Efficacy of Arbuscular Mycorrhizal Fungi in Alleviating Manganese Stress in Trifoliate Orange
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of AM Fungal Inoculums
2.2. Plant Culture
2.3. Experimental Design
2.4. Determination of Mycorrhizal Variables and Plant Biomass
2.5. Determination of Antioxidant Defense Parameters
2.6. Determination of Free Proline, Soluble Sugar, and Soluble Protein Levels
2.7. Chlorophyll Index and Mn Content in Leaves
2.8. Statistical Analysis
3. Results
3.1. Regulation of Root AM Fungal Colonization Rate in Response to Mn Stress
3.2. Regulation of Plant Tissue Biomass by AM Fungi in Response to Mn Stress
3.3. Regulation of Chl by AM Fungi in Response to Mn Stress
3.4. Regulation of Leaf Mn Content by AM Fungi in Response to Mn Stress
3.5. Regulation of Antioxidant Enzyme Activity by AM Fungi in Response to Mn Stress
3.6. Regulation of Oxidative Damage Markers (ROS, MDA, and REC) by AM Fungi in Response to Mn Stress
3.7. Regulation of Organic Osmolytes (Soluble Sugar, Soluble Protein, and Proline) by AM Fungi in Response to Mn Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, J.; Hungerford, N.; Sultanbawa, Y.; Netzel, M. Unlocking the sublime: A review of native Australian citrus species. Foods 2025, 14, 2425. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, S.C.; Zhang, Y.; Qiu, D.W. Acid soil improvement enhances disease tolerance in citrus infected by Candidatus Liberibacter asiaticus. Int. J. Mol. Sci. 2020, 21, 3614. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, N.; Meng, S.; Wu, F.; Liu, T. Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS ONE 2020, 15, e0231497. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.S.; Jaiswal, B.; Gautam, M.; Agrawal, M. Soil acidification and its impact on plants. In Plant Responses to Soil Pollution; Singh, P., Singh, S.K., Prasad, S.M., Eds.; Springer: Singapore, 2020; pp. 1–26. [Google Scholar] [CrossRef]
- Xu, F.Q.; Meng, L.L.; Kuča, K.; Wu, Q.S. The mechanism of arbuscular mycorrhizal fungi-alleviated manganese toxicity in plants: A review. Plant Physiol. Biochem. 2024, 213, 108808. [Google Scholar] [CrossRef]
- You, X.; Yang, L.-T.; Qi, Y.-P.; Guo, P.; Lai, N.-W.; Ye, X.; Li, Q.; Chen, L.-S. Long-term manganese-toxicity-induced alterations of physiology and leaf protein profiles in two Citrus species differing in manganese-tolerance. J. Plant Physiol. 2017, 218, 249–257. [Google Scholar] [CrossRef]
- Xu, F.Q.; Meng, L.L.; Lei, A.Q.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Arbuscular mycorrhizal fungi mitigate manganese toxicity on trifoliate orange. Sci. Hortic. 2024, 338, 113722. [Google Scholar] [CrossRef]
- Tan, X.P.; Li, C.Z.; Zou, Y.N.; Lei, A.Q.; Alqahtani, M.D.; Wu, Q.S. Cultivar-dependent effects of arbuscular mycorrhizal (AM) fungal inoculation on fruit quality and native AM fungal community in navel orange. Rhizosphere 2026, 37, 101269. [Google Scholar] [CrossRef]
