Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (500)

Search Parameters:
Keywords = bioactive chemical constituents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

21 pages, 10626 KiB  
Article
Comparative Metabolomic Analysis Reveals Tissue- and Species-Specific Differences in the Abundance of Dammarane-Type Ginsenosides in Three Panax Species
by Shu He, Ying Gong, Shuangfei Deng, Yaquan Dou, Junmin Wang, Hoang Van Sam, Xingliang Chen, Xiahong He and Rui Shi
Horticulturae 2025, 11(8), 916; https://doi.org/10.3390/horticulturae11080916 (registering DOI) - 5 Aug 2025
Abstract
The genus Panax contains traditional herbs that have been widely used in traditional medicine. The active constituents, collectively known as ginsenosides, are well characterized in the most representative species, P. notoginseng. However, the major bioactive chemical constituents of P. stipuleanatus together with [...] Read more.
The genus Panax contains traditional herbs that have been widely used in traditional medicine. The active constituents, collectively known as ginsenosides, are well characterized in the most representative species, P. notoginseng. However, the major bioactive chemical constituents of P. stipuleanatus together with P. vietnamensis are relatively less studied. In this study, an untargeted metabolomic analysis was performed in P. notoginseng, P. stipuleanatus, and P. vietnamensis using root and leaf organs. Further metabolomic differences in P. stipuleanatus were compared with those of the two most prevalent species. The analysis results revealed tissue-specific qualitative and quantitative metabolic differences in each species. Several differentially accumulated metabolites were enriched in the biosynthesis of secondary metabolites, including the biosynthesis of ginsenosides I. The ginsenosides Rb1, Rf, Rg1, Rh1, Rh8, and notoginsenosides E, M, and N had a higher abundance level in the roots of both P. notoginseng and P. vietnamensis. In P. stipuleanatus, the accumulation of potentially important ginsenosides is mainly found in the leaf. In particular, the dammarane-type ginsenosides Rb3, Rb1, Mx, and F2 as well as the notoginsenosides A, Fe, Fa, Fd, L, and N were identified to have a higher accumulation in the leaf. The strong positive correlation network of different ginsenosides probably enhanced secondary metabolism in each species. The comparative analysis revealed a significant differential accumulation of metabolites in the leaves of both species. The various compounds of dammarane-type ginsenoside, such as Rb1, Rg1, Rg6, Rh8, Rh10, Rh14, and majoroside F2, had a significantly higher concentration level in the leaves of P. stipuleanatus. In addition, several notoginsenoside compounds such as A, R1, Fe, Fd, and Ft1 showed a higher abundance in the leaf. These results show that the abundance level of major ginsenosides is significant in P. stipuleanatus and provides an important platform to improve the ginsenoside quality of Panax species. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

22 pages, 1957 KiB  
Article
Preliminary Evaluation of the Nutraceutical Properties in Monovarietal Extra-Virgin Olive Oils and Monitoring Their Stability During Storage
by Lina Cossignani, Ornella Calderini, Antonello Marinotti, Emiliano Orrico, Andrea Domesi, Luisa Massaccesi, Mirko Cucina and Marina Bufacchi
Molecules 2025, 30(15), 3143; https://doi.org/10.3390/molecules30153143 - 26 Jul 2025
Viewed by 356
Abstract
In this paper, an in-depth characterization of the composition of extra-virgin olive oil (EVOO) from different cultivars was performed, with the aim of obtaining the fingerprint profile of bioactive constituents and studying the oxidative stability of the samples, both by an accelerated stability [...] Read more.
In this paper, an in-depth characterization of the composition of extra-virgin olive oil (EVOO) from different cultivars was performed, with the aim of obtaining the fingerprint profile of bioactive constituents and studying the oxidative stability of the samples, both by an accelerated stability test and after four months of storage at room temperature. Among the investigated cultivars, some were typical of Umbria (Central Italy), namely Moraiolo, Frantoio, and Dolce Agogia, others of Apulia (Southern Italy), Coratina, Peranzana, and Bella di Cerignola, and others were typical Spanish cultivars cultivated in Umbria (Arbequina and Arbosana). The comparison of the chemical parameters among oils from the different cultivars allowed for their discrimination by multivariate statistical analysis. Some phenolic compounds were mainly responsible for the sample group’s differentiation, with the oils from the Spanish cultivars clearly distinguished from the Umbrian and Apulian sample groups. The processing of the results by chemometric analysis during oil storage and stability tests again allowed the discrimination of the samples analyzed at different storage times. This study contributes to increasing knowledge on olive oils—chemical and nutraceutical properties from specific cultivars, particularly some less studied so far, such as the Bella di Cerignola cultivar, and their changes in their nutraceutical properties during storage. Full article
(This article belongs to the Special Issue Critical Quality Attributes of Natural Products)
Show Figures

