Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,119)

Search Parameters:
Keywords = biological plant protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 773 KB  
Review
Bioactive Compounds in Hawthorn Leaves (Crataegus spp.)—Extraction, Functionality, and Future Perspectives: From Waste to Wealth
by Akerke Kulaipbekova, Zhanar Nabiyeva, Elmira Assembayeva, Fuhang Song, Yufang Su, Kairat Bekbayev, Xun Zhu and Nasi Ai
Agriculture 2026, 16(3), 363; https://doi.org/10.3390/agriculture16030363 - 3 Feb 2026
Abstract
The transition to a circular bioeconomy enhances the valorization of agricultural by-products. Hawthorn leaves (Crataegus spp.), generated in large quantities from orchard maintenance, represent a promising yet underutilized biomass. This comprehensive narrative review synthesizes recent advances regarding their bioactive compounds, extraction methods, [...] Read more.
The transition to a circular bioeconomy enhances the valorization of agricultural by-products. Hawthorn leaves (Crataegus spp.), generated in large quantities from orchard maintenance, represent a promising yet underutilized biomass. This comprehensive narrative review synthesizes recent advances regarding their bioactive compounds, extraction methods, and applications. A systematic literature search was conducted to identify relevant studies. The analysis reveals that hawthorn leaves are rich in polyphenols (e.g., flavonoids, procyanidins), with their content often exceeding that found in fruits. Modern “green” extraction techniques (e.g., ultrasound- and microwave-assisted) demonstrate superior efficiency in recovering these thermolabile compounds compared to conventional methods. The broad spectrum of associated biological activities—including antioxidant, cardioprotective, neuroprotective, antimicrobial, and insecticidal effects—underpins their potential in nutraceuticals, cosmetics, and functional foods. Crucially, this review highlights the significant promise of hawthorn leaf extracts as a source for developing natural, plant-based biopesticides, aligning with sustainable agriculture and integrated pest management principles. To fully realize this “waste-to-wealth” potential, future research should prioritize the scaling of eco-friendly extraction, field trials for crop protection efficacy, and the standardization of extracts. Full article
(This article belongs to the Special Issue Sustainable Use of Pesticides—2nd Edition)
Show Figures

Figure 1

29 pages, 709 KB  
Review
Bacterial Extracellular Vesicles in Biotechnology: Current Challenges and Strategies for Production Enhancement
by Flavia Cannizzaro, Annamaria Gallo, Silvia La Scala, Giuseppe Gallo and Teresa Faddetta
Fermentation 2026, 12(2), 86; https://doi.org/10.3390/fermentation12020086 - 3 Feb 2026
Abstract
Bacterial extracellular vesicles (BEVs) are nanosized (10–400 nm), membrane-enclosed particles naturally secreted by both Gram-negative and Gram-positive bacteria. Initially characterized as virulence factors in pathogenic species, BEVs are now recognized as multifunctional entities with significant biotechnological potential. Their cargo—comprising proteins, lipids, nucleic acids, [...] Read more.
Bacterial extracellular vesicles (BEVs) are nanosized (10–400 nm), membrane-enclosed particles naturally secreted by both Gram-negative and Gram-positive bacteria. Initially characterized as virulence factors in pathogenic species, BEVs are now recognized as multifunctional entities with significant biotechnological potential. Their cargo—comprising proteins, lipids, nucleic acids, and metabolites—enables diverse biological activities, including immune modulation, epithelial barrier protection, stress tolerance, and intercellular communication. Recent studies have highlighted BEVs from biotechnologically relevant bacteria—such as plant growth-promoting rhizobacteria, lactic acid bacteria, bifidobacteria, cyanobacteria, bacilli, and streptomycetes—for their different roles in biological and ecological interactions. These properties underpin emerging applications in health, agriculture, and bioprocessing, including next-generation postbiotics, vaccine platforms, drug and RNA delivery systems, and novel plant biostimulants. However, major challenges persist, particularly low production yields, variability in cargo composition, and scalability. Addressing these limitations requires a deeper understanding of vesiculation mechanisms and the development of process-oriented strategies for BEV recovery and purification. This review synthesizes recent advances in genetic analysis, physiological modulation, physicochemical stimuli, and bioprocess optimization aimed at enhancing BEV production and stabilizing cargo profiles, providing a comprehensive overview of approaches to unlock the full potential of BEVs as versatile biotechnological tools. Full article
Show Figures

