Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = bioceramic coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 926 KiB  
Article
Comparison of Apical Microleakage in Bioceramic and Resin-Based Endodontic Sealers with Conventional and Bioceramic Surface-Impregnated Gutta-Percha Points
by Lucia Somolová, Yuliya Morozova, Iva Voborná, Matej Rosa, Barbora Novotná, Pavel Holík and Kateřina Langová
Ceramics 2025, 8(2), 65; https://doi.org/10.3390/ceramics8020065 - 26 May 2025
Viewed by 1173
Abstract
The aim of this study is to evaluate the apical sealing ability of novel bioceramic-based (BCB) and widely used resin-based (RB) root canal sealers in combination with traditional or bioceramic-coated gutta-percha points. A total of 92 human single-root extracted teeth were endodontically treated [...] Read more.
The aim of this study is to evaluate the apical sealing ability of novel bioceramic-based (BCB) and widely used resin-based (RB) root canal sealers in combination with traditional or bioceramic-coated gutta-percha points. A total of 92 human single-root extracted teeth were endodontically treated and divided into three groups (A, B, and C) of 30 samples based on the endodontic sealer/type of gutta-percha points/obturation method used. One tooth sample was used for the negative and positive controls (each). Group A: BCB sealer BioRoot RCS (Septodont, Saint-Maur-des-Fossés, France)/bioceramic-impregnated gutta-percha TotalFill BC points (FKG Dentaire, La Chaux-de-Fonds, Switzerland)/cold hydraulic single-cone. Group B: BioRoot RCS (Septodont, France)/traditional Protaper Gold Gutta-Percha Points (Dentsply Sirona, Charlotte, NC, USA)/cold hydraulic single-cone. Group C: RB sealer AdSeal (Meta Biomed, Cheongju, Republic of Korea)/traditional Protaper Gold Gutta-Percha Points (Dentsply Sirona, USA)/warm vertical condensation. A dye penetration method was applied, and the length of apicocoronal penetration was measured using a surgical microscope. The data were statistically analyzed to evaluate differences at the 0.05 significance level. A significant difference was found between groups A and C, p = 0.0003, and groups B and C, p = 0.003. The data analysis proved that the BCB sealer using the cold hydraulic single-cone method ensured a substantially better seal than the RB sealer using the warm vertical condensation method. The choice of the type of gutta-percha points (bioceramic-coated or regular) appeared to be unimportant. No statistical significance was found between groups A and B, which indicates that using bioceramic-coated gutta-percha points does not bring any considerable benefit in view of a no-gap root canal obturation. Full article
Show Figures

Graphical abstract

11 pages, 3982 KiB  
Communication
Bioactive Agrocomposite for Tissue Engineering and Bone Regeneration
by Miguel Suffo, Celia Pérez-Muñoz, Daniel Goma-Jiménez, Carlos Revenga, Pablo Andrés-Cano and Miguel Ángel Cauqui-López
Inventions 2024, 9(6), 123; https://doi.org/10.3390/inventions9060123 - 9 Dec 2024
Viewed by 1343
Abstract
Background: This study describes a novel biomaterial consisting of a mixture of biphasic bioceramic obtained from waste generated by the sugar industry (Carbocal) and a medical-grade epoxy resin adhesive called LOCTITE® M31 CLTM. The objective was to demonstrate the possibility of coating [...] Read more.
Background: This study describes a novel biomaterial consisting of a mixture of biphasic bioceramic obtained from waste generated by the sugar industry (Carbocal) and a medical-grade epoxy resin adhesive called LOCTITE® M31 CLTM. The objective was to demonstrate the possibility of coating non-bioactive and non-biodegradable metallic surfaces on implantable elements. Methods: After preparation, the mixture was applied to the surfaces of hip prostheses composed of two distinct materials: polyetherimide and grade 5 titanium. In both cases, adhesion tests produced favourable results. Additionally, cell cultures were conducted using human foetal osteoblastic cell lines (hFOB 1.19). Results: It was observed that the mixture did not affect the proliferation of bone cells. Conclusions: This composite material was found to promote the growth of bone cells, suggesting its potential for fostering bone tissue development. Full article
(This article belongs to the Section Inventions and Innovation in Biotechnology and Materials)
Show Figures

