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Abstract: This review deals with the design of bioactive calcium phosphate coatings deposited on
metallic substrates to produce bone implants. The bioceramic coating properties are used to create
a strong bonding between the bone implants and the surrounding bone tissue. They provide a
fast response after implantation and increase the lifespan of the implant in the body environment.
The first part of the article describes the different compounds belonging to the calcium phosphate
family and their main properties for applications in biomaterials science. The calcium-to-phosphorus
atomic ratio (Ca/P)at. and the solubility (Ks) of these compounds define their behavior in a physio-
logical environment. Hydroxyapatite is the gold standard among calcium phosphate materials, but
other chemical compositions/stoichiometries have also been studied for their interesting properties.
The second part reviews the most common deposition processes to produce bioactive calcium phos-
phate coatings for bone implant applications. The last part describes key physicochemical properties
of calcium phosphate coatings and their impact on the bioactivity and performance of bone implants
in a physiological environment.

Keywords: biomaterials; coatings; calcium phosphates; hydroxyapatite; bone implant; biocompatibility;
bioactivity; hard tissue repair

1. Introduction

The ageing of the world’s population is creating an increasing clinical demand for
skeletal repair [1–6]. In particular, orthopedic and dental surgeries require metallic bone
implants made of titanium alloys [7–16], steels and iron-based alloys [17–21], or CoCr
alloys [22–28]. The mechanical properties of these alloys are appropriate for load-bearing
applications, and they are biocompatible with the body environment. According to the
International Union of Pure and Applied Chemistry (IUPAC), biocompatibility is the ability
of a material to be in contact with a biological system without producing an adverse effect [29–34].
However, surface modification of these metallic bone implants with a coating is necessary
to make them bioactive in the body environment. Bioactivity is the property of materials
to develop a direct, adherent, and strong bonding with the bone tissue [35–40]. Among the
bioactive materials, calcium phosphates are most frequently used in industry and academic
research. They are ceramic materials with a chemical composition akin to bone mineral, the
inorganic component of our bones [41–47]. Inside the body, their bioactivity confers long-
term performance on the metallic bone implant. They prevent bone anchorage failure and
delay revision surgery [48–52]. Several methods can be used to produce calcium phosphate
coatings on metallic bone implants including plasma spraying, magnetron sputtering,
pulsed laser deposition, electrospray deposition, electrophoretic deposition, biomimetic
deposition, a sol–gel process combined with dip or spin coating, electrodeposition, and
hydrothermal synthesis [53]. Among them, plasma spraying is the main industrial process,
extensively used since the 1970s to coat metallic bone implants [54]. Other deposition
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processes have been developed for decades, and their advantages and drawbacks are well
established today. The properties of a calcium phosphate coating depend on the process
used to produce it and on the experimental conditions and deposition parameters as well.
These are of great importance because the modification of coating properties is known to
influence the surface bioactivity of the bone implant in a physiological environment.

2. Calcium Phosphates

Calcium phosphate bioceramics are materials made of calcium ions (Ca2+) and phos-
phate ions (H2PO−4 , HPO2−

4 , or PO3−
4 ). Several compounds belong to this family, with

different stoichiometries and different phosphate species. They are specifically identified in
biomaterials science by their calcium-to-phosphorus atomic ratio (Ca/P)at. (Table 1).

Table 1. Calcium phosphates described in the literature as coatings for bone implants.

(Ca/P)at. Calcium Phosphate Abbreviation Chemical Formulae Solubility
[-log Ks] References

2.00 tetracalcium phosphate TTCP Ca4(PO4)2O2 38.0–44.0 [55–57]

1.67 hydroxyapatite HAP Ca10(PO4)6OH2 116.8 [58–60]

1.50 α-tricalcium phosphate α-TCP α−Ca3(PO4)2 25.5 [61–63]

1.50 β-tricalcium phosphate β-TCP β−Ca3(PO4)2 28.9 [64–66]

1.34–1.66 calcium-deficient apatite Ca-def apatite Ca10−x(HPO4)x(PO4)6−x(OH)2−x
with 0 < x < 2 85.1 [67–69]

1.33 octacalcium phosphate OCP Ca8(HPO4)2(PO4)4·5H2O 96.6 [70–72]

1.00 calcium pyrophosphate CPP Ca2P2O7 18.5 [73–75]

1.00 dicalcium phosphate anhydrous,
also known as monetite DCPA CaHPO4 6.9 [76–78]

1.00 dicalcium phosphate dihydrate,
also known as brushite DCPD CaHPO4·2H2O 6.6 [79–81]

0.50 monocalcium phosphate
anhydrous MCPA Ca(H2PO4)2 1.1 [82–84]

0.50 monocalcium phosphate
monohydrate MCPM Ca(H2PO4)2·H2O 1.1 [85–87]

The stoichiometry of a calcium phosphate coating affects its solubility in a physiological en-
vironment, which is the first step involved in the bioactivity process after implantation (Figure 1).
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(3) ion exchange and structural rearrangement at the bioceramic/tissue interface; (4) interdiffusion
from the surface boundary layer into the bioceramics; (5) solution-mediated effects on cellular
activity; (6) deposition of either the mineral phase (a) or the organic phase (b) without integration
into the bioceramic surface; (7) deposition with integration into the bioceramics; (8) chemotaxis to the
bioceramic surface; (9) cell attachment and proliferation; (10) cell differentiation; (11) extracellular
matrix formation. Reprinted with permission from Ref. [88].