Figure 1

26 pages, 2523 KB  
Review
Harnessing Natural Deep Eutectic Solvents for Functional Foods: Enhancing Extraction, and Antioxidant/Anti-Inflammatory Bioactivity
by Viktor Husak, Eliška Kováříková and Olena Bobrova
Sustain. Chem. 2026, 7(1), 9; https://doi.org/10.3390/suschem7010009 - 2 Feb 2026
Viewed by 11
Abstract
Natural deep eutectic solvents (NADES) are gaining interest as environmentally friendly alternatives to conventional organic solvents in the functional food sector. Their low volatility, biodegradability, and tunable polarity, combined with high affinity for phenolics, carotenoids, and other phytochemicals, make them particularly relevant for [...] Read more.
Natural deep eutectic solvents (NADES) are gaining interest as environmentally friendly alternatives to conventional organic solvents in the functional food sector. Their low volatility, biodegradability, and tunable polarity, combined with high affinity for phenolics, carotenoids, and other phytochemicals, make them particularly relevant for developing antioxidant and anti-inflammatory ingredients at a time of rising diet-related chronic disease burden. This review critically analyses the role of NADES along the functional food chain. We summarize their composition, preparation, and key physicochemical properties, and then examine the NADES-based extraction of antioxidant and anti-inflammatory compounds from plants and food by-products in comparison with traditional solvent systems. The influence of NADES on the stability and biological activity of recovered compounds is discussed, together with their use in the formulation, stabilization, and delivery strategies for functional foods. Emerging data indicate that NADES often enhance extraction yields and may protect labile bioactives, leading to stronger antioxidant and anti-inflammatory responses in vitro compared with ethanol or water extracts when normalized to phenolic content. At the same time, large-scale implementation is limited by challenges related to safety assessment, regulatory acceptance, viscosity, and recovery issues, and incomplete techno-economic data. This review highlights these constraints, identifies key knowledge gaps, and outlines research priorities required to translate NADES-based processes into scalable, safe, and health-promoting functional food applications. Full article
Show Figures