- Pal, S.P. Arbuscular mycorrhiza: A useful tool for heavy metal bioremediation. Int. J. Agric. Environ. Biotechnol. 2011, 4, 397–399. [Google Scholar]
- Liu, Z.; Cheng, X.F.; Zou, Y.N.; Srivastava, A.K.; Alqahtani, M.D.; Wu, Q.S. Negotiating soil water deficit in mycorrhizal trifoliate orange plants: A gibberellin pathway. Environ. Exp. Bot. 2024, 219, 105658. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.N.; Hu, T.L.; Qiu, D.W.; Francis, F.; Wang, S.C. Root-associated microbiota response to ecological factors: Role of soil acidity in enhancing citrus tolerance to huanglongbing. Front. Plant Sci. 2022, 13, 937414. [Google Scholar] [CrossRef]
- Akhtar, O.; Pandey, D.; Zoomi, I.; Singh, U.; Chaudhary, K.L.; Mishra, R.; Pandey, N. Role of arbuscular mycorrhizal fungi in heavy metals homoeostasis in plants. J. Plant Growth Regul. 2024, 43, 3971–3985. [Google Scholar] [CrossRef]
- Nogueira, M.A.; Magalhães, G.C.; Cardoso, E.J.B.N. Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. J. Plant Nutr. 2004, 27, 141–156. [Google Scholar] [CrossRef]
- Alshegaihi, R.M.; Alatawi, A.; Alenezi, M.A. Ameliorative effects of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on Cu stress in maize (Zea mays L.) with a focus on oxidative damage, antioxidant responses, and gene expression. J. Soil Sci. Plant Nutr. 2024, 24, 2437–2455. [Google Scholar] [CrossRef]
- Bahadur, A.; Batool, A.; Nasir, F.; Jiang, S.; Qin, M.; Zhang, Q.; Pan, J.; Liu, Y.; Feng, H. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int. J. Mol. Sci. 2019, 20, 4199. [Google Scholar] [CrossRef]
- Jia, T.; Wang, J.; Chang, W.; Fan, X.; Sui, X.; Song, F. Proteomics analysis of E. angustifolia seedlings inoculated with arbuscular mycorrhizal fungi under salt stress. Int. J. Mol. Sci. 2019, 20, 788. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.L.; Liang, S.M.; Chu, X.N.; Yang, Y.L.; Wu, Q.S. Mycorrhizal fungi enhance flooding tolerance of peach through inducing proline accumulation and improving root architecture. Plant Soil Environ. 2020, 66, 624–631. [Google Scholar] [CrossRef]
- Liang, S.M.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Transcriptomic analysis reveals potential roles of polyamine and proline metabolism in waterlogged peach roots inoculated with Funneliformis mosseae and Serendipita indica. Tree Physiol. 2025, 45, tpaf013. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, X.; Sun, Y.; Wu, Z.; Li, T.; Hu, Y.; Su, D.; Lv, J.; Li, G.; Zhang, Z.; et al. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS, and XAFS. Environ. Sci. Technol. 2015, 49, 14036–14047. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, Z.; Yan, T.; Lu, R.; Peng, C.; Li, S.; Jing, Y. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotoxicol. Environ. Saf. 2019, 171, 352–360. [Google Scholar] [CrossRef]