Figure 1

31 pages, 4794 KiB  
Review
Advances in Bioceramics for Bone Regeneration: A Narrative Review
by Baylee M. Brochu, Savanah R. Sturm, Joao Arthur Kawase De Queiroz Goncalves, Nicholas A. Mirsky, Adriana I. Sandino, Kayaan Zubin Panthaki, Karl Zubin Panthaki, Vasudev Vivekanand Nayak, Sylvia Daunert, Lukasz Witek and Paulo G. Coelho
Biomimetics 2024, 9(11), 690; https://doi.org/10.3390/biomimetics9110690 - 12 Nov 2024
Cited by 10 | Viewed by 5253
Abstract
Large osseous defects resulting from trauma, tumor resection, or fracture render the inherent ability of the body to repair inadequate and necessitate the use of bone grafts to facilitate the recovery of both form and function of the bony defect sites. In the [...] Read more.
Large osseous defects resulting from trauma, tumor resection, or fracture render the inherent ability of the body to repair inadequate and necessitate the use of bone grafts to facilitate the recovery of both form and function of the bony defect sites. In the United States alone, a large number of bone graft procedures are performed yearly, making it an essential area of investigation and research. Synthetic grafts represent a potential alterative to autografts due to their patient-specific customizability, but currently lack widespread acceptance in the clinical space. Early in their development, non-autologous bone grafts composed of metals such as stainless steel and titanium alloys were favorable due to their biocompatibility, resistance to corrosion, mechanical strength, and durability. However, since their inception, bioceramics have also evolved as viable alternatives. This review aims to present an overview of the fundamental prerequisites for tissue engineering devices using bioceramics as well as to provide a comprehensive account of their historical usage and significant advancements over time. This review includes a summary of commonly used manufacturing techniques and an evaluation of their use as drug carriers and bioactive coatings—for therapeutic ion/drug release, and potential avenues to further enhance hard tissue regeneration. Full article
(This article belongs to the Special Issue Advances in Bioceramics for Bone Regeneration)
Show Figures

Figure 1

11 pages, 2511 KiB  
Article
Parameters Tailoring on the Deposition of Hydroxyapatite by Pulsed Electrical Discharge
by Stefan Alexandru Laptoiu, Mihai Ovidiu Cojocaru, Marian Miculescu and Mihai Branzei
Materials 2024, 17(18), 4583; https://doi.org/10.3390/ma17184583 - 18 Sep 2024
Cited by 1 | Viewed by 853
Abstract
The creation of strong adhesive layers of hydroxyapatite-based bioceramics (with or without bioinert metals, such as Ta, Ag, and Ti) on biocompatible metallic supports enhances the local biofunctionalization of surfaces. The processing of electroconductive materials using electrical impulse discharges is versatile, enabling precise [...] Read more.
The creation of strong adhesive layers of hydroxyapatite-based bioceramics (with or without bioinert metals, such as Ta, Ag, and Ti) on biocompatible metallic supports enhances the local biofunctionalization of surfaces. The processing of electroconductive materials using electrical impulse discharges is versatile, enabling precise coating of selected areas with perfectly adherent layers of varying thicknesses. This study aims to quantify the effects of varying the electrical power from the source generating the impulse discharge and the specific processing time per unit area of the cathode (made of titanium alloy) on the relative mass increase of the cathode. The anode comprised a mixture of hydroxyapatite powder and a self-polymerizing electroconductive acrylic resin in a tantalum sheath. The effects of the parameter adjustments on single-layer deposition adherence were quantified using a central composite design to build a second-order orthogonal model. The most significant difference in relative mass was observed with a low-power source (5 W) ensuring the electrical discharge impulse, combined with the longest specified surface treatment time (17.5 s/cm2 on a 4 cm2 surface) for a single layer presenting the largest mass increase of 0.153% of the original mass. This study aimed to enhance the performance of medical implants by optimizing surface biofunctionalization through robust hydroxyapatite-based bioceramic adhesive layers on metallic supports, determining the optimal electrical power and processing time for cathode mass increase during deposition processes, and analyzing parameter adjustments using second-order statistical orthogonal central composite programming, with a focus on single-layer deposition to identify significant differences in relative mass under specific conditions. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

