Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,911)

Search Parameters:
Keywords = biochemical pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1056 KiB  
Article
Optimization of Duck Semen Freezing Procedure and Regulation of Oxidative Stress
by Zhicheng Wang, Haotian Gu, Chunhong Zhu, Yifei Wang, Hongxiang Liu, Weitao Song, Zhiyun Tao, Wenjuan Xu, Shuangjie Zhang and Huifang Li
Animals 2025, 15(15), 2309; https://doi.org/10.3390/ani15152309 (registering DOI) - 6 Aug 2025
Abstract
Waterfowl semen cryopreservation technology is a key link in genetic resource conservation and artificial breeding, but poultry spermatozoa, due to their unique morphology and biochemical properties, are prone to oxidative stress during freezing, resulting in a significant decrease in vitality. In this study, [...] Read more.
Waterfowl semen cryopreservation technology is a key link in genetic resource conservation and artificial breeding, but poultry spermatozoa, due to their unique morphology and biochemical properties, are prone to oxidative stress during freezing, resulting in a significant decrease in vitality. In this study, we first used four different freezing procedures (P1–P4) to freeze duck semen and compared their effects on duck sperm quality. Then, the changes in antioxidant indexes in semen were monitored. The results showed that program P4 (initial 7 °C/min slow descent to −35 °C, followed by 60 °C/min rapid descent to −140 °C) was significantly better than the other programs (p < 0.05), and its post-freezing sperm vitality reached 71.41%, and the sperm motility was 51.73%. In the P1 and P3 groups, the sperm vitality was 65.56% and 53.41%, and the sperm motility was 46.99% and 31.76%, respectively. In terms of antioxidant indexes, compared with the fresh semen group (CK), the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) in the P2 group were significantly decreased (p < 0.05), while the activities of SOD and CAT in the P4 group showed no significant changes (p > 0.05) except that the activity of GSH-px was significantly decreased (p < 0.05). And the CAT and GSH-px activities in the P4 group were significantly higher than those in the P2 group (p < 0.05). The content of malondialdehyde (MDA) in the P2 group was significantly higher than that in the fresh semen group (p < 0.05), and there was no significant difference between the P2 group and the P4 group (p > 0.05). The total antioxidant capacity (T-AOC) content of the P2 and P4 groups was significantly lower than that of the fresh semen group (p < 0.05). The staged cooling strategy of P4 was effective in reducing the exposure time to the hypertonic environment by balancing intracellular dehydration and ice crystal inhibition, shortening the reactive oxygen species accumulation and alleviating oxidative stress injury. On the contrary, the multi-stage slow-down strategy of P2 exacerbated mitochondrial dysfunction and the oxidative stress cascade response due to prolonged cryogenic exposure time. The present study confirmed that the freezing procedure directly affects duck sperm quality by modulating the oxidative stress pathway and provides a theoretical basis for the standardization of duck semen cryopreservation technology. Full article
(This article belongs to the Section Poultry)
11 pages, 327 KiB  
Article
Metabolic Mediation of the Association Between Hyperandrogenism and Paratubal Cysts in Polycystic Ovary Syndrome: A Structural Equation Modeling Approach
by Jin Kyung Baek, Chae Eun Hong, Hee Yon Kim and Bo Hyon Yun
J. Clin. Med. 2025, 14(15), 5545; https://doi.org/10.3390/jcm14155545 - 6 Aug 2025
Abstract
Objectives: Paratubal cysts (PTCs) are embryological remnants and are potentially hormonally responsive. Since hyperandrogenism (HA) is representative of polycystic ovary syndrome (PCOS), we examined whether biochemical hyperandrogenism is associated with PTCs in women with PCOS and if body mass index (BMI) and [...] Read more.
Objectives: Paratubal cysts (PTCs) are embryological remnants and are potentially hormonally responsive. Since hyperandrogenism (HA) is representative of polycystic ovary syndrome (PCOS), we examined whether biochemical hyperandrogenism is associated with PTCs in women with PCOS and if body mass index (BMI) and insulin resistance (IR) mediate this association. Methods: This retrospective study included 577 women diagnosed with PCOS at a tertiary academic center from 2010 to 2018. Clinical data included age at diagnosis, BMI, and diagnoses of hypertension, non-alcoholic fatty liver disease, and metabolic syndrome. Laboratory measures included total testosterone, sex hormone-binding globulin, anti-Müllerian hormone, luteinizing hormone, fasting glucose, insulin, and triglycerides (TG). Derived indices included a free androgen index (FAI), homeostasis model assessment of insulin resistance (HOMA-IR), and fasting glucose-to-insulin ratio. PTCs were identified through imaging or surgical findings. Structural equation modeling (SEM) assessed direct and indirect relationships between FAI, BMI, HOMA-IR, and PTCs, while adjusting for diagnostic age. Results: PTCs were identified in 2.77% of participants. BMI, FAI, TG, and IR indices were significantly higher for women with PTCs than those without PTCs. SEM revealed significant indirect effects of FAI on PTCs via BMI and HOMA-IR. The direct effect was negative, resulting in a non-significant total effect. A sensitivity model using HOMA-IR as the predictor showed a significant direct effect on PTCs without mediation via FAI. Conclusions: Biochemical HA may influence PTC development in PCOS through metabolic pathways, establishing the need to consider metabolic context when evaluating adnexal cysts in hyperandrogenic women. Full article
Show Figures