The partial dissolution of the calcium phosphate coating in contact with the phys-
iological environment induces ionic releases. The local concentrations of calcium and
phosphate ions increase up to supersaturation, which triggers the precipitation of biological
apatite at the interface between the implant and the surrounding bone tissues [30,31,35–38].
After these first chemical steps, the biological steps start, involving bone cell attachment,
proliferation, and differentiation. In the last step of the bioactivity process, the bone cells
trigger the formation of the extracellular matrix (ECM), which is a three-dimensional net-
work of macromolecules and minerals, such as collagen, enzymes, glycoproteins, and
apatite [88–90]. The function of the extracellular matrix is to provide structural and bio-
chemical support to the surrounding bone cells to promote their development [91]. Due to
the bioactivity of the calcium phosphate coatings, bone-like apatite is formed at the inter-
face between the bone implant and the bone tissue. This bone-like apatite layer is a direct,
adherent, and strong bonding that results in the long-term stability of the bone implant
inside the human body [92]. However, the success of the bioactivity process is related to
several properties of the calcium phosphate coating and not only to the stoichiometry and
solubility of the bioceramic material. The choice of the process and the experimental depo-
sition conditions may influence many physicochemical properties of the calcium phosphate
coating, and consequently the bioactivity process.

3. Deposition Methods
3.1. Plasma Spraying (PS)

Plasma spraying is the most widespread industrial process because it is remarkably
efficient at producing large quantities of bioceramic coatings on metallic bone implants.
However, a perfect reproducibility of the properties of the deposited coatings is impossible
to achieve because of the highly nonlinear nature of the process [93,94].

In atmospheric plasma spraying (APS), calcium phosphate powder (generally hydroxya-
patite) is injected into a plasma jet, the temperature of which is in the range of ten thousand
degrees [95,96]. At this high temperature, the grains of powder are molten or partly molten.
The plasma jet directs the molten droplets toward the bone implant surface, where the steps
of spreading, accumulation, cooling, and solidification produce a coating (Figure 2).
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However, the high temperatures of the process give rise to several issues. The calcium
phosphate particles melt incongruently, locally resulting in structural modifications, un-
controlled phase changes, and chemical decompositions. These modifications produce a
coating, the physicochemical and biological properties of which differ from those of the
initial powder [98–100]. The thermal decomposition of hydroxyapatite within a plasma is
comprehensively described by Heimann’s work on the following reactions [101]:

Ca10(PO4)6(OH)2 → Ca10(PO4)6(OH)2−2xOx x+xH2O (1)

Ca10(PO4)6(OH)2−xOx x → Ca10(PO4)6Ox x+(1− x)H2O (2)

Ca10(PO4)6Ox x → 2Ca3(PO4)2+Ca4O(PO4)2 (3)

Ca3(PO4)2 → 3CaO+P2O5 (4)

Ca4O(PO4)2 → 4CaO+P2O5 (5)

As a function of the experimental parameters, these five reactions may occur during
plasma spray deposition, where x refers to lattice vacancies in the crystal structure of
the calcium phosphate compound. The resulting bioceramic coating contains a mixture
of oxyhydroxyapatite (Ca10(PO4)6(OH)2−2xOx x), oxyapatite (Ca10(PO4)6Ox x), trical-
cium phosphate (Ca3(PO4)2), tetracalcium phosphate (Ca4O(PO4)2), and calcium oxide
(CaO) instead of pure hydroxyapatite as initially expected. All these additional phases
affect the physicochemical properties of the coatings. Moreover, atmospheric plasma spray
deposition produces coatings with residual stress, cracks, and interconnected porosity.
These are caused by differences in the coefficients of thermal expansion of the substrate and
coating, the imperfect melting of the particles, the insufficient flow of molten droplets in
contact with the substrate, a rapid solidification rate, and poor interlayer bonding [102,103].
The rapid solidification induces a local melt-quenching of the particles that results in the
amorphization of the bioceramics. The control of the chemical composition and structural
properties of plasma-sprayed calcium phosphate coatings is difficult. They are made of
several phases in several crystalline states, resulting in a highly heterogeneous bioactive
behavior in a physiological environment. Nonetheless, the process is efficient in reach-
ing industrial objectives, i.e., the production of large quantities of coatings at a low cost.
The mechanical properties of the coatings are also satisfactory, especially their hardness and
long-term stability in normal storage conditions. The adhesion to the metallic substrate is
generally high enough, even though many research studies are still trying to find solutions
to improve it [104]. Adhesion is a key property of industrial calcium phosphate coatings,
the value of which is standardized for the biomedical market (see Section 4.6).