- Doyama, K.; Yamaji, K.; Haruma, T.; Ishida, A.; Mori, S.; Kurosawa, Y. Zn tolerance in the evergreen shrub, Aucuba japonica, naturally growing at a mine site: Cell wall immobilization, aucubin production, and Zn adsorption on fungal mycelia. PLoS ONE 2021, 16, e0257690. [Google Scholar] [CrossRef]
- Kuang, Q.; Wu, Y.; Gao, Y.; An, T.; Liu, S.; Liang, L.; Xu, B.; Zhang, S.; Yu, M.; Shabala, S.; et al. Arbuscular mycorrhizal fungi mitigate cadmium stress in maize. Ecotoxicol. Environ. Saf. 2025, 289, 117600. [Google Scholar] [CrossRef]
- Xie, K.; Chen, Y.; Wang, X.; Zhou, X.; Cheng, Y.; Yu, X.; Wang, J.; Sun, M.; Li, Y.; He, C. Physiological and multi-omics analysis reveals the mechanism of arbuscular mycorrhizal fungi alleviating cadmium toxicity in green onion. Ecotoxicol. Environ. Saf. 2025, 290, 117754. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.L.; Liu, S.Y.; Xu, S.Z.; Qin, S.J.; Lyu, D.; He, J.L.; Zhou, J.T. Arbuscular mycorrhizal fungi alleviate cadmium phytotoxicity by regulating cadmium mobility, physiological responses, and gene expression patterns in Malus hupehensis Rehd. Int. J. Mol. Sci. 2025, 26, 1418. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.M.S.; Pinto, A.P.; Teixeira, D.; Brito, I.; Carvalho, M. Diversity of native arbuscular mycorrhiza extraradical mycelium influences antioxidant enzyme activity in wheat grown under Mn toxicity. Bull. Environ. Contam. Toxicol. 2022, 108, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Wang, W.M.; Li, X.H.; Pan, D.; Liu, W.S. Revealing the effects and mechanisms of arbuscular mycorrhizal fungi on manganese uptake and detoxification in Rhus chinensis. Chemosphere 2023, 339, 139768. [Google Scholar] [CrossRef]
- Malcová, R.; Gryndler, M.; Vosátka, M. Magnesium ions alleviate the negative effect of manganese on Glomus claroideum BEG23. Mycorrhiza 2002, 12, 125–129. [Google Scholar] [CrossRef]
- Mou, D.; Yao, Y.; Yang, Y.; Zhang, Y.; Tian, C.; Achal, V. Plant high tolerance to excess manganese related to root growth, manganese distribution and antioxidative enzyme activity in three grape cultivars. Ecotoxicol. Environ. Saf. 2011, 74, 776–786. [Google Scholar] [CrossRef]
- Nogueira, M.A.; Cardoso, E.J.B.N. Mycorrhizal effectiveness and manganese toxicity in soybean as affected by soil type and endophyte. Sci. Agric. 2003, 60, 329–335. [Google Scholar] [CrossRef]
- Bisht, A.; Garg, N. Harnessing the role of arbuscular mycorrhizae in arresting nodular senescence by modulating osmolyte synthesis and ascorbate-glutathione pool in cadmium stressed pigeon pea. Plant Growth Regul. 2024, 102, 409–427. [Google Scholar] [CrossRef]
- Jiang, H.R.; Fu, W.L.; Deng, C.; Zou, Y.N.; Alqahtani, M.D.; Wu, Q.S. Hyphosphere metabolic reprogramming in lipids and aromatic amino acids drives differential mycorrhizal growth promotion in trifoliate orange. Rhizosphere 2026, 37, 101280. [Google Scholar] [CrossRef]