Figure 1

42 pages, 7526 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

15 pages, 357 KiB  
Article
Apalutamide Monotherapy in Metastatic Hormone-Sensitive Prostate Cancer: A Viable Alternative to First-Generation Anti-Androgen Agents to Avoid the Flare Phenomenon and an Effective Treatment for Achieving Early PSA Response
by Gaetano Facchini, Andrea D’Arienzo, Antonella Nicastro, Fabiano Flauto, Michela Izzo, Liliana Montella, Filippo Riccardo, Giovanni Maria Fusco, Francesco Trama, Giovanni Di Lauro, Giuseppe Di Costanzo, Anna Giacoma Tucci, Francesca Iasiello, Lorena Di Lorenzo, Salvatore Maddaluno, Carmela Liguori, Rita Assante di Cupillo, Paola Coppola, Angela Minissale, Maria Teresa Di Nardo, Luigi Formisano, Erika Martinelli, Giuliana Ciappina, Salvatore Pisconti, Massimiliano Berretta and Chiara Barracoadd Show full author list remove Hide full author list
Cancers 2025, 17(15), 2573; https://doi.org/10.3390/cancers17152573 - 5 Aug 2025
Abstract
Background/Objectives: Androgen deprivation therapy (ADT) is the mainstay of prostate cancer treatment, especially in advanced disease. In particular, the gonadotropin-releasing hormone agonists (aGnRH) reduce the production of gonadotropin and, therefore, of testosterone. In about 10% of patients, the non-pulsatile stimulation of GnRH receptor [...] Read more.
Background/Objectives: Androgen deprivation therapy (ADT) is the mainstay of prostate cancer treatment, especially in advanced disease. In particular, the gonadotropin-releasing hormone agonists (aGnRH) reduce the production of gonadotropin and, therefore, of testosterone. In about 10% of patients, the non-pulsatile stimulation of GnRH receptor initially causes a surge in LH and testosterone, defined as the “flare-up phenomenon”, leading to increased bone pain, spinal cord compression, bladder outlet obstruction and cardiovascular issues. To mitigate this effect, combining a first-generation antiandrogen agent (FGA) with aGnRH is recommended. However, second-generation anti-androgens, such as apalutamide, bind selectively and irreversibly to the androgen receptor (AR), exhibiting a more efficient inhibition of the AR pathway. Methods: This is a descriptive retrospective study of 27 patients (pts) with mHSPC, treated at a single center (“Santa Maria delle Grazie” Hospital in Pozzuoli, ASL Napoli 2 Nord, Italy) between June 2022 and April 2024. Patients received apalutamide monotherapy for 14 days followed by continuous combination with aGnRH plus apalutamide. Serum PSA and testosterone levels were measured at baseline, at day 14 (after 13 days of apalutamide monotherapy), at day 28 (after an additional 15 days of apalutamide plus a aGnRH), and at day 60. Results: PSA levels decreased from a mean of 45.2 (±63.1) ng/mL at baseline to a mean of 12.6 (±23.4) ng/mL at day 14 and to 3.3 ng/mL (±6.0) at day 28 of treatment. After 14 days of apalutamide monotherapy, 21 patients (77.8%) achieved a >50% PSA reduction and 4 (14.8%) a >90% PSA reduction. The number of patients with undetectable PSA was one (3.7%) at day 14, two (7.4%) at day 28, and nine (33.3%) at day 60. The mean serum testosterone levels were 6.56 (±4.46) ng/mL at baseline, 6.58 (±4.42) ng/mL at day 14, and 2.40 (± 3.38) ng/mL at day 28. No significant difference in PSA and testosterone level reduction during treatment emerged between subgroups of patients with low- vs. high-volume disease. Conclusions: Apalutamide alone is a viable option for mitigating the flare-up phenomenon, avoiding first generation anti-androgen therapy, and it can achieve rapid and deep biochemical control. Full article
(This article belongs to the Special Issue Advances in Therapeutic Strategies for Prostate Cancer)
Show Figures