Atmospheric plasma spraying needs good flowability of the injected powder. This re-
quirement limits the particle size of hydroxyapatite to coarse grains in the range of tens
to hundreds of micrometers. Submicrometric powders cannot be directly used, because
they tend to agglomerate readily due to high surface energy. The resulting flowability
is not appropriate for plasma spray deposition. Suspension plasma spraying (SPS) and
solution precursor plasma spraying (SPPS) are recent alternative processes that use a liquid
feedstock injected into the plasma jet to produce sprayed calcium phosphate coatings [100].
Water or ethanol, or a mixture of both, is generally used. These two processes can produce
nanostructured calcium phosphate coatings noted for their enhanced osseoconductive
behavior [105,106].

Because the plasma spraying processes have advantages and drawbacks, the study of
alternative deposition methods to produce calcium phosphate coatings for bone implant
applications remains a major research topic for academic and industrial biomedical research.
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3.2. Magnetron Sputerring (MS)

Magnetron sputtering of a calcium phosphate target is an alternative solution for
producing bioactive calcium phosphate coatings on bone implants. Magnetron sputtering
is a physical vapor deposition (PVD) process. A deposition chamber at room temperature is
evacuated to a high vacuum to remove all potential contaminants. After the base pressure
has been reached, a working gas is injected into the chamber, usually a noble gas such as
argon. The resulting pressure is typically around 1 Pa. Plasma is then ignited from this
noble gas by applying a high voltage between the cathode connected to the target and the
anode connected to the deposition chamber as an electrical ground (Figure 3). The voltage
necessary to start a discharge in a gas between two electrodes as a function of pressure and
gap length is given by Paschen’s law [107,108]. The process requires plasma ignition and a
self-sustained discharge. Plasma contains high-energy ions that collide with the atoms of
the target with enough energy to eject and transport them toward the surface of the bone
implant to progressively form a coating [109].
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Direct current (DC) magnetron sputtering cannot be used to sputter insulating ma-
terials such as ceramics because of the charge accumulation within the target during the
process. Pulsed-DC and radio frequency (RF) magnetron sputtering are alternative solu-
tions for depositing insulating materials [110–112]. They produce dense, uniform, and
adherent calcium phosphate coatings. However, the different elements of a multicom-
ponent target have different sputtering behaviors. The elemental stoichiometry of the
deposited coating usually differs from that of the target. The experimental parameters of
the process can be used to modify some properties of the deposited calcium phosphate
coatings such as stoichiometry, morphology, and structure, resulting in different bioactive
behaviors [113–115].

3.3. Pulsed Laser Deposition (PLD)

Pulsed laser deposition is another PVD process carried out in a vacuum cham-
ber [116–118]. The ablation of a calcium phosphate target hit by a high-power laser produces
a plasma plume composed of ejected atoms, ions, and electrons (Figure 4). In contact with
the substrate, the ejected material nucleates and grows to form a surface coating.
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Figure 4. Schematic diagram of pulsed laser deposition of calcium phosphate coatings. Reprinted
with permission from Ref. [119].

The efficiency of the process mainly depends on laser beam properties such as wave-
length, energy density, fluence, and pulse width. Pulsed laser deposition produces uniform
and adherent thin coatings. However, as observed for magnetron sputtering, the ele-
mental stoichiometry of the target and that of the deposited coating are not identical.
The physicochemical and biological properties of the coating are impacted by the experi-
mental conditions of the process [120–122].

3.4. Electrospray Deposition (ESD)

Electrospray deposition requires a precursor solution containing calcium and phos-
phate ions, or a suspension of calcium phosphate particles. The solution is sprayed by
using a syringe through a nozzle that is connected to a high voltage (Figure 5).
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Figure 5. Schematic diagram of electrospray deposition of calcium phosphate coatings. Reprinted
and adapted with permission from Ref. [123].

At the end of the capillary tube, the meniscus of the conducting solution becomes
conical when charged (Taylor cone). Charged droplets are formed by the continuous
breakup of the steady jet of solution leaving the tip of the nozzle. Solvent evaporation on
the way toward the bone implant surface promotes the shrinkage of the charged droplets.
In contact with the grounded and heated substrate, these very small droplets lose their
surface charge and dry, progressively producing the bioactive coating (Figure 6).