19 pages, 6759 KiB  
Article
Biocompatibility and Corrosion Resistance of Si/ZrO2 Bioceramic Coating on AZ91D Using Electron Beam Physical Vapor Deposition (EB-PVD) for Advanced Biomedical Applications
by Arunkumar Thirugnanasambandam, Manoj Gupta and Rama Murugapandian
Metals 2024, 14(6), 607; https://doi.org/10.3390/met14060607 - 21 May 2024
Cited by 5 | Viewed by 1603
Abstract
Herein, ZrO2 and Si + ZrO2 composite coatings on AZ91D alloys are deposited at a constant voltage of 8 kV and 1 Å/s deposition rate using the electron beam physical vapor deposition (EBPVD) method. Further, the samples are examined for surface [...] Read more.
Herein, ZrO2 and Si + ZrO2 composite coatings on AZ91D alloys are deposited at a constant voltage of 8 kV and 1 Å/s deposition rate using the electron beam physical vapor deposition (EBPVD) method. Further, the samples are examined for surface morphology, phase analysis, adhesion, corrosion, and antibacterial properties, as per ASTM standards. The adhesion strength of the composite (Si + ZrO2) coating nominally dropped (9%) compared to the ZrO2 coating even when the coating thickness increased by 18%. However, the composite (Si + ZrO2) coating improved wettability because silanol promotes hydrogen bonding with water molecules, which elevates the surface energy of the silica and increases its hydrophilic nature. Further, increased wettability and surface roughness have the potential to improve cell adhesion and proliferation. The corrosion potential (Ecorr) values of the coated samples exhibited a positive shift in the potentiodynamic polarization curve, indicating a substantial increase in their corrosion resistance in the artificial blood plasma (ABP) electrolyte. Similarly, SEM images of both coated corroded samples are less affected in the ABP solution, indicating that the coating mitigated heavy cracks and micropores, protecting them from corrosion. The Si + ZrO2 coatings exhibited exceptional performance in preventing bacterial infiltration by Staphylococcus aureus, thus inhibiting the subsequent formation of biofilms. In addition, these coatings demonstrate improved vitality among fibroblast cells, enabling better cellular spreading and proliferation. Full article
Show Figures

Figure 1

22 pages, 11132 KiB  
Article
In Vitro Studies Regarding the Effect of Cellulose Acetate-Based Composite Coatings on the Functional Properties of the Biodegradable Mg3Nd Alloys
by Alexandru Streza, Aurora Antoniac, Veronica Manescu (Paltanea), Robert Ciocoiu, Cosmin-Mihai Cotrut, Marian Miculescu, Florin Miculescu, Iulian Antoniac, Marco Fosca, Julietta V. Rau and Horatiu Dura
Biomimetics 2023, 8(7), 526; https://doi.org/10.3390/biomimetics8070526 - 4 Nov 2023
Cited by 5 | Viewed by 2310
Abstract
Magnesium (Mg) alloys are adequate materials for orthopedic and maxilo-facial implants due to their biocompatibility, good mechanical properties closely related to the hard tissues, and processability. Their main drawbacks are the high-speed corrosion process and hydrogen release. In order to improve corrosion and [...] Read more.
Magnesium (Mg) alloys are adequate materials for orthopedic and maxilo-facial implants due to their biocompatibility, good mechanical properties closely related to the hard tissues, and processability. Their main drawbacks are the high-speed corrosion process and hydrogen release. In order to improve corrosion and mechanical properties, the Mg matrix can be strengthened through alloying elements with high temperature-dependent solubility materials. Rare earth elements (RE) contribute to mechanical properties and degradation improvement. Another possibility to reduce the corrosion rate of Mg-based alloys was demonstrated to be the different types of coatings (bioceramics, polymers, and composites) applied on their surface. The present investigation is related to the coating of two Mg-based alloys from the system Mg3Nd (Mg-Nd-Y-Zr-Zn) with polymeric-based composite coatings made from cellulose acetate (CA) combined with two fillers, respectively hydroxyapatite (HAp) and Mg particles. The main functions of the coatings are to reduce the biodegradation rate and to modify the surface properties in order to increase osteointegration. Firstly, the microstructural features of the experimental Mg3Nd alloys were revealed by optical microscopy and scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy. Apart from the surface morphology revealed by SEM, the roughness and wettability of all experimental samples were evaluated. The corrosion behavior of the uncoated and coated samples of both Mg3Nd alloys was investigated by immersion testing and electrochemical testing using Simulated Body Fluid as the medium. The complex in vitro research performed highlights that the composite coating based on CA with HAp particles exhibited the best protective effect for both Mg3Nd alloys. Full article
Show Figures