Figure 1

20 pages, 8975 KiB  
Article
Transcriptome Analysis of Potato (Solanum tuberosum L.) Seedlings with Varying Resistance Levels Reveals Diverse Molecular Pathways in Early Blight Resistance
by Jiangtao Li, Jie Li, Hongfei Shen, Rehemutula Gulimila, Yinghong Jiang, Hui Sun, Yan Wu, Binde Xing, Ruwei Yang and Yi Liu
Plants 2025, 14(15), 2422; https://doi.org/10.3390/plants14152422 - 5 Aug 2025
Abstract
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily [...] Read more.
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily increasing year after year. This study aimed to elucidate the molecular mechanisms underlying resistance to early blight by comparing gene expression profiles in resistant (B1) and susceptible (D30) potato seedlings. Transcriptome sequencing was conducted at three time points post-infection (3, 7, and 10 dpi) to identify differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and pathway enrichment analyses were performed to explore resistance-associated pathways and hub genes. Over 11,537 DEGs were identified, with the highest number observed at 10 dpi. Genes such as LOC102603761 and LOC102573998 were significantly differentially expressed across multiple comparisons. In the resistant B1 variety, upregulated genes were enriched in plant–pathogen interaction, MAPK signaling, hormonal signaling, and secondary metabolite biosynthesis pathways, particularly flavonoid biosynthesis, which likely contributes to biochemical defense against A. solani. WGCNA identified 24 distinct modules, with hub transcription factors (e.g., WRKY33, MYB, and NAC) as key regulators of resistance. These findings highlight critical molecular pathways and candidate genes involved in early blight resistance, providing a foundation for further functional studies and breeding strategies to enhance potato resilience. Full article
(This article belongs to the Special Issue Advances in Plant Genetics and Breeding Improvement)
Show Figures