- Harrower, J.T.; Gilbert, G.S. Parasitism to mutualism continuum for Joshua trees inoculated with different communities of arbuscular mycorrhizal fungi from a desert elevation gradient. PLoS ONE 2021, 16, e0256068. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Yan, K.X.; Huang, R.H.; Gao, X.B.; Hashem, A.; Abd-Allah, E.F.; Wu, Q.S.; Guo, C. Entrophospora etunicata enhances manganese stress tolerance in tea plants by increasing antioxidant enzyme defense and modulating quality-related metabolism. Rhizosphere 2025, 36, 101226. [Google Scholar] [CrossRef]
- Niu, M.; Huang, Y.; Sun, S.; Sun, J.; Cao, H.; Shabala, S.; Bie, Z. Root respiratory burst oxidase homologue-dependent H2O2 production confers salt tolerance on a grafted cucumber by controlling Na+ exclusion and stomatal closure. J. Exp. Bot. 2018, 69, 3465–3476. [Google Scholar] [CrossRef]
- He, J.D.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci. Hortic. 2020, 262, 108745. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for waterstress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Garg, N.; Chandel, S. Arbuscular mycorrhizal networks: Process and functions. In Sustainable Agriculture; Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 2, pp. 907–930. [Google Scholar] [CrossRef]
- Hildebrandt, U.; Regvar, M.; Bothe, H. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 2007, 68, 139–146. [Google Scholar] [CrossRef]
- Audet, P.; Charest, C. Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: Meta-analytical and conceptual perspectives. Environ. Pollut. 2007, 147, 609–614. [Google Scholar] [CrossRef]
- Rui, W.G.; Mao, Z.P.; Li, Z.F. The roles of phosphorus and nitrogen nutrient transporters in the arbuscular mycorrhizal symbiosis. Int. J. Mol. Sci. 2023, 23, 11027. [Google Scholar] [CrossRef] [PubMed]
- Millaleo, R.; Reyes-Díaz, M.; Ivanov, A.G.; Mora, M.L.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 470–481. [Google Scholar] [CrossRef]
- Verbruggen, E.; Van Der Heijden, M.G.; Weedon, J.T.; Kowalchuk, G.A.; Röling, W.F. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol. Ecol. 2012, 21, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Spagnoletti, F.N.; Balestrasse, K.; Lavado, R.S.; Giacometti, R. Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol. Environ. Saf. 2016, 133, 47–56. [Google Scholar] [CrossRef]
- Pan, Y.; Shi, J.; Li, J.; Zhang, R.; Xue, Y.; Liu, Y. Regulatory mechanism through which old soybean leaves respond to Mn toxicity stress. Int. J. Mol. Sci. 2024, 25, 5341. [Google Scholar] [CrossRef]
- Li, J.; Jia, Y.; Dong, R.; Huang, R.; Liu, P.; Li, X.; Wang, Z.; Liu, G.; Chen, Z. Advances in the mechanisms of plant tolerance to manganese toxicity. Int. J. Mol. Sci. 2019, 20, 5096. [Google Scholar] [CrossRef]
- Yang, Y.; Han, X.; Liang, Y.; Ghosh, A.; Chen, J.; Tang, M. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS ONE 2015, 10, e0145726. [Google Scholar] [CrossRef]
