sustainability-logo

Journal Browser

Journal Browser

Driving Sustainable Development and Economic Growth Through Renewable Energy

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Economic and Business Aspects of Sustainability".

Deadline for manuscript submissions: closed (30 September 2025) | Viewed by 5617

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Labour Market, National Scientific Research Institute for Labor and Social Protection, Povernei Street 6, 010643 Bucharest, Romania
Interests: labor market; space–time analysis; innovation; regional studies

E-Mail Website
Guest Editor
Department of Banking and Insurance, School of Business, Istanbul Medipol University, Goztepe, Kavacık Kavsagı, Beykoz, 34810 Istanbul, Turkey
Interests: banking; finance; energy economics; investment analysis; decision making

Special Issue Information

Dear Colleagues, 

A shift to clean energy sources is now seen as one of the primary forces for positive change and the development of the economy. From the global concerns of climate change and constraints of exhaustible fossil-based energies, renewable energy (RE) presents hope for a modern, sustainable future. This Special Issue focuses on the various dimensions of the relationship between RE adoption sustainability and economic growth. This involves exploring environmental-, economic-, and social-related aspects of renewable energy and how it can be adopted into national and international energy matrices, driving positive economic impacts towards the environment and societal wellness. First, the papers should focus on the ability of renewable energy to counter climate change, explaining that there is a need to transition from fossil fuels. Renewable energy technologies, including wind, solar, and hydroelectric power, play an essential role in mitigating the effects of greenhouse gas emissions on the environment. Analyses of the economic outlook for renewable energy, for sectors with extensive possibilities for employment, technological development, and energy security, offer economic development perspectives. Thus, the impact of developing renewable energy is that, besides reducing the importation of fossil fuels, countries develop strong economies capable of handling the fluctuations that may arise in the international energy market. Policies, regulatory measures, and financial instruments with which to promote the use of renewable energy are crucial in setting correct market signals that attract investment in renewable energy. Also, an outline of international cooperation and private initiatives is given as essential factors for enhancing renewable energy initiatives' scope and viability. The distributed nature of many renewable energy systems enables more peoples’ participation. It helps shape a better future for many people as it encourages local economic development among people, hence boosting society's unity. Exploring the opportunities in renewable energy can stabilize the economies of nations, protect the environment, and improve the welfare of the people, thereby ensuring a better future for the world. 

Prof. Dr. Adriana Grigorescu
Dr. Cristina Lincaru
Dr. Hasan DINCER
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • technology development and adoption
  • smart business models with energy solutions
  • energy market accessibility and affordability
  • regional time–space perspectives
  • environmental and natural resources
  • climate change implications
  • education, social, and welfare implications
  • energy security
  • energy poverty
  • energy policies
  • energy economics
  • eegulatory measures, financial and fiscal instruments