Figure 1

19 pages, 3457 KiB  
Article
Transcriptome Analysis Revealed the Immune and Metabolic Responses of Grass Carp (Ctenopharyngodon idellus) Under Acute Salinity Stress
by Leshan Ruan, Baocan Wei, Yanlin Liu, Rongfei Mu, Huang Li and Shina Wei
Fishes 2025, 10(8), 380; https://doi.org/10.3390/fishes10080380 - 5 Aug 2025
Abstract
Freshwater salinization, an escalating global environmental stressor, poses a significant threat to freshwater biodiversity, including fish communities. This study investigates the grass carp (Ctenopharyngodon idellus), a species with the highest aquaculture output in China, to elucidate the molecular underpinnings of its [...] Read more.
Freshwater salinization, an escalating global environmental stressor, poses a significant threat to freshwater biodiversity, including fish communities. This study investigates the grass carp (Ctenopharyngodon idellus), a species with the highest aquaculture output in China, to elucidate the molecular underpinnings of its physiological adaptations to fluctuating salinity gradients. We used high-throughput mRNA sequencing and differential gene expression profiling to analyze transcriptional dynamics in intestinal and kidney tissues of grass carp exposed to heterogeneous salinity stressors. Concurrent serum biochemical analyses showed salinity stress significantly increased Na+, Cl, and osmolarity, while decreasing lactate and glucose. Salinity stress exerted a profound impact on the global transcriptomic landscape of grass carp. A substantial number of co-regulated differentially expressed genes (DEGs) in kidney and intestinal tissues were enriched in immune and metabolic pathways. Specifically, genes associated with antigen processing and presentation (e.g., cd4-1, calr3b) and apoptosis (e.g., caspase17, pik3ca) exhibited upregulated expression, whereas genes involved in gluconeogenesis/glycolysis (e.g., hk2, pck2) were downregulated. KEGG pathway enrichment analyses revealed that metabolic and cellular structural pathways were predominantly enriched in intestinal tissues, while kidney tissues showed preferential enrichment of immune and apoptotic pathways. Rigorous validation of RNA-seq data via qPCR confirmed the robustness and cross-platform consistency of the findings. This study investigated the core transcriptional and physiological mechanisms regulating grass carp’s response to salinity stress, providing a theoretical foundation for research into grass carp’s resistance to salinity stress and the development of salt-tolerant varieties. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Graphical abstract

17 pages, 1724 KiB  
Article
Effects of Eriobotrya japonica (Thunb.) Lindl. Leaf Extract on Zebrafish Embryogenesis, Behavior, and Biochemical Pathways
by Jorge Barros, Irene Gouvinhas, Carlos Venâncio, Daniel Granato, Ana Novo Barros and Luís Félix
Molecules 2025, 30(15), 3252; https://doi.org/10.3390/molecules30153252 - 3 Aug 2025
Viewed by 107
Abstract
Eriobotrya japonica (Thunb.) Lindl. leaves are rich in polyphenolic compounds, yet their toxicological effects in aquatic models remain poorly understood. This study evaluated the impact of a hydroethanolic E. japonica leaf extract on zebrafish embryos through the use of morphological, behavioral, and biochemical [...] Read more.
Eriobotrya japonica (Thunb.) Lindl. leaves are rich in polyphenolic compounds, yet their toxicological effects in aquatic models remain poorly understood. This study evaluated the impact of a hydroethanolic E. japonica leaf extract on zebrafish embryos through the use of morphological, behavioral, and biochemical parameters. The 96 h LC50 was determined as 189.8 ± 4.5 mg/L, classifying the extract as practically non-toxic, according to OECD guidelines. Thereby, embryos were exposed for 90 h to 75 and 150 mg/L concentrations of the E. japonica leaf extract. While no significant effects were noted at the lowest concentration of 150 mg/L, significant developmental effects were observed, including reduced survival, delayed hatching, underdevelopment of the swim bladder, and retention of the yolk sac. These malformations were accompanied by marked behavioral impairments. Biochemical analysis revealed a concentration-dependent increase in superoxide dismutase (SOD) and catalase (CAT) activity, suggesting the activation of antioxidant defenses, despite no significant change in reactive oxygen species (ROS) levels. This indicates a potential compensatory redox response to a pro-oxidant signal. Additionally, the acetylcholinesterase (AChE) activity was significantly reduced at the highest concentration, which may have contributed to the observed neurobehavioral changes. While AChE inhibition is commonly associated with neurotoxicity, it is also a known therapeutic target in neurodegenerative diseases, suggesting concentration-dependent dual effects. In summary, the E. japonica leaf extract induced concentration-dependent developmental and behavioral effects in zebrafish embryos, while activating antioxidant responses without triggering oxidative damage. These findings highlight the extract’s potential bioactivity and underscore the need for further studies to explore its safety and therapeutic relevance. Full article
(This article belongs to the Special Issue Biological Activities of Traditional Medicinal Plants, 2nd Edition)
26 pages, 3326 KiB  
Article
Zeolite in Vineyard: Innovative Agriculture Management Against Drought Stress
by Eleonora Cataldo, Sergio Puccioni, Aleš Eichmeier and Giovan Battista Mattii
Horticulturae 2025, 11(8), 897; https://doi.org/10.3390/horticulturae11080897 (registering DOI) - 3 Aug 2025
Viewed by 213
Abstract
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with [...] Read more.
Discovering, analyzing, and finding a key to understanding the physiological and biochemical responses that Vitis vinifera L. undertakes against drought stress is of fundamental importance for this profitable crop. Today’s considerable climatic fluctuations force researchers and farmers to focus on this issue with solutions inclined to respect the ecosystem. In this academic work, we focused on describing the drought stress consequences on several parameters of secondary metabolites on Vitis vinifera leaves (quercetins, kaempferol, resveratrol, proline, and xanthophylls) and on some ecophysiological characteristics (e.g., water potential, stomatal conductance, and leaf temperature) to compare the answers that diverse agronomic management techniques (i.e., irrigation with and without zeolite, pure zeolite and no application) could instaurate in the metabolic pathway of this important crop with the aim to find convincing and thought-provoking responses to use this captivating and versatile mineral, the zeolite known as the “magic rock”. Stressed grapevines reached 56.80 mmol/m2s gs at veraison and a more negative stem Ψ (+10.63%) compared to plants with zeolite. Resveratrol, in the hottest season, fluctuated from 0.18–0.19 mg/g in zeolite treatments to 0.37 mg/g in stressed vines. Quercetins were inclined to accumulate in response to drought stress too. In fact, we recorded a peak of quercetin (3-O-glucoside + 3-O-glucuronide) of 11.20 mg/g at veraison in stressed plants. It is interesting to note how the pool of metabolites was often unchanged for plants treated with zeolite and for plants treated with water only, thus elevating this mineral to a “stress reliever”. Full article
Show Figures