- You, Y.; Wang, L.; Ju, C.; Wang, G.; Ma, F.; Wang, Y.; Yang, D. Effects of arbuscular mycorrhizal fungi on the growth and toxic element uptake of Phragmites australis (Cav.) Trin. ex Steud under zinc/cadmium stress. Ecotoxicol. Environ. Saf. 2021, 213, 112023. [Google Scholar] [CrossRef]
- Zou, Y.N.; Wu, Q.S.; Kuča, K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2021, 23, 50–57. [Google Scholar] [CrossRef]
- van Der Heijden, M.G.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yao, Y.; Wu, Z.; Zheng, D.; Xue, Y.; Liu, Y. Combined metabolomic and transcriptomic analysis to reveal the response of rice to Mn toxicity stress. Ecotoxicol. Environ. Saf. 2024, 289, 117454. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pan, Y.; Li, J.; Chen, J.; Yang, S.; Zhao, M.; Xue, Y. Transcriptome sequencing analysis of root in soybean responding to Mn poisoning. Int. J. Mol. Sci. 2023, 24, 12727. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.Q.; Zheng, F.L.; Wu, Q.S.; Hashem, A.; Abd-Allah, E.F.; Zou, Y.N. Arbuscular mycorrhizal fungi mediate leaf sugar profile in water-stressed trifoliate orange. BMC Plant Biol. 2025, 25, 1456. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, M.; Chen, J.; Yang, S.; Chen, J.; Xue, Y. Comparative transcriptome analysis reveals complex physiological response and gene regulation in peanut roots and leaves under manganese toxicity stress. Int. J. Mol. Sci. 2023, 24, 1161. [Google Scholar] [CrossRef]
- Zheng, F.L.; Tan, Z.P.; Zhang, Y.; Xu, X.H.; Hashem, A.; Debnath, A.; Wu, Q.S. Enhancing walnut growth and drought tolerance through Serendipita indica: Focus on mitochondrial antioxidant defense. Plant Growth Regul. 2024, 104, 1697–1706. [Google Scholar] [CrossRef]


| Mn Treatment | AM Fungus | Root AM Fungal Colonization Rate (%) | Plant Biomass (g FW/Plant) | ||
|---|---|---|---|---|---|
| Leaf | Stem | Root | |||
| Mn-free | Control | 0 ± 0 e | 0.45 ± 0.05 e | 0.95 ± 0.10 e | 1.41 ± 0.11 e |
| Ri | 87.5 ± 2.9 a | 1.21 ± 0.18 a | 1.33 ± 0.13 a | 2.24 ± 0.21 a | |
| Fm | 75.4 ± 3.0 b | 0.90 ± 0.14 b | 1.25 ± 0.15 ab | 2.02 ± 0.19 ab | |
| Po | 71.8 ± 9.3 b | 0.86 ± 0.14 bc | 1.18 ± 0.14 cd | 1.94 ± 0.19 bc | |
| De | 70.2 ± 2.2 b | 0.81 ± 0.14 cd | 1.22 ± 0.12 bc | 1.73 ± 0.18 cd | |
| Mn stress | Control | 0 ± 0 e | 0.31 ± 0.05 f | 0.75 ± 0.18 f | 1.02 ± 0.11 f |
| Ri | 72.0 ± 4.9 b | 0.77 ± 0.13 d | 1.00 ± 0.15 e | 1.67 ± 0.18 de | |
| Fm | 68.3 ± 9.9 bc | 0.78 ± 0.12 d | 1.07 ± 0.16 de | 1.28 ± 0.14 e | |
| Po | 60.9 ± 5.9 cd | 0.76 ± 0.15 d | 0.97 ± 0.14 e | 1.41 ± 0.15 e | |
| De | 55.7 ± 3.2 d | 0.76 ± 0.10 d | 0.95 ± 0.16 e | 1.26 ± 0.13 e | |
| Significance | |||||
| AM inoculation | ** | ** | ** | ** | |
| Mn stress | * | NS | * | ** | |
| Interaction | * | * | * | * | |
| Mn Treatment | AM Fungus | SOD (U/g FW) | POD (U/g FW) | CAT (μmol/g FW) | |||
|---|---|---|---|---|---|---|---|
| Leaf | Root | Leaf | Root | Leaf | Root | ||
| No-Mn | Control | 112.43 ± 12.89 g | 112.61 ± 10.12 g | 428.70 ± 8.95 e | 345.38 ± 9.27 d | 243.00 ± 13.08 g | 174.48 ± 1.93 e |