Coatings 2023, 13, 1091 7 of 27

Coatings 2023, 13, x FOR PEER REVIEW 8 of 30 
 

 

In contact with the grounded and heated substrate, these very small droplets lose their 

surface charge and dry, progressively producing the bioactive coating (Figure 6). 

 

Figure 6. Schematic diagram of the droplets on their way from the tip of the needle to the substrate 

during the electrospray deposition process. Reprinted and adapted with permission from Ref. [123]. 

The morphology and structure of the coatings are impacted by properties of the so-

lution such as conductivity and surface tension, and by electrospraying parameters such 

as voltage, flowrate, and distance between the needle tip and the substrate [124–128]. 

3.5. Electrophoretic Deposition (EPD) 

Electrophoretic deposition occurs by means of the migration of calcium phosphate 

particles in a colloidal suspension [129–131]. In a solution, typically water or ethanol, the 

calcium phosphate particles carry a positive or negative surface charge due to electrostatic 

interactions with the ionic species of the solution. This surface charge induces the for-

mation of a diffuse double layer containing anions and cations (Figure 7). 

 

Figure 7. Model of the electric double layer of a negative particle in a solution. Reprinted with per-

mission from Ref. [132]. 

The potential difference between the solution and the interface of the two layers is 

called zeta potential (ζ). This surface potential impacts the stability of colloidal dispersions 

by inducing electrostatic interactions between the particles of the suspension [132–138]. 

Thanks to the zeta potential, the particles can be accelerated under the influence of an 

electric field between two conductive electrodes connected to a generator. If the particles 

are positively charged, they move through the liquid toward the cathode (cathodic EPD 

in Figure 8a). If the particles are negatively charged, they move toward the anode (anodic 

EPD in Figure 8b). 
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during the electrospray deposition process. Reprinted and adapted with permission from Ref. [123].

The morphology and structure of the coatings are impacted by properties of the
solution such as conductivity and surface tension, and by electrospraying parameters such
as voltage, flowrate, and distance between the needle tip and the substrate [124–128].

3.5. Electrophoretic Deposition (EPD)

Electrophoretic deposition occurs by means of the migration of calcium phosphate
particles in a colloidal suspension [129–131]. In a solution, typically water or ethanol, the
calcium phosphate particles carry a positive or negative surface charge due to electrostatic
interactions with the ionic species of the solution. This surface charge induces the formation
of a diffuse double layer containing anions and cations (Figure 7).
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Figure 7. Model of the electric double layer of a negative particle in a solution. Reprinted with
permission from Ref. [132].

The potential difference between the solution and the interface of the two layers is called
zeta potential (ζ). This surface potential impacts the stability of colloidal dispersions by
inducing electrostatic interactions between the particles of the suspension [132–138]. Thanks to
the zeta potential, the particles can be accelerated under the influence of an electric field
between two conductive electrodes connected to a generator. If the particles are positively
charged, they move through the liquid toward the cathode (cathodic EPD in Figure 8a). If the
particles are negatively charged, they move toward the anode (anodic EPD in Figure 8b).
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When a particle reaches the surface of an electrode, the size of the double layer is
reduced (Figure 9a), promoting the progressive accumulation and coagulation of particles
to form a calcium phosphate coating (Figure 9b).
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particles. Reprinted with permission from Ref. [138].

The main parameters for the success of the EPD process are the pH and the stability of
the suspension, the dielectric constant (ε) and the viscosity (η) of the solvent, the average
particle size, the substrate conductivity, the voltage, the distance between the electrodes,
and the deposition time. Post-deposition thermal annealing is required to evaporate the
solvent and to improve the cohesive and adhesive properties of the coating [139,140].

3.6. Biomimetic Deposition

The surface of titanium and titanium alloys is naturally covered by a native oxide
layer of TiO2 produced by their reaction with oxygen in the air [141]. This surface layer
is bioactive and promotes the slow deposition of a calcium phosphate coating during
immersion in simulated body fluid (SBF) at 37 ◦C, an acellular solution with pH and ion
concentrations similar to those of human blood plasma (Table 2).
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Table 2. Ion concentrations of blood plasma and SBF.

Ion
Concentrations (mM)

Blood Plasma (7.2 < pH < 7.4) SBF (pH = 7.4)

Na+ 142.0 142.0

K+ 5.0 5.0

Mg2+ 1.5 1.5

Ca2+ 2.5 2.5

Cl− 103.0 147.8

HCO−3 27.0 4.2

HPO2−
4 1.0 1.0

SO2−
4 0.5 0.5

These physiological conditions trigger the spontaneous nucleation and growth of
apatite on the surface of the native TiO2 layer. In the simulated body fluid, OH− groups
of the solution are adsorbed at the surface of TiO2 and bond to titanium ions to produce
Ti−OH groups. In slightly basic conditions, their deprotonation produces Ti−O− groups
that attract Ca2+ ions from the solution to form an amorphous surface layer of calcium
titanate. Then, this positively charged layer attracts negatively charged phosphate ions to
form a stable phase of amorphous calcium phosphate [142].