Figure 1

19 pages, 300 KiB  
Review
Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance
by Yan Sun, Caiyun Li and Aejin Lee
Appl. Sci. 2025, 15(15), 8574; https://doi.org/10.3390/app15158574 (registering DOI) - 1 Aug 2025
Viewed by 276
Abstract
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination [...] Read more.
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination and their relevance to metabolic health. We examined recent in vitro, animal, and human studies focusing on how germination enhances the nutritional and functional properties of grains, particularly through the synthesis of compounds such as γ-aminobutyric acid, polyphenols, flavonoids, and antioxidants, while reducing anti-nutritional factors. These bioactive compounds have been shown to modulate metabolic and inflammatory pathways by inhibiting carbohydrate-digesting enzymes, suppressing pro-inflammatory cytokines, improving redox balance, and influencing gut microbiota composition. Collectively, these effects contribute to improved insulin sensitivity and glycemic control. The findings suggest that sprouted grains serve not only as functional food ingredients but also as accessible dietary tools for preventing or alleviating IR. Their role in delivering multiple bioactive molecules through a simple, environmentally friendly process highlights their promise in developing future nutrition-based strategies for metabolic disease prevention. Full article
(This article belongs to the Special Issue New Insights into Bioactive Compounds)
23 pages, 1268 KiB  
Article
Combining Stable Isotope Labeling and Candidate Substrate–Product Pair Networks Reveals Lignan, Oligolignol, and Chicoric Acid Biosynthesis in Flax Seedlings (Linum usitatissimum L.)
by Benjamin Thiombiano, Ahlam Mentag, Manon Paniez, Romain Roulard, Paulo Marcelo, François Mesnard and Rebecca Dauwe
Plants 2025, 14(15), 2371; https://doi.org/10.3390/plants14152371 - 1 Aug 2025
Viewed by 183
Abstract
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in [...] Read more.
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in plants remains challenging due to the dynamic nature and interconnectedness of biosynthetic pathways. In this study, we present a synergistic approach combining stable isotopic labeling (SIL), Candidate Substrate–Product Pair (CSPP) networks, and a time-course study with high temporal resolution to reveal the biosynthetic fluxes shaping phenylpropanoid metabolism in young flax seedlings. By feeding the seedlings with 13C3-p-coumaric acid and isolating isotopically labeled metabolization products prior to the construction of CSPP networks, the biochemical validity of the connections in the network was supported by SIL, independent of spectral similarity or abundance correlation. This method, in combination with multistage mass spectrometry (MSn), allowed confident structural proposals of lignans, neolignans, and hydroxycinnamic acid conjugates, including the presence of newly identified chicoric acid and related tartaric acid esters in flax. High-resolution time-course analyses revealed successive waves of metabolite formation, providing insights into distinct biosynthetic fluxes toward lignans and early lignification intermediates. No evidence was found here for the involvement of chlorogenic or caftaric acid intermediates in chicoric acid biosynthesis in flax, as has been described in other species. Instead, our findings suggest that in flax seedlings, chicoric acid is synthesized through successive hydroxylation steps of p-coumaroyl tartaric acid esters. This work demonstrates the power of combining SIL and CSPP strategies to uncover novel metabolic routes and highlights the nutritional potential of flax sprouts rich in chicoric acid. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 591 KiB  
Review
Research Progress on Responses and Regulatory Mechanisms of Plants Under High Temperature
by Jinling Wang, Yaling Wang, Hetian Jin, Yingzi Yu, Kai Mu and Yongxiang Kang
Curr. Issues Mol. Biol. 2025, 47(8), 601; https://doi.org/10.3390/cimb47080601 - 1 Aug 2025
Viewed by 126
Abstract