Graphical abstract

33 pages, 2118 KB  
Review
Collagen-Inducing Compounds from Chihuahuan Desert Plants for Potential Skin Bioink 3D Printing Applications: A Narrative Review
by Andrea I. Morales Cardona, René Gerardo Escobedo-Gonzalez, Alma Angelica Vazquez-Flores, Edgar Daniel Moyers-Montoya and Carlos Alberto Martinez Pérez
J. Funct. Biomater. 2026, 17(2), 74; https://doi.org/10.3390/jfb17020074 - 2 Feb 2026
Viewed by 30
Abstract
This review synthetizes experimental evidence on collagen-related bioactivity and the biomaterial potential of plant species native to the Chihuahuan Desert, aiming to identify natural compounds that could enhance next-generation dermal bioinks for 3D bioprinting. A structured search across major databases included studies characterizing [...] Read more.
This review synthetizes experimental evidence on collagen-related bioactivity and the biomaterial potential of plant species native to the Chihuahuan Desert, aiming to identify natural compounds that could enhance next-generation dermal bioinks for 3D bioprinting. A structured search across major databases included studies characterizing plant extracts or metabolites, with reported effects on collagen synthesis, fibroblast activity, inflammation, oxidative balance, or interactions with polymers commonly used in skin-engineering materials being developed. Evidence was organized thematically to reveal mechanistic patterns despite methodological heterogeneity. Several species, among them Larrea tridentata, Opuntia spp., Aloe spp., Matricaria chamomilla, Simmondsia chinensis, Prosopis glandulosa, and Artemisia ludoviciana, repeatedly demonstrated the presence of bioactive metabolites such as lignans, flavonoids, phenolic acids, terpenoids, and polysaccharides. These compounds support pathways central to extracellular matrix repair, including stimulation of fibroblast migration and collagen I/III expression, modulation of inflammatory cascades, antioxidant protection, and stabilization of ECM structures. Notably, several metabolites also influence viscoelastic and crosslinking behaviors, suggesting that they may enhance the printability, mechanical stability, and cell-supportive properties of collagen-, GelMA-, and hyaluronic acid-based bioinks. The review also reflects on the bioethical and sustainability considerations regarding endemic floral resources, highlighting the importance of responsible sourcing, conservation extraction practices, and alignment with international biodiversity and access to benefit/sharing frameworks. Taken together, these findings point to a promising, yet largely unexplored, opportunity: integrating regionally derived phytochemicals into bioinks to create biologically active, environmentally conscious, and clinically relevant materials capable of improving collagen remodeling and regenerative outcomes in 3D-printed skin. Full article
(This article belongs to the Special Issue Scaffold for Tissue Engineering)
13 pages, 1159 KB  
Communication
Valorization of Hop (Humulus lupulus L.) Brewing Residue as a Natural Photoprotective Adjuvant
by Ana Gabriela Urbanin Batista de Lima, Claudinéia Aparecida Sales de Oliveira Pinto, Thalita Marcílio Cândido, Fabiana Vieira Lima Solino Pessoa, Maria Valéria Robles Velasco, Daniel Pecoraro Demarque and André Rolim Baby
Photochem 2026, 6(1), 8; https://doi.org/10.3390/photochem6010008 - 2 Feb 2026
Viewed by 53
Abstract
The transition to more sustainable models of production and consumption has encouraged the scientific community to seek innovative solutions that promote environmental responsibility and reduce waste. The cosmetic industry, in particular, has increasingly invested in natural and eco-friendly ingredients as alternatives to synthetic [...] Read more.
The transition to more sustainable models of production and consumption has encouraged the scientific community to seek innovative solutions that promote environmental responsibility and reduce waste. The cosmetic industry, in particular, has increasingly invested in natural and eco-friendly ingredients as alternatives to synthetic and environmentally harmful components. In this context, plant-derived bioactive compounds with antioxidant and anti-inflammatory potential have gained attention for their ability to enhance photoprotection and reduce the concentration of conventional ultraviolet (UV) filters in sunscreens. Humulus lupulus L. (hop), a plant traditionally used in the brewing industry, generates large amounts of organic waste after the beer production process, especially through the dry-hopping technique. Despite often being discarded, this residual biomass retains important secondary metabolites with high biological value. Our investigation researched the sustainable valorization of hop brewing residues as a source of bioactive compounds for the development of more natural photoprotective products. We performed HLPC-MS/MS analysis and confirmed the presence of α-acids in both pure and reused hop material extracts, while a xanthohumol-like prenylated flavonoid was tentatively detected exclusively in the extract obtained from reused hop extract. In vitro tests demonstrated that sunscreens containing extract obtained from reused material significantly increased the sun protection factor (SPF) without negatively altering the critical wavelength when water was used as the solvent. None of the samples developed higher UVAPF values compared to the control. Our investigation, to the best of our knowledge, constitutes the first successful proof of concept demonstrating the use of both pure (non-reused) and reused hop material extracts as functional photoprotective adjuvants in sunscreen formulations evaluated by a robust, standardized in vitro methodology. This work highlights the dual benefit of reducing industrial waste and developing more sustainable, consumer-friendly cosmetic products. Full article
Show Figures