Graphical abstract

14 pages, 2717 KiB  
Article
Biphasic Bioceramic Obtained from Byproducts of Sugar Beet Processing for Use in Bioactive Coatings and Bone Fillings
by Miguel Suffo-Pino, Miguel Ángel Cauqui-López, Celia Pérez-Muñoz, Daniel Goma-Jiménez, Natalia Fernández-Delgado and Miriam Herrera-Collado
J. Funct. Biomater. 2023, 14(10), 499; https://doi.org/10.3390/jfb14100499 - 9 Oct 2023
Cited by 2 | Viewed by 2810
Abstract
This study focuses on developing hydroxyapatite synthesized from a CaCO3-rich byproduct of sugar beet processing called Carbocal® using a hydrothermal reactor. The purpose of this biomaterial is to enhance the osteoinductivity of implantable surfaces and serve as a bone filler, [...] Read more.
This study focuses on developing hydroxyapatite synthesized from a CaCO3-rich byproduct of sugar beet processing called Carbocal® using a hydrothermal reactor. The purpose of this biomaterial is to enhance the osteoinductivity of implantable surfaces and serve as a bone filler, providing a sustainable and economically more affordable alternative. This research involved compositional analysis and micro- and macrostructural physicochemical characterization, complemented with bioactivity and live/dead assays. The biphasic nature of the Carbocal®-derived sample was significant within the context of the bioactivity concept previously proposed in the literature. The bioactivity of the biomaterial was demonstrated through a viability test, where the cell growth was nearly equivalent to that of the positive control. For comparison purposes, the same tests were conducted with two additional samples: hydroxyapatite obtained from CaCO3 and commercial hydroxyapatite. The resulting product of this process is biocompatible and possesses properties similar to natural hydroxyapatite. Consequently, this biomaterial shows potential as a scaffold in tissue engineering and as an adhesive filler to promote bone regeneration within the context of the circular bioeconomy in the geographical area proposed. Full article
Show Figures

Figure 1

16 pages, 3310 KiB  
Article
Influence of Polymeric Blends on Bioceramics of Hydroxyapatite
by Eduardo da Silva Gomes, Antônia Millena de Oliveira Lima, Sílvia Rodrigues Gavinho, Manuel Pedro Fernandes Graça, Susana Devesa and Ana Angélica Mathias Macêdo
Crystals 2023, 13(10), 1429; https://doi.org/10.3390/cryst13101429 - 26 Sep 2023
Cited by 6 | Viewed by 1382
Abstract
Bioceramics are used to repair, rebuild, and replace parts of the human body, e.g., bones, joints and teeth, in the form of powder, coatings or prostheses. The synthetic hydroxyapatite [Ca10(PO4)6(OH)2 (HAP)] based on calcium phosphate has [...] Read more.
Bioceramics are used to repair, rebuild, and replace parts of the human body, e.g., bones, joints and teeth, in the form of powder, coatings or prostheses. The synthetic hydroxyapatite [Ca10(PO4)6(OH)2 (HAP)] based on calcium phosphate has been widely used in the medical and dental areas due to the chemical similarity with the inorganic component of human bone tissue. In this work, hydroxyapatite nanocrystalline powders were synthesized by the solid-state reaction method and sintered with a galactomannan and chitosan blend. The bioceramics studied were prepared from 70%, 80% and 90% of hydroxyapatite with 30%, 20% and 10% of galactomannan and chitosan blends, respectively. The influence of the blend content on the bioceramics was investigated through structural, vibrational, thermal, morphological and dielectric characterizations. It was observed that the increase in the blend percentage promoted an increase in the grain size, which was followed by a decrease in the density and hardness of the samples. The sample with a higher amount of polymeric blend also presented a higher dielectric constant and higher losses. Full article
(This article belongs to the Special Issue Advances in New Functional Biomaterials for Medical Applications)
Show Figures