Figure 1

17 pages, 5515 KiB  
Article
Hypoglycemic Effects of Silphium perfoliatum L. In Vitro and In Vivo and Its Active Composition Identification by UPLC-Triple-TOF-MS/MS
by Guoying Zhang, Liying Liu, Wenjing Jia, Luya Wang, Jihong Tao, Wei Zhang, Huilan Yue, Dejun Zhang and Xiaohui Zhao
Pharmaceuticals 2025, 18(8), 1087; https://doi.org/10.3390/ph18081087 - 23 Jul 2025
Viewed by 255
Abstract
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal [...] Read more.
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal medicine of North American Indigenous tribes, has efficacy of treating metabolic diseases, but its hypoglycemic activity and bioactive components have not been fully studied. Methods: In vitro α-glucosidase inhibition and in vivo sucrose/maltose/starch tolerance assays were performed to assess the hypoglycemic effects of SP extracts, and UPLC-Triple-TOF-MS/MS analysis was used to tentatively identify its chemical structure composition. In vitro enzyme inhibition and molecular docking were used to verify the effective ingredients. Results: In vitro hypoglycemic activities of four extracts of SP (SP-10/SP-40/SP-60/SP-C) showed that SP-10 exhibited strong α-glucosidase (sucrase and maltase) inhibitory effects with IC50 of 67.81 μg/mL and 62.99 μg/mL, respectively. Carbohydrate tolerance assays demonstrated that SP-10 could significantly reduce the PBG levels of diabetic mice, with a significant hypoglycemic effect at a dosage of 20 mg/kg. A total of 26 constituents, including 11 caffeoylquinic acids (CQAs) and 15 flavonol glycosides, were tentatively identified by mainly analyzing secondary MS fragmentation. Moreover, three CQAs rich in SP-10, namely chlorogenic acid (CGA), neochlorogenic acid (NCGA), and cryptochlorogenic acid (CCGA), may be the main hypoglycemic substances, as evidenced by their inhibitory effects on sucrase and maltase. Conclusions: The α-glucosidase inhibitory effects of SP extract both in vitro and in vivo and its active ingredients were systematically studied for the first time. Results indicated that SP extract, rich in CQAs, had significant hypoglycemic activity, supporting the considerable potential of SP as hypoglycemic functional food or cost-effective therapeutic agents for diabetes treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

27 pages, 2644 KiB  
Article
Nutraceutical Potential of Sideroxylon cinereum, an Endemic Mauritian Fruit of the Sapotaceae Family, Through the Elucidation of Its Phytochemical Composition and Antioxidant Activity
by Cheetra Bhajan, Joyce Govinden Soulange, Vijayanti Mala Ranghoo-Sanmukhiya, Remigiusz Olędzki, Daniel Ociński, Irena Jacukowicz-Sobala, Adam Zając, Melanie-Jayne R. Howes and Joanna Harasym
Molecules 2025, 30(14), 3041; https://doi.org/10.3390/molecules30143041 - 20 Jul 2025
Viewed by 358
Abstract
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of [...] Read more.
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of varying polarity. Preliminary phytochemical screening revealed the presence of several bioactive compounds, with pulp extracts generally richer in phytochemicals than seed extracts. UV-Vis and FTIR analyses confirmed key organic constituents, including sulfoxides in seeds. HPLC quantification showed notable citric acid content in the pulp (15.63 mg/g dry weight). Antioxidant assays indicated that organic solvent extracts of the pulp had superior free radical scavenging activity, while the seed’s aqueous extract exhibited the highest ferric reducing power. GC–MS profiling identified a diverse bioactive profile rich in terpenes, notably lanosterol acetate (>45% in both pulp and seeds). It is important to note that these findings are based on solvent extracts, which may differ from the phytochemical composition of the whole fruit as typically consumed. Among the extracts, aqueous fractions are likely the most relevant to dietary intake. Overall, the extracts of Sideroxylon cinereum pulp and seed show potential as sources of bioactive compounds for functional product development. Full article
Show Figures