Figure 1

33 pages, 971 KB  
Review
Prospects and Potential for the Use of Microalgae and Cyanobacteria Biomass in Agriculture
by Izabela Świca, Joanna Kazimierowicz and Marcin Dębowski
Phycology 2026, 6(1), 19; https://doi.org/10.3390/phycology6010019 - 1 Feb 2026
Viewed by 61
Abstract
Microalgae and cyanobacteria represent promising, sustainable resources for agricultural applications, particularly as biofertilisers, biostimulants, and biological plant protection agents. Their biomass can improve nutrient use efficiency, support plant growth and yield, and enhance soil structure and microbial activity, while cyanobacteria additionally contribute through [...] Read more.
Microalgae and cyanobacteria represent promising, sustainable resources for agricultural applications, particularly as biofertilisers, biostimulants, and biological plant protection agents. Their biomass can improve nutrient use efficiency, support plant growth and yield, and enhance soil structure and microbial activity, while cyanobacteria additionally contribute through biological nitrogen fixation, reducing reliance on synthetic fertilisers. The integration of microalgal cultivation with closed-loop systems, such as wastewater treatment plants or biogas facilities, enables nutrient recovery, production of value-added biomass, and mitigation of greenhouse gas emissions. This review synthesises current knowledge on the biochemical composition, functional properties, and mechanisms of action of microalgal and cyanobacterial biomass in relation to these established agricultural applications. In addition, prevailing research trends, selected technological and organisational constraints, and implementation challenges are discussed. Particular attention is given to emerging application contexts, including bioregenerative life support systems (BLSS) for space agriculture, where microalgae and cyanobacteria can contribute to oxygen production, nutrient recycling, and edible biomass generation. Species such as Chlorella vulgaris, Arthrospira platensis, and Scenedesmus obliquus demonstrate tolerance to microgravity, radiation, and limited light conditions, supporting their potential use in closed, self-sufficient cultivation systems. Although numerous reviews have addressed individual agricultural applications of microalgae and cyanobacteria, a more integrative perspective that connects biological functionality with broader technological, regulatory, and implementation contexts remains valuable. The present review contributes to this perspective by consolidating established agronomic uses and extending the discussion toward selected emerging applications, thereby providing a structured framework for future research and development in sustainable terrestrial and extraterrestrial agriculture. Full article
Show Figures

Figure 1

18 pages, 634 KB  
Article
Efficacy of Arbuscular Mycorrhizal Fungi in Alleviating Manganese Stress in Trifoliate Orange
by Lu-Lu Meng, Cheng-Zhuo Li, Bo-Wen Zou, Ying-Ning Zou, Anoop Kumar Srivastava and Qiang-Sheng Wu
Agriculture 2026, 16(3), 342; https://doi.org/10.3390/agriculture16030342 - 30 Jan 2026
Viewed by 171
Abstract
Manganese (Mn) toxicity, commonly triggered by soil acidification, poses a significant threat to citrus production. Arbuscular mycorrhizal (AM) fungi can alleviate heavy metal stress, while their specific function and quantitative effectiveness in conferring Mn tolerance to citrus remain unclear. This study investigated the [...] Read more.
Manganese (Mn) toxicity, commonly triggered by soil acidification, poses a significant threat to citrus production. Arbuscular mycorrhizal (AM) fungi can alleviate heavy metal stress, while their specific function and quantitative effectiveness in conferring Mn tolerance to citrus remain unclear. This study investigated the physiological regulation conferred by four AM fungal species, Rhizophagus intraradices (Ri), Funneliformis mosseae (Fm), Paraglomus occultum (Po), and Diversispora epigaea (De), on trifoliate orange (Poncirus trifoliata L. Raf.) under Mn stress. Mn toxicity reduced root colonization in a species-dependent manner, significantly lowering colonization by all AM fungal isolates except Fm. It also severely inhibited plant growth and induced pronounced oxidative damage, accompanied by metabolic imbalance. Under Mn-stressed conditions, AM fungal inoculation, especially Ri, significantly enhanced plant biomass relative to the non-AM control, with respective increases of 148% in leaves, 33% in stems, and 64% in roots, demonstrating a marked species-specific efficacy. Furthermore, AM symbiosis effectively promoted chlorophyll index and limited Mn translocation to the leaves under both non-stress and Mn-stress conditions, with Ri being the most effective in reducing leaf Mn content. Symbiosis with AM fungi, particularly Ri, fine-tuned the antioxidant enzyme defense under Mn stress by selectively suppressing superoxide dismutase and peroxidase activities while further boosting catalase activity. Concurrently, AM fungi alleviated Mn-induced oxidative damage, with the magnitude of mitigation varying by species: Ri delivered the most comprehensive protection, most effectively reducing hydrogen peroxide and malondialdehyde levels in both leaves and roots, whereas Po was particularly effective in suppressing root superoxide anion radical and malondialdehyde levels in roots. Furthermore, AM fungi reversed Mn-induced shifts in organic osmolytes: they significantly reduced the excessive accumulation of soluble sugars and proline while mitigating the loss of soluble proteins, thereby assisting in restoring metabolic homeostasis. The alleviative effects varied significantly among AM fungal species, with Ri identified as the most efficient and Mn-tolerant strain. These findings highlight the potential of utilizing specific AM fungi, particularly Ri, as a sustainable biological strategy to enhance citrus productivity in acidified, Mn-contaminated soils. Full article
(This article belongs to the Special Issue Arbuscular Mycorrhiza in Cropping Systems)
Show Figures