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

67 pages, 14448 KB  
Article
Driving Sustainable Development from Fossil to Renewable: A Space–Time Analysis of Electricity Generation Across the EU-28
by Adriana Grigorescu, Cristina Lincaru and Camelia Speranta Pirciog
Sustainability 2025, 17(23), 10620; https://doi.org/10.3390/su172310620 - 26 Nov 2025
Viewed by 304
Abstract
The transition to renewable energy is crucial in order to attain sustainable development, lower greenhouse gas emissions, and secure long-term energy security. This study examines spatial–temporal trends in electricity generation (both renewable and non-renewable) across EU-28 countries using monthly Eurostat data (2008–2025) at [...] Read more.
The transition to renewable energy is crucial in order to attain sustainable development, lower greenhouse gas emissions, and secure long-term energy security. This study examines spatial–temporal trends in electricity generation (both renewable and non-renewable) across EU-28 countries using monthly Eurostat data (2008–2025) at the NUTS0 level. Two harmonized Space–Time Cubes (STCs) were constructed for renewable and non-renewable electricity covering the fully comparable 2017–2024 interval, while 2008–2016 data were used for descriptive validation, and 2025 data were used for one-step-ahead forecasting. In this paper, the authors present a novel multi-method approach to energy transition dynamics in Europe, integrating forecasting (ESF), hot-spot detection (EHSA), and clustering (TSC) with the help of a new spatial–temporal modeling framework. The methodology is a step forward in the development of methodological literature, since it regards predictive and exploratory GIS analytics as comparative energy transition evaluation. The paper uses Exponential Smoothing Forecast (ESF) and Emerging Hot Spot Analysis (EHSA) in a GIS-based analysis to uncover the dynamics in the region and the possible production pattern. The ESF also reported strong predictive performance in the form of the mean Root Mean Square Errors (RMSE) of renewable and non-renewable electricity generation of 422.5 GWh and 438.8 GWh, respectively. Of the EU-28 countries, seasonality was statistically significant in 78.6 per cent of locations that relied on hydropower, and 35.7 per cent of locations exhibited structural outliers associated with energy-transition asymmetries. EHSA identified short-lived localized spikes in renewable electricity production in a few Western and Northern European countries: Portugal, Spain, France, Denmark, and Sweden, termed as sporadic renewable hot spots. There were no cases of persistent or increase-based hot spots in any country; therefore, renewable growth is temporally and spatially inhomogeneous in the EU-28. In the case of non-renewable sources, a hot spot was evident in France, with an intermittent hot spot in Spain and sporadic increases over time, but otherwise, there was no statistically significant activity of hot or cold spots in the rest of Europe, indicating structural stagnation in the generation of fossil-based electricity. Time Series Clustering (TSC) determined 10 temporal clusters in the generation of renewable and non-renewable electricity. All renewable clusters were statistically significantly increasing (p < 0.001), with the most substantial increase in Cluster 4 (statistic = 9.95), observed in Poland, Finland, Portugal, and the Netherlands, indicating a transregional phase acceleration of renewable electricity production in northern, western, and eastern Europe. Conversely, all non-renewable clusters showed declining trends (p < 0.001), with Cluster 5 (statistic = −8.58) showing a concerted reduction in the use of fossil-based electricity, in line with EU decarbonization policies. The results contribute to an improved understanding of the spatial dynamics of the European energy transition and its potential to support energy security, reduce fossil fuel dependency, and foster balanced regional development. These insights are crucial to harmonize policy measures with the objectives of the European Green Deal and the United Nations Sustainable Development Goals (especially Goals 7, 11, and 13). Full article
Show Figures

Figure 1

Review

Jump to: Research

35 pages, 1398 KB  
Review
Process Intensification of Anaerobic Digestion of Biowastes for Improved Biomethane Production: A Review
by Sahil Sahil and Sonil Nanda
Sustainability 2025, 17(14), 6553; https://doi.org/10.3390/su17146553 - 17 Jul 2025
Cited by 2 | Viewed by 4432
Abstract
Anaerobic digestion is a widely adopted technique for biologically converting organic biomass to biogas under oxygen-limited conditions. However, several factors, including the properties of biomass and its complex structure, make it challenging to degrade biomass effectively, thereby reducing the overall efficiency of anaerobic [...] Read more.
Anaerobic digestion is a widely adopted technique for biologically converting organic biomass to biogas under oxygen-limited conditions. However, several factors, including the properties of biomass and its complex structure, make it challenging to degrade biomass effectively, thereby reducing the overall efficiency of anaerobic digestion. This review examines the recent advancements in commonly used pretreatment techniques, including physical, chemical, and biological methods, and their impact on the biodegradability of organic waste for anaerobic digestion. Furthermore, this review explores integrated approaches that utilize two or more pretreatments to achieve synergistic effects on biomass degradation. This article highlights various additives and their physicochemical characteristics, which play a vital role in stimulating direct interspecies electron transfer to enhance biomethanation reaction rates. Direct electron interspecies transfer is a crucial aspect that accelerates electron transfer among syntrophic microbial communities during anaerobic digestion, thereby enhancing biomethane formation. Finally, this article reviews potential approaches, identifies research gaps, and outlines future directions to strengthen and develop advanced pretreatment strategies and novel additives to improve anaerobic digestion processes for generating high-value biogas. Full article
Show Figures

Figure 1

Back to TopTop