Figure 1

16 pages, 1211 KiB  
Article
Exploring the Chemical Composition and Antimicrobial Activity of Extracts from the Roots and Aboveground Parts of Limonium gmelini
by Dariya Kassymova, Francesco Cairone, Donatella Ambroselli, Rosa Lanzetta, Bruno Casciaro, Aizhan Zhussupova, Deborah Quaglio, Angela Casillo, Galiya E. Zhusupova, Maria Michela Corsaro, Bruno Botta, Silvia Cammarone, Maria Luisa Mangoni, Cinzia Ingallina and Francesca Ghirga
Molecules 2025, 30(14), 3024; https://doi.org/10.3390/molecules30143024 - 18 Jul 2025
Viewed by 338
Abstract
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and [...] Read more.
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and polyphenolic compounds extracted from both the roots and aboveground parts of Limonium gmelini. Several methods of extraction, including ultrasound-assisted extraction (UAE), conventional maceration (CM), and supercritical fluid extraction (SFE), were employed to obtain bioactive fractions. Chemical profiling, primarily represented by monosaccharides and polyphenolic compounds, was characterized and analyzed using proton nuclear magnetic resonance spectroscopy (1H-NMR) and gas chromatography-mass spectrometry (GC-MS) techniques. While polyphenol-rich fractions exhibited significant antibacterial activity, particularly against Staphylococcus epidermidis, polysaccharide-rich aqueous fractions showed minimal antibacterial activity. Among the methods, CM and UAE yielded higher polyphenol content, whereas SFE provided more selective extractions. Notably, methanolic SPE fractions derived from the roots were especially enriched in active polyphenols such as gallic acid, myricetin, and naringenin, and they exhibited the highest antibacterial activity against Staphylococcus epidermidis. In contrast, extracts from the aboveground parts showed more moderate activity and a partially different chemical profile. These findings underscore the importance of plant part selection and support the targeted use of root-derived polyphenol-enriched fractions from L. gmelini as promising candidates for the development of natural antibacterial agents. Further investigation is needed to isolate and validate the most active constituents for potential therapeutic applications. Full article
Show Figures