Figure 1

35 pages, 10052 KB  
Article
Safeguarding the Spanish National Phoenix Collection: Management Strategies Against Rhynchophorus ferrugineus in a Comparative Mediterranean Context
by Diego Rivera, Adrián Grau Sánchez, Guillermo Martínez-López, Natacha Vigil, José Javier Sigüenza, Dennis Johnson, Diego José Rivera-Obón and Concepción Obón
J. Zool. Bot. Gard. 2026, 7(1), 8; https://doi.org/10.3390/jzbg7010008 - 29 Jan 2026
Viewed by 200
Abstract
The invasive red palm weevil (Rhynchophorus ferrugineus, RPW) poses a severe threat to heritage palm collections across the Mediterranean Region, necessitating robust protection strategies. This study addresses the urgent challenge of safeguarding the Spanish Phoenix Collection at Miguel Hernandez University (EPSO) [...] Read more.
The invasive red palm weevil (Rhynchophorus ferrugineus, RPW) poses a severe threat to heritage palm collections across the Mediterranean Region, necessitating robust protection strategies. This study addresses the urgent challenge of safeguarding the Spanish Phoenix Collection at Miguel Hernandez University (EPSO) and the Orihuela Palmetum by analyzing the efficacy of applied Integrated Pest Management (IPM) strategies over a ten-year period (2014–2024). Monitoring and treatment protocols included targeted chemical, biological, and cultural controls, and were benchmarked against infestation progression data, climatic trends, and comparative case studies from Murcia, Elche, Nice, and Palermo. Results indicate that a proactive, multi-component IPM strategy, especially when coupled with probabilistic risk models, can significantly improve survival and recovery indicators in Phoenix taxa, although species-specific susceptibility to RPW was a major differentiating factor. Comparative analysis reveals common regional patterns in R. ferrugineus management but underscores the critical need for collection-specific, resource-sensitive protocols for high-value heritage plants, demonstrating that evidence-based best practices and coordinated monitoring are essential for effective heritage palm conservation amid continuous pest pressure. Full article
Show Figures