Global warming has resulted in an increase in the frequency of extreme high-temperature events. High temperatures can increase cell membrane permeability, elevate levels of osmotic adjustment substances, reduce photosynthetic capacity, impair plant growth and development, and even result in plant death. Under high-temperature [...] Read more.
Global warming has resulted in an increase in the frequency of extreme high-temperature events. High temperatures can increase cell membrane permeability, elevate levels of osmotic adjustment substances, reduce photosynthetic capacity, impair plant growth and development, and even result in plant death. Under high-temperature stress, plants mitigate damage through physiological and biochemical adjustments, heat signal transduction, the regulation of transcription factors, and the synthesis of heat shock proteins. However, different plants exhibit varying regulatory abilities and temperature tolerances. Investigating the heat-resistance and regulatory mechanisms of plants can facilitate the development of heat-resistant varieties for plant genetic breeding and landscaping applications. This paper presents a systematic review of plant physiological and biochemical responses, regulatory substances, signal transduction pathways, molecular mechanisms—including the regulation of heat shock transcription factors and heat shock proteins—and the role of plant hormones under high-temperature stress. The study constructed a molecular regulatory network encompassing Ca2+ signaling, plant hormone pathways, and heat shock transcription factors, and it systematically elucidated the mechanisms underlying the enhancement of plant thermotolerance, thereby providing a scientific foundation for the development of heat-resistant plant varieties. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 7421 KiB  
Article
Pristimerin Dampens Acetaminophen-Induced Hepatotoxicity; The Role of NF-κB/iNOS/COX-II/Cytokines, PI3K/AKT, and BAX/BCL-2/Caspase-3 Signaling Pathways
by Mohammed A. Altowijri, Marwa E. Abdelmageed, Randa El-Gamal, Tahani Saeedi and Dina S. El-Agamy
Pharmaceutics 2025, 17(8), 1003; https://doi.org/10.3390/pharmaceutics17081003 - 31 Jul 2025
Viewed by 322
Abstract
Background: Acetaminophen (APAP) is a popular and safe pain reliever. Due to its widespread availability, it is commonly implicated in intentional or unintentional overdoses, which result in severe liver impairment. Pristimerin (Prist) is a natural triterpenoid that has potent antioxidant and anti-inflammatory properties. [...] Read more.
Background: Acetaminophen (APAP) is a popular and safe pain reliever. Due to its widespread availability, it is commonly implicated in intentional or unintentional overdoses, which result in severe liver impairment. Pristimerin (Prist) is a natural triterpenoid that has potent antioxidant and anti-inflammatory properties. Our goal was to explore the protective effects of Prist against APAP-induced acute liver damage. Method: Mice were divided into six groups: control, Prist control, N-acetylcysteine (NAC) + APAP, APAP, and two Prist + APAP groups. Prist (0.4 and 0.8 mg/kg) was given for five days and APAP on day 5. Liver and blood samples were taken 24 h after APAP administration and submitted for different biochemical and molecular assessments. Results: Prist counteracted APAP-induced acute liver damage, as it decreased general liver dysfunction biomarkers, and attenuated APAP-induced histopathological lesions. Prist decreased oxidative stress and enforced hepatic antioxidants. Notably, Prist significantly reduced the genetic and protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-II), p-phosphatidylinositol-3-kinase (p-PI3K), p-protein kinase B (p-AKT), and the inflammatory cytokines: nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins-(IL-6 and IL-1β) in hepatic tissues. Additionally, the m-RNA and protein levels of the apoptotic Bcl2-associated X protein (BAX) and caspase-3 were lowered and the anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) was increased upon Prist administration. Conclusion: Prist ameliorated APAP-induced liver injury in mice via its potent anti-inflammatory/antioxidative and anti-apoptotic activities. These effects were mediated through modulation of NF-κB/iNOS/COX-II/cytokines, PI3K/AKT, and BAX/BCL-2/caspase-3 signaling pathways. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