The biomimetic deposition process is very slow. Several days or weeks of immersion
in SBF are necessary to produce a calcium phosphate coating a few micrometers thick.
However, faster depositions have been observed for pretreated titanium surfaces [143].
Thermal annealing in air produces a thicker TiO2 layer, the porosity of which accelerates
the biomimetic deposition process. Another relevant pretreatment process is the immersion
of titanium in a highly concentrated NaOH solution (typically 10 M) at 60 ◦C for 24 h.
This alkaline treatment results in the formation of sodium titanate on the surface, which
increases the reaction kinetics of the biomimetic deposition (Figure 10).
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3.7. Sol–Gel Process Combined with Dip or Spin Coating

Sol–gel is a low-temperature process that transforms an inorganic colloidal suspen-
sion (sol) into a three-dimensional network structure containing a liquid phase (gel).
Calcium phosphate materials are produced by using calcium and phosphorus precur-
sors [145–147]. Examples of calcium precursors described in the literature are calcium ac-
etate monohydrate (Ca(CH3COO)2·H2O), calcium nitrate tetrahydrate (Ca(NO3)2·4 H2O),
and calcium chloride (CaCl2). Examples of phosphorus precursors are phosphoric acid
(H3PO4), triethyl phosphite (P(OCH2CH3)3), phosphorus pentoxide (P2O5), diammonium
hydrogen orthophosphate ((NH4)2HPO4), and trisodium phosphate (Na3PO4). They are
dissolved separately in solvents that are typically water, ethanol, or a mixture of both.
The dissolved precursors are then mixed dropwise and gently stirred. The two reactions
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involved in the process are hydrolysis and condensation, the kinetics of which can be
controlled by adjusting the pH value of the solution [148,149].

Thanks to the viscosity of the sol, the sol–gel process can be combined with dip coating or
spin coating techniques to produce a surface coating (Figure 11). The dip coating technique in-
volves the immersion and withdrawal of a substrate in the sol. The evaporation of the solvents
in the air atmosphere during the drying step triggers the gelation process (polycondensation),
which results in the formation of a calcium phosphate coating. The thickness of the coating
depends mainly on the withdrawal speed and the viscosity of the sol.

The spin coating technique requires the deposition of the sol onto a substrate that is
rotating around an axis perpendicular to the coated surface (Figure 11). The gelation step
is also triggered by the evaporation of the solvent. The thickness of the coating depends
mainly on the rotational speed and the viscosity of the sol.

The depositions are typically followed by thermal annealing at hundreds of degrees to
densify the calcium phosphate coating and improve its mechanical properties.
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3.8. Electrochemical Deposition (ECD)

The electrodeposition of calcium phosphate coatings requires two electrodes immersed
in an electrolytic solution of calcium and phosphate ions. They are connected to a generator
(Figure 12) [150–155].
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Figure 12. Schematic diagram of electrodeposition of calcium phosphate coatings. Reprinted with
permission from Ref. [153].

Electrochemical reactions occur at both electrode–electrolyte interfaces. The reduction
of water, the solvent of the solution, takes place at the cathode surface as follows:

2H2O+2e− → H2 ↑+2OH− (6)

If the solution is acidic, the reduction of protons may also occur at the cathode surface:

2 H++2e− → H2 ↑ (7)

The resulting local pH variation triggers the precipitation of a calcium phosphate
coating (Figure 13) [156–161].
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The chemical composition and the stoichiometry of the precipitated coating depend on
the pH value at the cathode, which is impacted by the process parameters. The following
phases can be obtained:

- dicalcium phosphate dihydrate (brushite):

Ca2+ + HPO4
2− + 2H2O→ CaHPO4·2H2O (8)

- octacalcium phosphate:

8Ca2++2HPO2−
4 +4PO3−

4 +5H2O → Ca8(HPO4)2(PO4)4·5H2O (9)
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- calcium-deficient apatite:

(10− x)Ca2++xHPO2−
4 +(6− x)PO3−

4 +(2− x)OH− → Ca10−x(HPO4)x(PO4)6−x(OH)2−x (10)

with 0 < x < 2

- hydroxyapatite:

10Ca2++6PO3−
4 +2OH− → Ca10(PO4)6(OH)2 (11)

The first experiments typically used direct current, but pulsed current electrodeposi-
tion has become more usual in the most recent years. The break times are used to remove
the H2 bubbles and to homogenize the electrolyte concentrations [162–166].