Graphical abstract

29 pages, 2159 KB  
Article
Bioaccumulation of Heavy Metals (17 Elements) in the Liver and Kidneys of the Least Weasel (Mustela nivalis L.) from Agricultural Areas of Central Europe
by Gábor Vass, László Könyves, Balázs Berlinger, István Fekete and Attila Bende
Toxics 2026, 14(2), 118; https://doi.org/10.3390/toxics14020118 - 27 Jan 2026
Viewed by 178
Abstract
In this study, we investigated the bioaccumulation of 17 heavy metals—titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, antimony, cadmium, tin, mercury, and lead—in the liver and kidney tissues of the least weasel, based on samples (n = 129) [...] Read more.
In this study, we investigated the bioaccumulation of 17 heavy metals—titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, antimony, cadmium, tin, mercury, and lead—in the liver and kidney tissues of the least weasel, based on samples (n = 129) collected from adjacent intensive agricultural environments in Hungary and Austria. To explore the structure of the bioaccumulation data, principal component analysis (PCA) was performed. The PCA score plot based on national-level elemental profiles revealed no differentiation between Austria and Hungary. In contrast, a clear and unambiguous distinction was observed between the two examined tissues within individuals for Ti, Mn, Fe, Co, Zn, Se, Mo, Cd, and Hg (p < 0.001), as well as for Pb (p < 0.05). The biological relevance of the accumulation results was adjusted using the MCID approach. As heavy metal accumulation in the least weasel has not yet been investigated, our results could only be compared with concentrations reported for predatory mammals occurring in similar habitats. Based on the relevant literature, we highlight predominantly anthropogenic exposure pathways affecting agroecosystems—organic and mineral fertilizers, plant protection products, wastewater, and fossil fuels—which underscore the necessity of regular biomonitoring studies in agricultural landscapes. Full article
18 pages, 940 KB  
Review
Advancements, Challenges, and Future Perspectives of Soybean-Integrated Pest Management, Emphasizing the Adoption of Biological Control by the Major Global Producers
by Adeney de F. Bueno, William W. Hoback, Yelitza C. Colmenarez, Ivair Valmorbida, Weidson P. Sutil, Lian-Sheng Zang and Renato J. Horikoshi
Plants 2026, 15(3), 366; https://doi.org/10.3390/plants15030366 - 24 Jan 2026
Viewed by 382
Abstract
Soybean, Glycine max (L.) Merrill, is usually grown on a large scale, with pest control based on chemical insecticides. However, the overuse of chemicals has led to several adverse effects requiring more sustainable approaches to pest control. Results from Integrated Pest Management (IPM) [...] Read more.
Soybean, Glycine max (L.) Merrill, is usually grown on a large scale, with pest control based on chemical insecticides. However, the overuse of chemicals has led to several adverse effects requiring more sustainable approaches to pest control. Results from Integrated Pest Management (IPM) employed on Brazilian soybean farms indicate that adopters of the technology have reduced insecticide use by approximately 50% relative to non-adopters, with yields comparable to or slightly higher than those of non-adopters. This reduction can be explained not only by the widespread use of Bt soybean cultivars across the country but also by the adoption of economic thresholds (ETs) in a whole Soybean-IPM package, which has reduced insecticide use. However, low refuge compliance has led to the first cases of pest resistance to Cry1Ac, thereby leading to the return of overreliance on chemical control and posing additional challenges for IPM practitioners. The recent global agenda for decarbonized agriculture might help to support the adoption of IPM since less chemical insecticides sprayed over the crops reduces CO2-equivalent emissions from its application. In addition, consumers’ demand for less pesticide use in food production has favored the increased use of bio-inputs in agriculture, helping mitigate overdependence of agriculture on chemical inputs to preserve yields. Despite the challenges of adopting IPM discussed in this review, the best way to protect soybean yield and preserve the environment remains as IPM, integrating plant resistance (including Bt cultivars), ETs, scouting procedures, selective insecticides, biological control, and other sustainable tools, which help sustain environmental quality in an ecological and economical manner. Soon, those tools will include RNAi, CRISPR-based control strategies, among other sustainable alternatives intensively researched around the world. Full article
(This article belongs to the Special Issue Integrated Pest Management of Field Crops)
Show Figures

Figure 1

30 pages, 2887 KB  
Review
Therapeutic Potentials and Encapsulation Strategies of Essential Oils
by Ran Zhu, Beshoy Morkos and Lingling Liu
Processes 2026, 14(2), 335; https://doi.org/10.3390/pr14020335 - 17 Jan 2026
Viewed by 222
Abstract
Essential oils (EOs) are volatile, strongly aromatic bioactive substances extracted from plants, primarily composed of terpenes, terpenoids, phenylpropanoids, and other oxygenated compounds. Owing to their unique chemical structures, EOs exhibit a wide range of biological activities, including antimicrobial, anti-inflammatory, antioxidant, anticancer, neuroprotective, bone-protective, [...] Read more.
Essential oils (EOs) are volatile, strongly aromatic bioactive substances extracted from plants, primarily composed of terpenes, terpenoids, phenylpropanoids, and other oxygenated compounds. Owing to their unique chemical structures, EOs exhibit a wide range of biological activities, including antimicrobial, anti-inflammatory, antioxidant, anticancer, neuroprotective, bone-protective, wound-healing, and gut microbiota-modulating effects, highlighting their potential therapeutic value. However, the composition and bioactivity of EOs are influenced by multiple factors and often compromised by improper storage conditions such as temperature and light exposure, leading to the gradual loss of their functional properties. To overcome these limitations, encapsulation technologies have been employed to enhance EO stability, enable sustained and targeted release, and preserve or even improve their bioactive functions. This review summarizes the major constituents of EOs, their physiological activities, therapeutic value, and mechanisms of action. It also discusses their limitations and suitable encapsulation technologies, materials, and carrier systems for stabilization and delivery. Full article
Show Figures

