvironment, and/or systemic factors, and identifying these factors is critical to improved diagnosis and treatment of SCNC. Metabolic reprogramming is a fundamental strategy of tumor cells to colonize and proliferate in microenvironments distinct from the primary site. Understanding the metabolic plasticity of cancer cells may reveal novel approaches to imaging and treating metastases more effectively. Methods: Using magnetic resonance (MR) imaging and spectroscopy, we interrogated the physiological and metabolic characteristics of SCNC patient-derived xenografts (PDXs) propagated in the bone and liver, and used correlative biochemical, immunohistochemical, and transcriptomic measures to understand the biological underpinnings of the observed imaging metrics. Results: We found that the influence of the microenvironment on physiologic measures using MRI was variable among PDXs. However, the MR measure of glycolytic capacity in the liver using hyperpolarized 13C pyruvic acid recapitulated the enzyme activity (lactate dehydrogenase), cofactor (nicotinamide adenine dinucleotide), and stable isotope measures of fractional enrichment of lactate. While in the bone, the congruence of the glycolytic components was lost and potentially weighted by the interaction of cancer cells with osteoclasts/osteoblasts. Conclusion: While there was little impact of microenvironmental factors on metabolism, the physiological measures (cellularity and perfusion) are highly variable and necessitate the use of combined hyperpolarized 13C MRI and multiparametric (anatomic, diffusion-, and perfusion- weighted) 1H MRI to better characterize pre-treatment tumor characteristics, which will be crucial to evaluate treatment response. Full article
(This article belongs to the Special Issue Magnetic Resonance in Cancer Research)
Show Figures

Figure 1

35 pages, 1398 KiB  
Review
Process Intensification of Anaerobic Digestion of Biowastes for Improved Biomethane Production: A Review
by Sahil Sahil and Sonil Nanda
Sustainability 2025, 17(14), 6553; https://doi.org/10.3390/su17146553 - 17 Jul 2025
Viewed by 555
Abstract
Anaerobic digestion is a widely adopted technique for biologically converting organic biomass to biogas under oxygen-limited conditions. However, several factors, including the properties of biomass and its complex structure, make it challenging to degrade biomass effectively, thereby reducing the overall efficiency of anaerobic [...] Read more.
Anaerobic digestion is a widely adopted technique for biologically converting organic biomass to biogas under oxygen-limited conditions. However, several factors, including the properties of biomass and its complex structure, make it challenging to degrade biomass effectively, thereby reducing the overall efficiency of anaerobic digestion. This review examines the recent advancements in commonly used pretreatment techniques, including physical, chemical, and biological methods, and their impact on the biodegradability of organic waste for anaerobic digestion. Furthermore, this review explores integrated approaches that utilize two or more pretreatments to achieve synergistic effects on biomass degradation. This article highlights various additives and their physicochemical characteristics, which play a vital role in stimulating direct interspecies electron transfer to enhance biomethanation reaction rates. Direct electron interspecies transfer is a crucial aspect that accelerates electron transfer among syntrophic microbial communities during anaerobic digestion, thereby enhancing biomethane formation. Finally, this article reviews potential approaches, identifies research gaps, and outlines future directions to strengthen and develop advanced pretreatment strategies and novel additives to improve anaerobic digestion processes for generating high-value biogas. Full article
Show Figures

Figure 1

19 pages, 1165 KiB  
Article
Expansion of Mechanical Biological Residual Treatment Plant with Fermentation Stage for Press Water from Organic Fractions Involving a Screw Press
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Recycling 2025, 10(4), 141; https://doi.org/10.3390/recycling10040141 - 16 Jul 2025
Viewed by 285
Abstract
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the [...] Read more.
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the employed screw press, such as pressure, liquid-to-MSFF, feeding quantity per hour, and press basket mesh size, to enhance volatile solids and biogas recovery in the generated press water for anaerobic digestion. Experiments were performed at the full-scale facility to evaluate the efficiency of screw press extraction with other pretreatment methods, like press extrusion, wet pulping, and hydrothermal treatment. The results indicated that hydrolysis of the organic fractions in MSFF was the most important factor for improving organic extraction from the MSFF to press water for fermentation. Optimal hydrolysis efficiency was achieved with a digestate and process water-to-MSFF of approximately 1000 L/ton, with a feeding rate between 8.8 and 14 tons per hour. Increasing pressure from 2.5 to 4.0 bar had minimal impact on press water properties or biogas production, regardless of the press basket size. The highest volatile solids (29%) and biogas (50%) recovery occurred at 4.0 bar pressure with a 1000 L/ton liquid-to-MSFF. Further improvements could be achieved with longer mixing times before pressing. These findings demonstrate the technical feasibility of the pressing system for preparing an appropriate substrate for the fermentation process, underscoring the potential for optimizing the system. However, further research is required to assess the cost–benefit balance. Full article
Show Figures

Figure 1

18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 596
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

22 pages, 3729 KiB  
Article
Assessing the Impact of Residual Municipal Solid Waste Characteristics on Screw Press Performance in a Mechanical Biological Treatment Plant Optimized with Anaerobic Digestion
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Sustainability 2025, 17(14), 6365; https://doi.org/10.3390/su17146365 - 11 Jul 2025
Cited by 1 | Viewed by 372
Abstract
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a [...] Read more.
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a screw press. This study focused on evaluating the efficiency of each mechanical pretreatment step by investigating the composition of the residual waste, organic fraction recovery rate, and screw press performance in recovering organic material and biogas to press water. The results showed that 92% of the organic material from the residual waste was recovered into fine fractions after shredding and trommel screening. The pressing experiments produced high-quality press water with less than 3% inert material (0.063–4 mm size). Mass balance analysis revealed that 47% of the input fresh mass was separated into press water, corresponding to 24% of the volatile solids recovered. Biogas yield tests showed that the press water had a biogas potential of 416 m3/ton VS, recovering 38% of the total biogas potential. In simple terms, the screw press produced 32 m3 of biogas per ton of mechanically separated fine fractions and 20 m3 per ton of input residual waste. This low-pressure, single-step screw press efficiently and cost-effectively prepares anaerobic digestion feedstock, making it a promising optimization for both existing and new facilities. The operational configuration of the screw press remains an underexplored area in current research. Therefore, further studies are needed to systematically evaluate key parameters such as screw press pressure (bar), liquid-to-waste (L/ton), and feed rate (ton/h). Full article
Show Figures

Figure 1

Back to TopTop