Figure 1

20 pages, 3905 KiB  
Article
Antimicrobial Properties of Daucus nebrodensis Strobl.: A Multifunctional Essential Oil Against Bacterial Pathogens
by Giusy Castagliuolo, Antonella Porrello, Maddalena Cerasola, Giuseppe Bazan, Dario Antonini, Mario Varcamonti, Maurizio Bruno, Anna Zanfardino and Natale Badalamenti
Plants 2025, 14(14), 2227; https://doi.org/10.3390/plants14142227 - 18 Jul 2025
Viewed by 294
Abstract
Daucus is a large genus of the Apiaceae family, comprising around forty-five accepted species, that has a worldwide distribution. Species of this genus have been reported to have several traditional medicinal uses, and some of them are also largely used as food and [...] Read more.
Daucus is a large genus of the Apiaceae family, comprising around forty-five accepted species, that has a worldwide distribution. Species of this genus have been reported to have several traditional medicinal uses, and some of them are also largely used as food and spices. Daucus nebrodensis Strobl. is an endemic species of Sicily growing in the montane environments of the Madonie and the Nebrodi Mountains. In this work, the essential oil of D. nebrodensis (DnEO), collected wild near Messina (Italy), was chemically and biologically investigated. The hydrodistilled essential oil (yield 0.15%), obtained from fresh aerial parts, was evaluated by GC-MS, and It was particularly rich in monoterpene hydrocarbons, with sabinene (33.6%), α-pinene (17.2%), γ-terpinene (9.8%), and α-terpinene (7.6%) as the main metabolites. DnEO, and its main constituents, have been tested to evaluate their biological properties. Given the current problem of antibiotic resistance, it is of great interest to identify alternative molecules that could counteract the its progression. Therefore, DnEO was tested against Gram-negative species, such as E. coli DH5α and P. aeruginosa PAOI, and Gram-positive species, such as S. aureus ATCC6538P, B. subtilis AZ54, and M. smegmatis MC2155, showing notable antibacterial activity. The MIC for Bacillus subtilis, the most sensitive strain, was 18 mg/mL, while the MIC for Pseudomonas aeruginosa, the least sensitive strain, was 30 mg/mL. Moreover, interesting antibiofilm activity was observed against Mycobacterium smegmatis with a 55% inhibition. Its ability to form biofilms contributes to its persistence and resistance in clinical settings. These findings highlight the potential of D. nebrodensis EO as a source of bioactive compounds with promising antimicrobial and antibiofilm properties. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds, Functional Components and Functions)
Show Figures

Figure 1

24 pages, 4420 KiB  
Article
Herbal Extract-Induced DNA Damage, Apoptosis, and Antioxidant Effects of C. elegans: A Comparative Study of Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii
by Anna Hu, Qinghao Meng, Robert P. Borris and Hyun-Min Kim
Pharmaceuticals 2025, 18(7), 1030; https://doi.org/10.3390/ph18071030 - 11 Jul 2025
Viewed by 539
Abstract
Background: Herbal medicine represents a rich yet complex source of bioactive compounds, offering both therapeutic potential and toxicological risks. Methods: In this study, we systematically evaluated the biological effects of three traditional herbal extracts—Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii [...] Read more.
Background: Herbal medicine represents a rich yet complex source of bioactive compounds, offering both therapeutic potential and toxicological risks. Methods: In this study, we systematically evaluated the biological effects of three traditional herbal extracts—Mentha longifolia, Scrophularia orientalis, and Echium biebersteinii—using Caenorhabditis elegans as an in vivo model. Results: All three extracts significantly reduced worm survival, induced larval arrest, and triggered a high incidence of males (HIM) phenotypes, indicative of mitotic failure and meiotic chromosome missegregation. Detailed analysis of germline architecture revealed extract-specific abnormalities, including nuclear disorganization, ectopic crescent-shaped nuclei, altered meiotic progression, and reduced bivalent formation. These defects were accompanied by activation of the DNA damage response, as evidenced by upregulation of checkpoint genes (atm-1, atl-1), increased pCHK-1 foci, and elevated germline apoptosis. LC-MS profiling identified 21 major compounds across the extracts, with four compounds—thymol, carvyl acetate, luteolin-7-O-rutinoside, and menthyl acetate—shared by all three herbs. Among them, thymol and carvyl acetate significantly upregulated DNA damage checkpoint genes and promoted apoptosis, whereas thymol and luteolin-7-O-rutinoside contributed to antioxidant activity. Notably, S. orientalis and E. biebersteinii shared 11 of 14 major constituents (79%), correlating with their similar phenotypic outcomes, while M. longifolia exhibited a more distinct chemical profile, possessing seven unique compounds. Conclusions: These findings highlight the complex biological effects of traditional herbal extracts, demonstrating that both beneficial and harmful outcomes can arise from specific phytochemicals within a mixture. By deconstructing these extracts into their active components, such as thymol, carvyl acetate, and luteolin-7-O-rutinoside, we gain critical insight into the mechanisms driving reproductive toxicity and antioxidant activity. This approach underscores the importance of component-level analysis for accurately assessing the therapeutic value and safety profile of medicinal plants, particularly those used in foods and dietary supplements. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