Figure 1

13 pages, 1254 KB  
Article
Synthesis of N-Difluoromethyl Benzothiazole (or Benzoxazole) Selenones as Novel Inhibitors Against Phytopathogenic Fungi
by Zihao Huang, Zhen Liu, Baixin Zhang, Jing Jiao and Ri-Yuan Tang
Molecules 2026, 31(2), 314; https://doi.org/10.3390/molecules31020314 - 16 Jan 2026
Viewed by 240
Abstract
Azole selenoureas exhibit diverse biological functions. However, the synthesis and biological activity of benzothiazole and benzoxazole selenones remained unexplored. Herein, we report the base-catalyzed synthesis of N-difluoromethyl benzothiazole (or benzoxazole) selenone derivatives, which demonstrated significant antifungal efficacy against Rhizoctonia solani, Phytophthora [...] Read more.
Azole selenoureas exhibit diverse biological functions. However, the synthesis and biological activity of benzothiazole and benzoxazole selenones remained unexplored. Herein, we report the base-catalyzed synthesis of N-difluoromethyl benzothiazole (or benzoxazole) selenone derivatives, which demonstrated significant antifungal efficacy against Rhizoctonia solani, Phytophthora infestans, Botrytis cinerea, and Fusarium oxysporum. Compound 3b exhibited exceptional antifungal activity against R. solani, with an EC50 of 2.10 mg/L. Moreover, it substantially inhibited sclerotia germination (81.5% at 9 mg/L) and formation (79.3% at 9 mg/L), surpassing octhilinone. The protective effect on detached rice leaves and rice seedlings was found to be 43.4% and 85.2% at 100 mg/L, respectively, and 64.4% and 89.4% at 200 mg/L. These findings suggest that benzothiazole and benzoxazole selenones represent promising lead compounds for sustainable plant disease management. Full article
(This article belongs to the Special Issue Nitrogen Containing Heterocyclic Scaffolds: Synthesis and Bioactivity)
Show Figures

Figure 1

16 pages, 591 KB  
Review
Antioxidant and Health-Related Effects of Tannins: From Agri-Food By-Products to Human and Animal Health
by Luca Camarda, Roberta Budriesi, Ivan Corazza, Maria Frosini, Carla Marzetti and Laura Beatrice Mattioli
Antioxidants 2026, 15(1), 104; https://doi.org/10.3390/antiox15010104 - 13 Jan 2026
Viewed by 392
Abstract
Background: Agri-food by-products are increasingly recognized as valuable sources of tannins, whose antioxidant properties represent the primary driver of their biological activity across human and animal health. The strong redox-modulating capacity of condensed and hydrolysable tannins provides a unifying mechanistic explanation for their [...] Read more.
Background: Agri-food by-products are increasingly recognized as valuable sources of tannins, whose antioxidant properties represent the primary driver of their biological activity across human and animal health. The strong redox-modulating capacity of condensed and hydrolysable tannins provides a unifying mechanistic explanation for their effects on inflammation, metabolism, gut integrity and neuroprotection. Methods: This narrative review synthesizes evidence obtained through a structured literature search across major databases, selecting studies that investigated antioxidant mechanisms of tannin-rich matrices from plant- and processing-derived residues. Results: Condensed tannins, particularly proanthocyanidins, consistently display potent antioxidant activity through radical scavenging, metal chelation and activation of endogenous defenses, thereby underpinning their anti-inflammatory, anti-ischemic, neuroprotective and metabolic actions. Hydrolysable tannins similarly exert strong antioxidative effects that support antimicrobial activity, enzyme modulation and protection against neuroinflammation. In animals, the antioxidant capacity of tannins translates into improved oxidative balance, enhanced immune status, reduced tissue damage, better feed efficiency and mitigation of oxidative stress-linked methane emission pathways. Conclusions: Antioxidant activity emerges as the central, cross-species mechanism through which tannins mediate diverse health benefits. Tannin-rich agri-food by-products therefore represent promising sustainable antioxidant resources, although their efficacy remains influenced by tannin class, degree of polymerization and dosage, warranting further mechanistic and translational research. Full article
Show Figures