Figure 1

124 pages, 29267 KiB  
Review
There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates
by Sergey V. Dorozhkin
J. Compos. Sci. 2023, 7(7), 273; https://doi.org/10.3390/jcs7070273 - 1 Jul 2023
Cited by 19 | Viewed by 6815
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, [...] Read more.
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

27 pages, 6140 KiB  
Review
Bioactive Calcium Phosphate Coatings for Bone Implant Applications: A Review
by Richard Drevet, Joël Fauré and Hicham Benhayoune
Coatings 2023, 13(6), 1091; https://doi.org/10.3390/coatings13061091 - 13 Jun 2023
Cited by 34 | Viewed by 9083
Abstract
This review deals with the design of bioactive calcium phosphate coatings deposited on metallic substrates to produce bone implants. The bioceramic coating properties are used to create a strong bonding between the bone implants and the surrounding bone tissue. They provide a fast [...] Read more.
This review deals with the design of bioactive calcium phosphate coatings deposited on metallic substrates to produce bone implants. The bioceramic coating properties are used to create a strong bonding between the bone implants and the surrounding bone tissue. They provide a fast response after implantation and increase the lifespan of the implant in the body environment. The first part of the article describes the different compounds belonging to the calcium phosphate family and their main properties for applications in biomaterials science. The calcium-to-phosphorus atomic ratio (Ca/P)at. and the solubility (Ks) of these compounds define their behavior in a physiological environment. Hydroxyapatite is the gold standard among calcium phosphate materials, but other chemical compositions/stoichiometries have also been studied for their interesting properties. The second part reviews the most common deposition processes to produce bioactive calcium phosphate coatings for bone implant applications. The last part describes key physicochemical properties of calcium phosphate coatings and their impact on the bioactivity and performance of bone implants in a physiological environment. Full article
Show Figures

Figure 1

13 pages, 3957 KiB  
Article
Precipitative Coating of Calcium Phosphate on Microporous Silica–Titania Hybrid Particles in Simulated Body Fluid
by Reo Kimura, Kota Shiba, Kanata Fujiwara, Yanni Zhou, Iori Yamada and Motohiro Tagaya
Inorganics 2023, 11(6), 235; https://doi.org/10.3390/inorganics11060235 - 28 May 2023
Cited by 2 | Viewed by 2031
Abstract
Titania and silica have been recognized as potential drug delivery system (DDS) carriers. For this application, controllable biocompatibility and the suppression of the initial burst are required, which can be provided by a calcium phosphate (CP) coating. However, it is difficult to control [...] Read more.
Titania and silica have been recognized as potential drug delivery system (DDS) carriers. For this application, controllable biocompatibility and the suppression of the initial burst are required, which can be provided by a calcium phosphate (CP) coating. However, it is difficult to control the morphology of a CP coating on the surface of carrier particles owing to the homogeneous nucleation of CP. In this study, we report the development of a CP-coating method that homogeneously corresponds to the shapes of silica–titania (SiTi) porous nanoparticles. We also demonstrate that controlled surface roughness of CP coatings could be achieved in SBF using SiTi nanoparticles with a well-defined spherical shape, a uniform size, and a tunable nanoporous structure. The precipitation of CP was performed on mono-dispersed porous SiTi nanoparticles with different Si/Ti molar ratios and pore sizes. The pore size distribution was found to significantly affect the CP coating in SBF immersion; the surfaces of the nanoparticles with bimodal pore sizes of 0.7 and 1.1–1.2 nm became rough after CP precipitation, while those with a unimodal pore size of 0.7 nm remained smooth, indicating that these two pore sizes serve as different nucleation sites that lead to different surface morphologies. Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 2867 KiB  
Review
Non-Oxide Ceramics for Bone Implant Application: State-of-the-Art Overview with an Emphasis on the Acetabular Cup of Hip Joint Prosthesis
by Consiglio M. Paione and Francesco Baino
Ceramics 2023, 6(2), 994-1016; https://doi.org/10.3390/ceramics6020059 - 19 Apr 2023
Cited by 8 | Viewed by 3105
Abstract
A rapidly developing area of ceramic science and technology involves research on the interaction between implanted biomaterials and the human body. Over the past half century, the use of bioceramics has revolutionized the surgical treatment of various diseases that primarily affect bone, thus [...] Read more.
A rapidly developing area of ceramic science and technology involves research on the interaction between implanted biomaterials and the human body. Over the past half century, the use of bioceramics has revolutionized the surgical treatment of various diseases that primarily affect bone, thus contributing to significantly improving the quality of life of rehabilitated patients. Calcium phosphates, bioactive glasses and glass-ceramics are mostly used in tissue engineering applications where bone regeneration is the major goal, while stronger but almost inert biocompatible ceramics such as alumina and alumina/zirconia composites are preferable in joint prostheses. Over the last few years, non-oxide ceramics—primarily silicon nitride, silicon carbide and diamond-like coatings—have been proposed as new options in orthopaedics in order to overcome some tribological and biomechanical limitations of existing commercial products, yielding very promising results. This review is specifically addressed to these relatively less popular, non-oxide biomaterials for bone applications, highlighting their potential advantages and critical aspects deserving further research in the future. Special focus is also given to the use of non-oxide ceramics in the manufacturing of the acetabular cup, which is the most critical component of hip joint prostheses. Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