| Ri | 159.68 ± 12.08 f | 200.55 ± 26.70 ef | 465.07 ± 21.14 cd | 414.79 ± 11.79 c | 299.79 ± 15.53 f | 263.83 ± 11.33 c | |
| Fm | 137.81 ± 7.18 fg | 184.43 ± 9.60 f | 460.79 ± 20.76 cde | 416.58 ± 16.31 c | 339.74 ± 5.76 e | 221.11 ± 12.90 d | |
| Po | 200.10 ± 11.92 e | 263.04 ± 23.68 de | 439.38 ± 25.64 de | 408.01 ± 15.56 c | 363.68 ± 8.74 cd | 267.00 ± 18.52 c | |
| De | 255.39 ± 7.53 d | 236.08 ± 18.69 ef | 440.11 ± 16.05 de | 403.39 ± 19.39 c | 264.89 ± 22.11 g | 214.00 ± 26.00 d | |
| Mn stress | Control | 626.34 ± 25.88 a | 727.18 ± 108.25 a | 666.90 ± 19.06 a | 567.39 ± 14.48 a | 351.38 ± 9.66 de | 286.00 ± 10.44 c |
| Ri | 260.85 ± 12.41 d | 355.39 ± 17.53 c | 530.70 ± 23.06 b | 466.53 ± 6.44 b | 422.67 ± 3.51 a | 397.00 ± 12.12 a | |
| Fm | 338.85 ± 25.62 c | 307.38 ± 26.30 cd | 554.25 ± 29.40 b | 473.07 ± 20.42 b | 386.56 ± 16.63 b | 312.16 ± 16.25 b | |
| Po | 542.67 ± 39.51 b | 437.19 ± 25.96 b | 474.72 ± 25.16 c | 459.79 ± 14.63 b | 383.17 ± 14.42 bc | 314.33 ± 12.58 b | |
| De | 526.25 ± 24.68 b | 441.09 ± 12.84 b | 490.45 ± 14.33 c | 475.87 ± 14.30 b | 399.27 ± 13.51 b | 336.67 ± 13.01 b | |
| Significance | |||||||
| AM inoculation | NS | ** | ** | ** | ** | ** | |
| Mn stress | ** | ** | ** | ** | ** | ** | |
| Interaction | ** | ** | ** | ** | NS | NS | |
| Mn Treatment | AM Fungus | H2O2 (μmol/g FW) | O2•− (μmol/g FW) | MDA (nmol/g FW) | REC (%) | ||||
|---|---|---|---|---|---|---|---|---|---|
| Leaf | Root | Leaf | Root | Leaf | Root | Leaf | Root | ||
| Mn-free | Control | 55.70 ± 5.14 b | 56.80 ± 3.93 b | 17.91 ± 1.85 bcd | 21.61 ± 3.57 b | 30.70 ± 2.00 de | 17.57 ± 1.25 e | 90.33 ± 8.50 b | 81.33 ± 4.04 b |
| Ri | 41.45 ± 3.04 d | 43.86 ± 7.71 c | 15.90 ± 1.72 cde | 12.65 ± 1.42 f | 20.27 ± 2.34 g | 11.56 ± 0.72 f | 65.67 ± 2.31 ef | 48.00 ± 2.65 d | |
| Fm | 43.51 ± 3.80 cd | 47.58 ± 6.20 bc | 14.54 ± 1.29 e | 13.54 ± 1.32 ef | 24.62 ± 0.95 fg | 13.49 ± 0.72 f | 63.33 ± 5.51 ef | 50.33 ± 4.16 d | |
| Po | 46.17 ± 3.56 cd | 50.00 ± 4.37 bc | 14.79 ± 0.90 e | 11.97 ± 0.40 f | 25.80 ± 1.97 ef | 13.49 ± 0.75 f | 58.00 ± 4.58 fg | 58.67 ± 3.51 c | |
| De | 45.82 ± 2.64 cd | 51.63 ± 5.11 bc | 15.28 ± 0.88 de | 14.71 ± 0.52 def | 29.13 ± 3.23 def | 19.66 ± 0.47 e | 53.00 ± 2.65 g | 50.33 ± 1.53 d | |
| Mn stress | Control | 67.55 ± 5.49 a | 69.18 ± 6.87 a | 29.64 ± 1.75 a | 25.54 ± 0.59 a | 46.22 ± 3.16 a | 60.95 ± 6.53 a | 116.67 ± 7.23 a | 115.00 ± 9.17 a |
| Ri | 48.60 ± 5.59 bcd | 49.81 ± 48.60 bc | 19.37 ± 1.01 b | 15.96 ± 0.77 cde | 33.60 ± 3.74 cd | 25.38 ± 1.12 d | 76.33 ± 3.51 cd | 79.00 ± 4.58 b | |
| Fm | 48.96 ± 1.94 bcd | 51.53 ± 4.44 bc | 17.11 ± 1.38 bcde | 17.48 ± 1.38 cd | 35.74 ± 1.43 c | 30.78 ± 1.19 c | 71.00 ± 2.65 de | 64.33 ± 6.02 c | |
| Po | 49.46 ± 4.82 bc | 53.07 ± 2.82 bc | 15.75 ± 0.87 cde | 15.83 ± 0.94 cde | 38.40 ± 4.23 bc | 17.79 ± 1.20 e | 78.00 ± 4.00 cd | 62.33 ± 2.52 c | |