17 pages, 3186 KiB  
Article
Unveiling the Pharmacognostic Potential of Peucedanum ostruthium (L.) W.D.J. Koch: A Comparative Study of Rhizome and Leaf Essential Oils
by Cristina Danna, Andrea Mainetti, Souda Belaid, Erminia La Camera, Domenico Trombetta, Laura Cornara and Antonella Smeriglio
Plants 2025, 14(13), 2047; https://doi.org/10.3390/plants14132047 - 3 Jul 2025
Viewed by 363
Abstract
Peucedanum ostruthium (L.) W.D.J. Koch (Apiaceae) is a perennial herb native to alpine regions that is renowned in traditional medicine. This study provided a pharmacognostic evaluation, comparing the EOs obtained from its rhizomes and leaves (REO and LEO, respectively). A micromorphological analysis, which [...] Read more.
Peucedanum ostruthium (L.) W.D.J. Koch (Apiaceae) is a perennial herb native to alpine regions that is renowned in traditional medicine. This study provided a pharmacognostic evaluation, comparing the EOs obtained from its rhizomes and leaves (REO and LEO, respectively). A micromorphological analysis, which was carried out using fluorescence and scanning electron microscopy, revealed terpenoid-rich secretory ducts in both organs. The EOs were extracted by hydrodistillation and characterized by gas chromatography, coupled with flame ionization detection and mass spectrometry (GC-FID and GC-MS), revealing distinct chemical profiles. REO was dominated by monoterpenes (80.08%), especially D-limonene (29.13%), sabinene (19.77%), and α-phellandrene (12.02%), while LEO was sesquiterpene-rich (81.15%), with β-caryophyllene (21.78%), β-selinene (14.09%), and germacrene D (10.43%) as the major compounds. The in vitro assays demonstrated that both EOs exhibit significant antioxidant and anti-inflammatory activities, with LEO consistently outperforming REO across all tests. However, neither EO showed antimicrobial effects against common bacterial or fungal strains. This may have been due to the absence of polar antimicrobial constituents, such as coumarins, which are poorly recovered by hydrodistillation. To fully exploit the therapeutic potential of P. ostruthium, especially its antimicrobial properties, future studies should aim to develop integrated formulations combining volatile and non-volatile fractions, preserving the complete plant complex and broadening bioactivity. Full article
Show Figures

Figure 1

14 pages, 1767 KiB  
Article
Antimicrobial Metabolites Isolated from Some Marine Bacteria Associated with Callyspongia crassa Sponge of the Red Sea
by Amal N. Alahmari, Shahira A. Hassoubah, Bothaina A. Alaidaroos, Ahmed M. Al-Hejin, Noor M. Bataweel, Reem M. Farsi, Khloud M. Algothmi, Naheda M. Alshammari and Amal T. K. Ashour
Microorganisms 2025, 13(7), 1552; https://doi.org/10.3390/microorganisms13071552 - 2 Jul 2025
Viewed by 386
Abstract
The Red Sea is rich in symbiotic microorganisms that have been identified as sources of bioactive compounds with antimicrobial, antifungal, and antioxidant properties. In this study, we aimed to explore the potential of marine sponge-associated bacteria as sources of antibacterial compounds, emphasizing their [...] Read more.
The Red Sea is rich in symbiotic microorganisms that have been identified as sources of bioactive compounds with antimicrobial, antifungal, and antioxidant properties. In this study, we aimed to explore the potential of marine sponge-associated bacteria as sources of antibacterial compounds, emphasizing their significance in combating antibiotic resistance (AMR). The crude extracts of Micrococcus, Bacillus, and Staphylococcus saprophyticus exhibited significant antibacterial activity, with inhibition zones measuring 12 mm and 14 mm against Escherichia coli, Staphylococcus aureus, Candida albicans, and other infectious strains. The DPPH assay showed that the bacterial isolates AN3 and AN6 exhibited notable antioxidant activity at a concentration of 100 mg/mL. To characterize the chemical constituents responsible for the observed bioactivity, a GC–MS analysis was performed on ethyl acetate extracts of the potent strains. The analysis identified a range of antimicrobial compounds, including straight-chain alkanes (e.g., Tetradecane), cyclic structures (e.g., Cyclopropane derivatives), and phenolic compounds, all of which are known to disrupt microbial membranes or interfere with metabolic pathways. The bioprospecting and large-scale production of these compounds are challenging. In conclusion, this study underscores the potential for marine bacteria associated with sponges from the Red Sea to be a source of bioactive compounds with therapeutic relevance. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