18 pages, 3309 KiB  
Article
Titanium Implant Alloy Modified by Electrochemically Deposited Functional Bioactive Calcium Phosphate Coatings
by Jozefina Katić, Sara Krivačić, Željka Petrović, Dajana Mikić and Marijan Marciuš
Coatings 2023, 13(3), 640; https://doi.org/10.3390/coatings13030640 - 17 Mar 2023
Cited by 20 | Viewed by 3714
Abstract
Calcium phosphate-based (CaP) bioceramic materials are widely used in the field of bone regeneration, both in orthopaedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The formation of CaP coatings on high-strength implant materials such as titanium alloys combines the [...] Read more.
Calcium phosphate-based (CaP) bioceramic materials are widely used in the field of bone regeneration, both in orthopaedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The formation of CaP coatings on high-strength implant materials such as titanium alloys combines the superior mechanical properties of metals with the osteoconductive properties of CaP materials. In this work, the electrochemically assisted deposition of CaP coatings on the titanium alloy, TiAlNb, which is commonly used commercially as an implant material in orthopaedic devices, was examined. The barrier properties (electronic properties) of unmodified and CaP-modified titanium alloy were tested in situ in a simulated physiological solution, Hanks’ solution, under in vitro conditions of real implant applications using electrochemical impedance spectroscopy (EIS). The morphology and microstructure of the obtained CaP deposit were characterised by scanning electron microscopy (SEM) and chemical composition was assessed by energy dispersive X-ray spectroscopy (EDS) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The aim was to investigate the effect of calcium phosphate CaP coating on the corrosion resistance of the titanium TiAlNb alloy and to understand better the deposition process in the production of bioactive functional coatings on metallic implant materials. Full article
(This article belongs to the Special Issue Biomimetic Approaches in Coatings Synthesis)
Show Figures