Another solution for reducing the amount of H2 bubbles is the addition of hydrogen
peroxide (H2O2) to the electrolyte solution [153]. Hydrogen peroxide is a strong oxidative
reagent, the reduction of which produces hydroxide ions at the cathode according to the
reaction (12):

H2O2+2e− → 2OH− (12)

However, the concentration of hydrogen peroxide in the electrolytic solution is limited
because the overproduction of hydroxide ions prevents the deposition of the coating [153].
The optimization of the process showed that pulsed current electrodeposition from a 9 vol%
H2O2 electrolyte solution produces stoichiometric hydroxyapatite (Ca/P = 1.67) according
to the reaction (11).

In addition, the ionic substitution of the electrodeposited calcium phosphate coating can
be easily obtained by modifying the electrolyte composition. Due to the low temperature of the
process, the addition of organic components (polymers, proteins, drugs, etc.) is also possible to
improve the biological and mechanical performances of the electrodeposited coating [167–169].

3.9. Hydrothermal Synthesis

Hydrothermal synthesis produces crystallized calcium phosphate coatings in a high-
temperature solution under high pressure [170,171]. The aqueous solution contains calcium
and phosphate ions. The process is carried out in an autoclave (Figure 14), typically
at temperatures ranging from 100 ◦C to 350 ◦C and pressures up to 107 Pa (100 bar).
These extreme experimental conditions induce the precipitation of crystalline calcium
phosphate crystals that nucleate and grow on the surface of bone implants. The crystallinity
and the morphology of the coating are highly influenced by the pH of the solution and
the temperature used during the process. As a function of the experimental conditions,
different morphologies can be achieved, such as nanorods, microspheres, flakes, needles,
hexagonal prisms, and hollow flowerlike structures [172].
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The process can also be used as a complementary step to modify the crystallinity,
morphology, porosity, and phase composition of calcium phosphate coatings deposited
by other deposition methods, such as electrodeposition or plasma spraying. In fact, most
of the previously described deposition methods produce calcium phosphates of low crys-
tallinity. Dense calcium phosphate coatings with improved properties are described in the
literature after post-deposition hydrothermal treatment under high temperature and high
pressure [173,174]. Several works show the conversion of amorphous DCPD, OCP, or TCP
into crystallized stoichiometric HAP by means of hydrothermal treatment.

4. Main Properties Impacting the Bioactivity of Calcium Phosphate Coatings

In addition to stoichiometry and solubility, several physicochemical properties impact
the bioactivity of calcium phosphate coatings immersed in a physiological environment.
Crystallinity, morphology, roughness, porosity, wettability, adhesion, and ionic substitution
are the most important ones.

4.1. Crystallinity

The crystallinity of calcium phosphate coatings impacts their solubility in a phys-
iological environment. The more crystallized the coating, the more stable it is in so-
lution [175–177]. Crystallinity can be controlled by post-deposition thermal annealing.
The international standard ISO 13779-2 recommends a degree of crystallinity higher than
45% for the biomedical market of bone implants [178]. However, as a function of the
annealing temperature, several phases can form in addition to the calcium phosphate
phases [179,180]. To maintain a low level of cytotoxicity, the quantity of secondary phases
(for example CaO) in the calcium phosphate coatings should be below 5 wt.% [178]. The
methods for determining the crystallinity of calcium phosphate coatings and the quantity
of secondary phases are comprehensively described in the international standard ISO
13779-3 [181].

4.2. Morphology

The surface morphology of calcium phosphate coatings affects the bone cells’ attach-
ment, growth, proliferation, and differentiation [182,183]. As a function of the deposition
process and the experimental conditions, the surface morphology of the coatings can
change [184,185]. Regular surface morphologies are more efficient for bone cell attachment
than irregular and sharp ones [186]. According to Cairns et al., they significantly promote
the expression of growth factors involved in bone formation in comparison with sharp
surfaces made of needles [187,188].
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4.3. Roughness

Bioactivity is a surface phenomenon influenced by, among other factors, the roughness
of materials. High roughness exceeding 2 µm is not appropriate, because the long distances
between valleys and peaks prevent the formation of the osteoblastic pseudopodia required
for bone cell adhesion [189–191]. Calcium phosphate coatings with roughness values in the
range of 0.5 to 1.5 µm are generally described to be the most interesting for the promotion
of bone cell activity [192–194].

4.4. Porosity

The porosity of calcium phosphate coatings has a significant impact on the bioactive
behavior of bone implants in a physiological environment. Pores larger than one hundred
micrometers (macroporosity) support the growth of bone tissues through the coating and
improve the connection between newly formed bone cells. However, these large pores also
strongly reduce the mechanical properties of the bioceramic coatings [195]. Smaller pores
of a few tens of micrometers and below (microporosity) enhance protein adsorption, body
fluid circulation, and the resorption rate of the coating [196].