19 pages, 1904 KiB  
Review
Research Progress on the Isolation, Purification, Structural Characteristics and Biological Activity Mechanism of Pleurotus citrinopileatus Polysaccharides
by Zixu Liu and Honglei Wang
Molecules 2025, 30(13), 2816; https://doi.org/10.3390/molecules30132816 - 30 Jun 2025
Viewed by 252
Abstract
Pleurotus citrinopileatus, a valuable edible fungus characterized by its distinctive light yellow coloration and saprophytic growth on elm wood, has garnered increasing scientific interest due to its diverse bioactive constituents. Among these, polysaccharides derived from P. citrinopileatus (PCPs) have received the most [...] Read more.
Pleurotus citrinopileatus, a valuable edible fungus characterized by its distinctive light yellow coloration and saprophytic growth on elm wood, has garnered increasing scientific interest due to its diverse bioactive constituents. Among these, polysaccharides derived from P. citrinopileatus (PCPs) have received the most extensive research attention. This review summarizes recent advances in the chemical structure and biological activities of PCPs. Structurally, PCPs are primarily composed of repeating units such as →3)-α-D-Glcp-(1→ and →6)-α-D-Galp-(1→. Functionally, PCPs exhibit a range of bioactivities, including immunomodulatory, hypoglycemic, and antitumor effects. Furthermore, the underlying mechanisms associated with these biological activities are also explored. This review aims to provide a comprehensive reference for future studies and facilitate the development and application of PCPs as potential functional food ingredients or therapeutic agents. Full article
Show Figures

Figure 1

28 pages, 1734 KiB  
Article
Autofluorescence and Metabotyping of Soybean Varieties Using Confocal Laser Microscopy and High-Resolution Mass Spectrometric Approaches
by Mayya P. Razgonova, Muhammad A. Navaz, Ekaterina S. Butovets, Ludmila M. Lukyanchuk, Olga A. Chunikhina, Sezai Ercişli, Alexei N. Emelyanov and Kirill S. Golokhvast
Plants 2025, 14(13), 1995; https://doi.org/10.3390/plants14131995 - 30 Jun 2025
Viewed by 420
Abstract
This research examines a detailed metabolomic and comparative analysis of bioactive substances of soybean varieties: “Primorskaya-4”, “Primorskaya-86”, “Primorskaya-96”, “Locus”, “Sphere”, “Breeze”, “Namul”, and “Musson” by the laser confocal microscope CLSM 800 and the mass spectrometry of bioactive compounds by tandem mass spectrometry. The [...] Read more.
This research examines a detailed metabolomic and comparative analysis of bioactive substances of soybean varieties: “Primorskaya-4”, “Primorskaya-86”, “Primorskaya-96”, “Locus”, “Sphere”, “Breeze”, “Namul”, and “Musson” by the laser confocal microscope CLSM 800 and the mass spectrometry of bioactive compounds by tandem mass spectrometry. The laser microscopy allowed us to clarify in detail the spatial arrangement of phenolic acids, flavonols, and anthocyanin contents in soybeans. Research has convincingly shown that the polyphenolic content of soybeans, and, in particular, the anthocyanins, are spatially localized mainly in the seed coat of soybeans. Tandem mass spectrometry was used to identify chemical constituents in soybean extracts. The results of initial studies revealed the presence of one hundred and fourteen compounds; sixty-nine of the target analytes were tentatively identified as compounds from polyphenol groups. Full article
Show Figures