Figure 1

11 pages, 322 KiB  
Article
Exploring the Most Effective Apical Seal for Contemporary Bioceramic and Conventional Endodontic Sealers Using Three Obturation Techniques
by Hira Akhtar, Farah Naz, Arshad Hasan, Anum Tanwir, Danish Shahnawaz, Umair Wahid, Fariha Irfan, Muhammad Adeel Ahmed, Khalid H. Almadi, Mazen F. Alkahtany, Tariq Abduljabbar and Fahim Vohra
Medicina 2023, 59(3), 567; https://doi.org/10.3390/medicina59030567 - 14 Mar 2023
Cited by 5 | Viewed by 4384
Abstract
Background and Objective: Despite a plethora of studies conducted to date, researchers continue to investigate the best sealer and obturation technique combinations. The aim of this study is to compare the apical seal provided by two bioceramic sealers (Endoseal and Endosequence) with that [...] Read more.
Background and Objective: Despite a plethora of studies conducted to date, researchers continue to investigate the best sealer and obturation technique combinations. The aim of this study is to compare the apical seal provided by two bioceramic sealers (Endoseal and Endosequence) with that provided by a calcium hydroxide sealer (Sealapex), and to evaluate the effect of different obturation techniques (cold lateral condensation, continuous wave compaction and single cone) on the apical seal under a stereomicroscope. Materials and Methods: A total of 110 single-rooted mandibular premolar teeth were decoronated, cleaned and shaped using the Endosequence filing system to tip size 30/0.04 taper. Canals were irrigated with 5.25% NaOCl and 17% EDTA. The samples were randomly divided into 11 groups (9 experimental and 2 control groups) according to the designated sealer and technique. Samples were stored in an incubator for 7 days at 37 °C under 100% humidity. Samples were coated with nail varnish except for apical 2 mm and vertically placed in 0.2% rhodamine B dye solution for 48 h. Samples were split longitudinally and viewed under a stereomicroscope at 40× magnification. Results: Insignificant results were obtained between obturation techniques (p = 0.499) whereas statistically significant results were attained based on the type of endodontic sealer (p < 0.001). The overall lowest mean apical microleakage and best sealing ability was demonstrated by Sealapex (2.59 ± 1.20 mm) and amongst techniques by continuous wave compaction (3.90 ± 2.51 mm). Conclusions: Endosequence produced the best apical seal with the continuous wave compaction technique, whereas Endoseal did so with the bioceramic-coated single-cone technique. For the Sealapex sealer, the most effective apical seal was observed using cold lateral condensation. The quality and effectiveness of apical seal differed with the type of endodontic sealer and obturation technique used, and vice versa. Full article
30 pages, 3091 KiB  
Review
Calcium Phosphate Loaded Biopolymer Composites—A Comprehensive Review on the Most Recent Progress and Promising Trends
by Monika Furko, Katalin Balázsi and Csaba Balázsi
Coatings 2023, 13(2), 360; https://doi.org/10.3390/coatings13020360 - 5 Feb 2023
Cited by 20 | Viewed by 4492
Abstract
Biocompatible ceramics are extremely important in bioengineering, and very useful in many biomedical or orthopedic applications because of their positive interactions with human tissues. There have been enormous efforts to develop bioceramic particles that cost-effectively meet high standards of quality. Among the numerous [...] Read more.
Biocompatible ceramics are extremely important in bioengineering, and very useful in many biomedical or orthopedic applications because of their positive interactions with human tissues. There have been enormous efforts to develop bioceramic particles that cost-effectively meet high standards of quality. Among the numerous bioceramics, calcium phosphates are the most suitable since the main inorganic compound in human bones is hydroxyapatite, a specific phase of the calcium phosphates (CaPs). The CaPs can be applied as bone substitutes, types of cement, drug carriers, implants, or coatings. In addition, bioresorbable bioceramics have great potential in tissue engineering in their use as a scaffold that can advance the healing process of bones during the normal tissue repair process. On the other hand, the main disadvantages of bioceramics are their brittleness and poor mechanical properties. The newest advancement in CaPs doping with active biomolecules such as Mg, Zn, Sr, and others. Another set of similarly important materials in bioengineering are biopolymers. These include natural polymers such as collagen, cellulose acetate, gelatin, chitosan, and synthetic polymers, for example, polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), and polycaprolactone (PCL). Various types of polymer have unique properties that make them useful in different fields. The combination of CaP particles with different biopolymers gives rise to new opportunities for application, since their properties can be changed and adjusted to the given requirements. This review offers an insight into the most up-to-date advancements in the preparation and evaluation of different calcium phosphate–biopolymer composites, highlighting their application possibilities, which largely depend on the chemical and physical characteristics of CaPs and the applied polymer materials. Overall, these composites can be considered advanced materials in many important biomedical fields, with potential to improve the quality of healthcare and to assist in providing better outcomes as scaffolds in bone healing or in the integration of implants in orthopedic surgeries. Full article
(This article belongs to the Special Issue Surface Treatment of Biomedical Polymer Scaffolds)
Show Figures

Graphical abstract

Back to TopTop