Figure 1

21 pages, 4873 KB  
Article
Surface-Functionalized Silver Nanoparticles Boost Oxidative Stress and Prime Potatoes Against Phytopathogens
by Alexey A. Kudrinsky, Dmitry M. Mikhaylov, Olga A. Shapoval, Georgii V. Lisichkin and Yurii A. Krutyakov
Plants 2026, 15(2), 203; https://doi.org/10.3390/plants15020203 - 9 Jan 2026
Viewed by 328
Abstract
The study investigates the use of silver nanoparticles (AgNPs) in agriculture, focusing on their potential to enhance the immune response of potato (Solanum tuberosum L.) plants against phytopathogenic attacks. The research highlights how AgNPs, stabilized by biologically active polymers polyhexamethylene biguanide and [...] Read more.
The study investigates the use of silver nanoparticles (AgNPs) in agriculture, focusing on their potential to enhance the immune response of potato (Solanum tuberosum L.) plants against phytopathogenic attacks. The research highlights how AgNPs, stabilized by biologically active polymers polyhexamethylene biguanide and tallow amphopolycarboxyglycinate, can induce oxidative stress. Triple foliar application of 0.1–9.0 g/ha silver nanoparticles at the budding and later stages demonstrated significant efficacy in suppressing diseases caused by Phytophthora infestans and Alternaria solani (over 60%). This effect was linked to the increased activity of peroxidase—over 30–50%—and the decreased catalase activity, indicative of a well-coordinated oxidative stress response to the invasion of P. infestans and A. solani. The results suggest that AgNPs in low concentrations can prime the plant’s innate immune system, enhancing its resistance without detrimental effects on growth parameters, thus contributing to the improved crop yield. These findings underscore the potential of AgNPs not as traditional biocides, but as intelligent elicitors of plant-induced resistance, positioning them as next-generation tools for sustainable crop protection and yield optimization, which can be applied at extremely low doses (less than 10 g/ha of active substance). Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Graphical abstract

26 pages, 4361 KB  
Article
Multifaceted Characterization of Olive-Associated Endophytic Fungi with Potential Applications in Growth Promotion and Disease Management
by Tasos-Nektarios Spantidos, Dimitra Douka, Panagiotis Katinakis and Anastasia Venieraki
Appl. Sci. 2026, 16(2), 624; https://doi.org/10.3390/app16020624 - 7 Jan 2026
Viewed by 443
Abstract
The olive tree hosts diverse endophytic fungi that may contribute to plant protection and growth. In this study, a preliminary screening of olive-associated fungal endophytes was conducted. A total of 67 fungal endophytes were isolated from the leaves and roots of the Greek [...] Read more.
The olive tree hosts diverse endophytic fungi that may contribute to plant protection and growth. In this study, a preliminary screening of olive-associated fungal endophytes was conducted. A total of 67 fungal endophytes were isolated from the leaves and roots of the Greek cultivars Amfissa and Kalamon and identified using morphological and molecular approaches; 28 representative strains were selected for functional evaluation. Dual culture assays revealed substantial antagonistic activity against major phytopathogens, with growth inhibition ranging from 19.05% to 100%. Notably, strains F.KALl.8 and F.AMFr.15 showed the strongest suppression across pathogens. Interaction phenotyping revealed all major interaction types (A, B, C) and subtype C1/C2, with several strains producing pigmentation zone lines or hyphal ridges at contact sites. The assessment of plant growth-related effects using Arabidopsis thaliana as a model system showed that three strains (F.AMFr.15, F.KALr.4, F.KALr.38A) significantly increased seedling biomass (up to ~16% above the control), whereas nine strains caused severe growth reduction and disease symptoms. Beneficial strains also altered root architecture, inhibiting primary root elongation while inducing extensive lateral root formation. Collectively, these findings highlight the functional diversity of olive-associated fungal endophytes and identify promising candidate strains, particularly F.AMFr.15 (identified as Clonostachys sp.), for further host-specific validation as potential biological control and plant growth-promoting agents. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

Back to TopTop