4.5. Wettability

Surface wettability is a key property of calcium phosphate coatings because the
bioactivity processes occur in a liquid medium. Contact angle (θ) measurements are
used to quantify the wetting behavior of a drop of physiological solution deposited on the
coating surface [197–199]. As a function of the contact angle value, the surface is qualified
as hydrophilic or hydrophobic (Figure 15).
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Biomaterials with hydrophilic surfaces are more effective in promoting chemical and
biological interactions with the physiological environment [201,202].

4.6. Adhesion

The adhesion of calcium phosphate coatings is the main mechanical property required
by the biomedical market [104,203–207]. The value of coatings is determined by performing
tensile adhesion measurements according to the international standard ISO 13779-4 [208].

The measurement requires a Ti6Al4V cylinder (25 mm in diameter and 25 mm
in height) with one surface coated with calcium phosphate. The coated surface is at-
tached to another Ti6Al4V cylinder by adhesive glue (Figure 16a). The entire system is
introduced into a standard tensile machine where an increasing load is applied (Figure 16b)
until the separation of the coating is achieved by the breaking of the interface with the
initially coated cylinder (Figure 16c). A cohesive failure inside the coating may also occur,
but in this case, the measurement is not valid and must be repeated. A minimum of
five measurements of adhesive failure is necessary to obtain an average adhesion value.
The bone implant industry requires adhesion values higher than 15 MPa [208].
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This protocol is standardized for industrial applications, but several other methods
can be used to determine the adhesion of calcium phosphate coatings, including the peel
test, the scratch test, the ultrasonic test, and the laser shock adhesion test [104,209–213].

4.7. Ionic Substitution for Biological Enhancement

The bioactivity and biological properties of calcium phosphate coatings can be im-
proved by means of ionic substitution [214–223]. The objective is to release the substituting
ions in the physiological environment after implantation, taking advantage of the dissolu-
tion process (see Section 2). Several ionic substitutions have been described in the literature,
using monovalent cations, divalent cations, trivalent cations, or anions. They are used to
impart the various biological or chemical effects described in Table 3.

Table 3. Ions used as substituents in calcium phosphate coatings.

Ions Biological/Chemical Effect References

monovalent cations

Ag+ antibacterial activity [224–226]

K+ osteogenesis [227–229]

Li+ osteogenesis [230–232]

Na+ osteogenesis [233–235]

divalent cations

Co2+ angiogenesis [236–238]

Cu2+ antibacterial activity [239–241]

Mg2+ osteogenesis [242–244]

Mn2+ osteogenesis [245–247]

Sr2+ osteogenesis [248–251]

Zn2+ osteogenesis/antibacterial/anti-inflammatory [252–254]
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Table 3. Cont.

Ions Biological/Chemical Effect References

trivalent cations

Bi3+ anticancer/antibacterial [255–257]

Ce3+ antibacterial [258–261]

Er3+ photoluminescence [262–264]

Eu3+ osteogenesis/photoluminescence [265–267]

Fe3+ osteogenesis/anticancer/antibacterial [268–270]

Ga3+ anticancer/antibacterial [271–273]

Tb3+ photoluminescence [274,275]

anions

Cl− osteogenesis [276–278]

CO2−
3 osteogenesis [279–281]

F− antibacterial [282–284]

SeO2−
3 /SeO2−

4 anticancer/antibacterial [285–287]

SiO4−
4 osteogenesis [288–290]

A few percent of these ions are generally used to produce substituted calcium phos-
phate coatings. Multi-substitution with several substituting ions is also described in the
literature with the objective of cumulating its positive effects on the biological properties of
bone implants [291–305].

5. Conclusions

This article reviewed the calcium phosphate compounds that are used as coatings
to make the surface of metallic bone implants osseoconductive. The link between the
stoichiometry, solubility, and bioactivity of calcium phosphate coatings was explained.
The main processes used in industry and academic research to design calcium phosphate
coatings were described. Historically, plasma spraying was the first industrial process,
but interesting alternative methods were also developed and have been described herein.
The stoichiometry and the physicochemical properties of the calcium phosphate coatings
depend crucially on the deposition process and the experimental parameters used during
coating deposition. The impact of coating properties on bioactivity has been briefly de-
scribed. Finally, the ionic substitution of calcium phosphate coatings was reviewed from
the literature, including the biological enhancements provided by ionic substitution.
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296. Kolmas, J.; Groszyk, E.; Kwiatkowska-Różycka, D. Substituted Hydroxyapatites with Antibacterial Properties. BioMed Res. Int. 2014,
2014, 178123. [CrossRef]

297. Garbo, C.; Locs, J.; D’Este, M.; Demazeau, G.; Mocanu, A.; Roman, C.; Horovitz, O.; Tomoaia-Cotisel, M. Advanced Mg, Zn, Sr, Si
Multi-Substituted Hydroxyapatites for Bone Regeneration. Int. J. Nanomed. 2020, 15, 1037–1058. [CrossRef]