Figure 1

38 pages, 1316 KiB  
Review
Unveiling the Antioxidant Role of Hemp Oils in Cancer Prevention and Treatment
by Marios C. Christodoulou, Panagiotis Rodosthenous and Christiana M. Neophytou
Cancers 2025, 17(13), 2128; https://doi.org/10.3390/cancers17132128 - 25 Jun 2025
Viewed by 2287
Abstract
The global incidence of cancer continues to rise at an alarming rate, with annual cases projected to increase by 47% from 19.3 million in 2020 to 28.4 million by 2025. Cannabis sativa L. was among the earliest plants investigated for potential anticancer therapies, [...] Read more.
The global incidence of cancer continues to rise at an alarming rate, with annual cases projected to increase by 47% from 19.3 million in 2020 to 28.4 million by 2025. Cannabis sativa L. was among the earliest plants investigated for potential anticancer therapies, due to its more than 100 bioactive constituents that confer notable antioxidant properties. Hemp-derived extracts, particularly those rich in cannabidiol (CBD), exhibit notable synergistic biological effects, including the inhibition of cancer cell proliferation, angiogenesis, and metastasis, alongside the promotion of apoptosis. These pharmacological attributes suggest that hemp oils may serve as promising alternatives or adjuncts to conventional chemotherapy, offering potential therapeutic benefits with a reduced risk of severe adverse effects. This review discusses the current literature on hemp oils, with emphasis on their roles in cancer prevention, therapeutic efficacy, and potential toxicity in humans. Furthermore, it explores the various extraction methods employed in hemp oil production and examines their chemical compositions, offering a comprehensive understanding of the principal antioxidant constituents responsible for their bioactivity to the readers. Full article
(This article belongs to the Special Issue Natural Compounds in Cancers: 2nd Edition)
Show Figures

Graphical abstract

20 pages, 5200 KiB  
Article
Novel and Potential Photoprotective and Tyrosinase Inhibitory Effects of Tetrastigma erubescens Extracts: Evidence from In Vitro Assays and Computational Approach
by Thi Thu Le Vu, Tu Quy Phan, Tien Lam Do and Van Bon Nguyen
Life 2025, 15(7), 995; https://doi.org/10.3390/life15070995 - 22 Jun 2025
Viewed by 417
Abstract
Tetrastigma erubescens, a native medicinal plant of Vietnam, has long been used in folk medicine to manage various diseases, including skin-related issues. However, limited research has been conducted on this herb’s bioactivities and chemical composition. This study aims to investigate the chemical [...] Read more.
Tetrastigma erubescens, a native medicinal plant of Vietnam, has long been used in folk medicine to manage various diseases, including skin-related issues. However, limited research has been conducted on this herb’s bioactivities and chemical composition. This study aims to investigate the chemical constituents and evaluate the anti-tyrosinase activity and UV-A/UV-B absorption capacity of T. erubescens extracts, highlighting their potential as natural sources for skin-whitening and sun protection agents. In vitro assays demonstrated that the ethyl acetate (EA) extract of T. erubescens exhibited a significant UV-A and UV-B absorption capacity. Notably, this extract showed a strong anti-tyrosinase activity for the first time, with a maximum inhibition rate of 99.2% and an IC50 value of 70.3 µg/mL. Based on the UHPLC and GCMS analysis, phenolic compounds (19) and ten volatile constituents (1019) were identified in the EA extract of T. erubescens. Of these, almost all volatiles and some phenolics were reported for the first time in this genus. The molecular docking analysis revealed that all identified phytochemicals showed a comparable or greater binding affinity to both mushroom tyrosinase (docking scores: from −7.5 to −14.1 kcal/mol) and human tyrosinase (from −6.7 to −14.8 kcal/mol) than kojic acid (−8.7 and −8.6 kcal/mol, respectively). In addition, these identified compounds showed favorable drug-like properties and low toxicity risks via ADMET prediction and Lipinski’s Rule of Five analyses. The results obtained in this work suggest that the EA extract of T. erubescens is a promising natural source of bioactive compounds for cosmetic applications, particularly in whitening and sun protection formulations. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: Therapeutic Insights and Applications)
Show Figures

Figure 1

Back to TopTop