| De | 50.32 ± 2.94 bc | 54.82 ± 3.64 b | 18.58 ± 2.89 bc | 18.21 ± 2.32 c | 42.19 ± 5.86 ab | 54.70 ± 4.44 b | 83.00 ± 4.36 bc | 80.67 ± 3.21 b | |
| Significance | |||||||||
| AM inoculation | ** | ** | ** | ** | ** | ** | ** | ** | |
| Mn stress | ** | ** | ** | ** | ** | ** | ** | ** | |
| Interaction | NS | NS | * | ** | NS | ** | NS | * | |
| Mn Treatment | AM Fungus | Soluble Sugar (mg/g FW) | Soluble Protein (mg/g FW) | Free Proline (μg/g FW) | |||
|---|---|---|---|---|---|---|---|
| Leaf | Root | Leaf | Root | Leaf | Root | ||
| Mn-free | Control | 11.09 ± 1.05 e | 12.48 ± 1.05 b | 7.00 ± 0.84 f | 10.70 ± 0.52 c | 0.58 ± 0.03 d | 0.43 ± 0.05 d |
| Ri | 15.54 ± 1.83 d | 8.58 ± 0.66 c | 12.10 ± 0.36 bc | 15.58 ± 1.69 a | 0.70 ± 0.15 cd | 0.55 ± 0.08 cd | |
| Fm | 18.03 ± 0.65 cd | 18.38 ± 2.01 a | 13.21 ± 1.26 ab | 13.60 ± 1.35 ab | 0.53 ± 0.01 d | 0.57 ± 0.04 cd | |
| Po | 18.41 ± 1.34 bcd | 18.10 ± 2.14 a | 13.94 ± 0.62 a | 13.41 ± 0.99 ab | 0.65 ± 0.04 d | 0.48 ± 0.05 d | |
| De | 19.27 ± 0.57 bcd | 16.99 ± 0.39 a | 12.21 ± 1.20 bc | 14.58 ± 0.81 ab | 0.74 ± 0.02 bcd | 0.48 ± 0.05 d | |
| Mn stress | Control | 25.89 ± 4.60 a | 19.26 ± 1.34 a | 5.42 ± 0.64 g | 9.67 ± 0.76 c | 1.54 ± 0.38 a | 0.86 ± 0.02 a |
| Ri | 19.67 ± 1.31 bcd | 17.46 ± 0.99 a | 8.82 ± 0.79 e | 10.19 ± 0.49 c | 0.93 ± 0.03 bc | 0.82 ± 0.10 a | |
| Fm | 21.37 ± 3.29 bc | 18.73 ± 0.82 a | 9.86 ± 1.19 de | 10.62 ± 1.76 c | 0.91 ± 0.05 bc | 0.72 ± 0.13 ab | |
| Po | 22.64 ± 3.10 ab | 19.25 ± 1.04 a | 12.18 ± 1.10 bc | 12.93 ± 1.21 b | 0.99 ± 0.14 b | 0.67 ± 0.06 bc | |
| De | 20.22 ± 0.64 bc | 18.73 ± 0.82 a | 11.40 ± 0.85 cd | 12.64 ± 0.55 b | 0.91 ± 0.02 bc | 0.66 ± 0.13 bc | |
| Significance | |||||||
| AM inoculation | NS | NS | ** | ** | ** | NS | |
| Mn stress | ** | ** | ** | ** | ** | ** | |
| Interaction | ** | NS | NS | NS | ** | ** | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Meng, L.-L.; Li, C.-Z.; Zou, B.-W.; Zou, Y.-N.; Srivastava, A.K.; Wu, Q.-S. Efficacy of Arbuscular Mycorrhizal Fungi in Alleviating Manganese Stress in Trifoliate Orange. Agriculture 2026, 16, 342. https://doi.org/10.3390/agriculture16030342
Meng L-L, Li C-Z, Zou B-W, Zou Y-N, Srivastava AK, Wu Q-S. Efficacy of Arbuscular Mycorrhizal Fungi in Alleviating Manganese Stress in Trifoliate Orange. Agriculture. 2026; 16(3):342. https://doi.org/10.3390/agriculture16030342
Chicago/Turabian StyleMeng, Lu-Lu, Cheng-Zhuo Li, Bo-Wen Zou, Ying-Ning Zou, Anoop Kumar Srivastava, and Qiang-Sheng Wu. 2026. "Efficacy of Arbuscular Mycorrhizal Fungi in Alleviating Manganese Stress in Trifoliate Orange" Agriculture 16, no. 3: 342. https://doi.org/10.3390/agriculture16030342
APA StyleMeng, L.-L., Li, C.-Z., Zou, B.-W., Zou, Y.-N., Srivastava, A. K., & Wu, Q.-S. (2026). Efficacy of Arbuscular Mycorrhizal Fungi in Alleviating Manganese Stress in Trifoliate Orange. Agriculture, 16(3), 342. https://doi.org/10.3390/agriculture16030342