298. Bracci, B.; Torricelli, P.; Panzavolta, S.; Boanini, E.; Giardino, R.; Bigi, A. Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical
and in vitro biological properties of calcium phosphate biomimetic coatings. J. Inorg. Biochem. 2009, 103, 1666–1674. [CrossRef]

299. Furko, M.; Jiang, Y.; Wilkins, T.; Balázsi, C. Electrochemical and morphological investigation of silver and zinc modified calcium
phosphate bioceramic coatings on metallic implant materials. Mater. Sci. Eng. C 2016, 62, 249–259. [CrossRef]

300. Furko, M.; May, Z.; Havasi, V.; Kónya, Z.; Grünewald, A.; Detsch, R.; Boccaccini, A.R.; Balázsi, C. Pulse electrodeposition and
characterization of non-continuous, multi-element-doped hydroxyapatite bioceramic coatings. J. Solid State Electrochem. 2017, 22, 555–566.
[CrossRef]

301. Furko, M.; Della Bella, E.; Fini, M.; Balázsi, C. Corrosion and biocompatibility examination of multi-element modified calcium
phosphate bioceramic layers. Mater. Sci. Eng. C 2019, 95, 381–388. [CrossRef]

302. Huang, Y.; Ding, Q.; Pang, X.; Han, S.; Yan, Y. Corrosion behavior and biocompatibility of strontium and fluorine co-doped
electrodeposited hydroxyapatite coatings. Appl. Surf. Sci. 2013, 282, 456–462. [CrossRef]

303. Bir, F.; Khireddine, H.; Mekhalif, Z.; Bonnamy, S. Pulsed electrodeposition of Ag+ doped prosthetic Fluorohydroxyapatite coatings
on stainless steel substrates. Mater. Sci. Eng. C 2020, 118, 111325. [CrossRef]

304. Vo, T.H.; Le, T.D.; Pham, T.N.; Nguyen, T.T.; Nguyen, T.P.; Dinh, T.M.T. Electrodeposition and characterization of hydroxyapatite
coatings doped by Sr2+, Mg2+, Na+ and F− on 316L stainless steel. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 045001. [CrossRef]

305. Chambard, M.; Remache, D.; Balcaen, Y.; Dalverny, O.; Alexis, J.; Siadous, R.; Bareille, R.; Catros, S.; Fort, P.; Grossin, D.; et al. Effect of
silver and strontium incorporation route on hydroxyapatite coatings elaborated by rf-SPS. Materialia 2020, 12, 100809. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0955-2219(03)00304-2
https://doi.org/10.1016/j.jallcom.2020.155920
https://doi.org/10.1016/j.actbio.2009.01.005
https://doi.org/10.1039/C9RA00839J
https://doi.org/10.1021/acsnano.6b03835
https://doi.org/10.1002/jbm.a.34387
https://doi.org/10.3390/ijms20010075
https://doi.org/10.1016/j.actbio.2019.10.033
https://doi.org/10.1016/j.surfcoat.2019.07.016
https://doi.org/10.1016/j.matchemphys.2017.08.020
https://doi.org/10.3390/coatings8080269
https://doi.org/10.1371/journal.pone.0227232
https://www.ncbi.nlm.nih.gov/pubmed/31923253
https://doi.org/10.1007/s10856-017-5846-2
https://doi.org/10.1088/1748-605X/ab5d7b
https://www.ncbi.nlm.nih.gov/pubmed/31783394
https://doi.org/10.1016/j.apsusc.2015.10.134
https://doi.org/10.1155/2014/178123
https://doi.org/10.2147/IJN.S226630
https://doi.org/10.1016/j.jinorgbio.2009.09.009
https://doi.org/10.1016/j.msec.2016.01.060
https://doi.org/10.1007/s10008-017-3790-1
https://doi.org/10.1016/j.msec.2018.01.010
https://doi.org/10.1016/j.apsusc.2013.05.152
https://doi.org/10.1016/j.msec.2020.111325
https://doi.org/10.1088/2043-6254/aae984
https://doi.org/10.1016/j.mtla.2020.100809

	Introduction 
	Calcium Phosphates 
	Deposition Methods 
	Plasma Spraying (PS) 
	Magnetron Sputerring (MS) 
	Pulsed Laser Deposition (PLD) 
	Electrospray Deposition (ESD) 
	Electrophoretic Deposition (EPD) 
	Biomimetic Deposition 
	Sol–Gel Process Combined with Dip or Spin Coating 
	Electrochemical Deposition (ECD) 
	Hydrothermal Synthesis 

	Main Properties Impacting the Bioactivity of Calcium Phosphate Coatings 
	Crystallinity 
	Morphology 
	Roughness 
	Porosity 
	Wettability 
	Adhesion 
	Ionic Substitution for Biological Enhancement 

	Conclusions 
	References