24 pages, 6731 KiB  
Article
Combined Impacts of Acute Heat Stress on the Histology, Antioxidant Activity, Immunity, and Intestinal Microbiota of Wild Female Burbot (Lota Lota) in Winter: New Insights into Heat Sensitivity in Extremely Hardy Fish
by Cunhua Zhai, Yutao Li, Ruoyu Wang, Haoxiang Han, Ying Zhang and Bo Ma
Antioxidants 2025, 14(8), 947; https://doi.org/10.3390/antiox14080947 (registering DOI) - 31 Jul 2025
Viewed by 305
Abstract
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. [...] Read more.
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. In January of 2025, we collected wild adult burbot individuals from the Ussuri River (water temperature: about 2 °C), China. The burbot were exposed to 2 °C, 7 °C, 12 °C, 17 °C, and 22 °C environments for 96 h; then, the liver and intestinal contents were subsequently collected for histopathology observation, immunohistochemistry, biochemical index assessment, and transcriptome/16S rDNA sequencing analysis. There was obvious liver damage including hepatocyte necrosis, fat vacuoles, and cellular peripheral nuclei. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were elevated and subsequently decreased. Additionally, the malondialdehyde (MDA) level significantly increased with increasing temperature. These results indicate that 7 °C (heat stress temperature), 12 °C (tipping point for normal physiological metabolism status), 17 °C (tipping point for individual deaths), and 22 °C (thermal limit) are critical temperatures in terms of the physiological response of burbot during their breeding period. In the hepatic transcriptome profiling, 6538 differentially expressed genes (DEGs) were identified, while KEGG enrichment analysis showed that high-temperature stress could affect normal liver function by regulating energy metabolism, immune, and apoptosis-related pathways. Microbiomics also revealed that acute heat stress could change the intestinal microbe community structure. Additionally, correlation analysis suggested potential regulatory relationships between intestinal microbe taxa and immune/apoptosis-related DEGs in the liver. This study revealed the potential impact of environmental water temperature changes in cold habitats in winter on the physiological adaptability of burbot during the breeding period and provides new insights for the ecological protection of burbot in the context of global climate change and habitat warming. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

35 pages, 6006 KiB  
Review
Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization
by Dhienda C. Shahannaz, Tadahisa Sugiura and Brandon E. Ferrell
BioChem 2025, 5(3), 23; https://doi.org/10.3390/biochem5030023 - 31 Jul 2025
Viewed by 241
Abstract
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and [...] Read more.
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and pathway modulation to enhance energy production and cellular resilience. Additionally, we examine the role of extracellular matrix stiffness and mechanical stimulation in mitochondrial adaptation, given their influence on metabolism and maturation. Methods: A comprehensive analysis of recent advancements in iPSC-CM maturation was conducted, focusing on metabolic interventions that enhance mitochondrial structure and function. Studies employing metabolic preconditioning, lipid and amino acid supplementation, and modulation of key signaling pathways, including PGC-1α, AMPK, and mTOR, were reviewed. Computational modeling approaches predicting optimal metabolic shifts were assessed, alongside insights into reactive oxygen species (ROS) signaling, calcium handling, and the impact of electrical pacing on energy metabolism. Results: Evidence indicates that metabolic preconditioning with fatty acids and oxidative phosphorylation enhancers improves mitochondrial architecture, cristae density, and ATP production. Substrate manipulation fosters a shift toward adult-like metabolism, while pathway modulation refines mitochondrial biogenesis. Computational models enhance precision, predicting interventions that best align iPSC-CM metabolism with native cardiomyocytes. The synergy between metabolic and biomechanical cues offers new avenues for accelerating maturation, bridging the gap between in vitro models and functional cardiac tissues. Conclusions: Strategic metabolic optimization is essential for overcoming mitochondrial immaturity in iPSC-CMs. By integrating biochemical engineering, predictive modeling, and biomechanical conditioning, a robust framework emerges for advancing iPSC-CM applications in regenerative therapy and disease modeling. These findings pave the way for more physiologically relevant cell models, addressing key translational challenges in cardiovascular medicine. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

18 pages, 300 KiB  
Review
Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder
by John Jay Gargus
Genes 2025, 16(8), 923; https://doi.org/10.3390/genes16080923 (registering DOI) - 31 Jul 2025
Viewed by 345
Abstract
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in [...] Read more.
Background/Objectives: An important new consideration when studying autism spectrum disorder (ASD) is the bioenergetic mechanisms underlying the relatively recent rapid evolutionary expansion of the human brain, which pose fundamental risks for mitochondrial dysfunction and calcium signaling abnormalities and their potential role in ASD, as recently highlighted by insights from the BTBR mouse model of ASD. The rapid brain expansion taking place as Homo sapiens evolved, particularly in the parietal lobe, led to increased energy demands, making the brain vulnerable to such metabolic disruptions as are seen in ASD. Methods: Mitochondrial dysfunction in ASD is characterized by impaired oxidative phosphorylation, elevated lactate and alanine levels, carnitine deficiency, abnormal reactive oxygen species (ROS), and altered calcium homeostasis. These dysfunctions are primarily functional, rather than being due to mitochondrial DNA mutations. Calcium signaling plays a crucial role in neuronal ATP production, with disruptions in inositol 1,4,5-trisphosphate receptor (ITPR)-mediated endoplasmic reticulum (ER) calcium release being observed in ASD patient-derived cells. Results: This impaired signaling affects the ER–mitochondrial calcium axis, leading to mitochondrial energy deficiency, particularly in high-energy regions of the developing brain. The BTBR mouse model, with its unique Itpr3 gene mutation, exhibits core autism-like behaviors and metabolic syndromes, providing valuable insights into ASD pathophysiology. Conclusions: Various interventions have been tested in BTBR mice, as in ASD, but none have directly targeted the Itpr3 mutation or its calcium signaling pathway. This review presents current genetic, biochemical, and neurological findings in ASD and its model systems, highlighting the need for further research into metabolic resilience and calcium signaling as potential diagnostic and therapeutic targets for ASD. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Graphical abstract

Back to TopTop